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Abstract. The conversion of guanosine triphosphate (GTP) 
to guanosine diphosphate (GDP) and inorganic phosphate 
(Pi) by guanine nucleotide binding proteins (GNBPs) is a 
fundamental process in living cells and represents an im-
portant timer in intracellular signalling and transport proc-
esses. While the rate of GNBP-mediated GTP hydrolysis 
is intrinsically slow, direct interaction with GTPase acti-

vating proteins (GAPs) accelerates the reaction by up to 
fi ve orders of magnitude in vitro. Eighteen years after the 
discovery of the fi rst GAP, biochemical and structural re-
search has been accumulating evidence that GAPs employ 
a much wider spectrum of chemical mechanisms than had 
originally been assumed, in order to regulate the chemical 
players on the catalytic protein-protein interaction stage.
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Introduction

GTP hydrolysis is a fundamental reaction in biology, 
controlling numerous vital processes, including protein 
biosynthesis, growth control and differentiation, sensory 
perception, various transport processes and cytoskel-
etal reorganization. Guanine nucleotide-binding proteins 
(GNBPs) provide the catalytic machinery to perform the 
chemical reaction converting GTP to GDP and inorganic 
phosphate (Pi). Like molecular switches these proteins 
cycle between active forms with GTP and inactive forms 
with GDP bound (fi g. 1A) [1]. To become activated, GDP 
has to be exchanged for GTP. This reaction requires gua-
nine nucleotide exchange factors (GEFs) [2] to catalyse 

the release of the usually tightly bound GDP, which is 
subsequently replaced by abundant cellular GTP. Only in 
the activated state do GNBPs interact with and activate 
downstream targets, called effectors, which in turn trig-
ger cellular responses. GTP hydrolysis returns GNBPs 
to their inactive state, thereby terminating downstream 
signalling. This intrinsically slow reaction with rate con-
stants of 10–1 to 3·10–3 min−1 can be accelerated by up to 
fi ve orders of magnitude through interaction with GT-
Pase activating proteins (GAPs) [3–5]. Thus, GEFs and 
GAPs are essential modulators of the biological activity 
of GNBPs (fi g. 1A).
The G-domain is the primary structural target of GAPs, 
frequently exemplifi ed for Ras, one of the best-investi-
gated representatives of the GNBP superfamily [6–9]. 
The primary sequence folds into an a/b structure with 
residues from the conserved G-motifs [10] forming a 
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shallow surface pocket that accommodates the guanine 
nucleotides GTP or GDP (fi g. 1B). Active and inactive 
forms differ in the presence or absence of the g-phos-
phate on the nucleotide, refl ected in considerable confor-
mational differences in regions that contact this terminal 
phosphate in the GTP-bound form [6, 9]. These regions 
have been consistently termed switch I and switch II (fi g. 
1B, C) and are frequently involved in the interactions 
between the GNBPs and their effectors or/and regulatory 
proteins [11, 12]. The G-domain can be considered as a 
structural tema con variazioni with the a/b core highly 
conserved throughout functionally different species but 
modulated by the insertion or rearrangement of certain 
structural elements.
Corresponding to their wide variety of functions, GNBPs 
have been classifi ed into groups that share common se-
quence motifs implemented into the G-domain (fi g. 1B) 
[1, 11, 13]. Heterotrimeric G-proteins (41–45 kDa), the 
fi rst class to be discovered, with the GTP/GDP-binding 
a-subunit, and the regulatory b,g-subunits, mediate sig-
nal transduction from agonist-bound G-protein-coupled 
receptors to a variety of intracellular effector molecules 
and ion channels. The multidomain factors, which are 
important in protein synthesis (e.g. EF-Tu; EF-G) and 
protein targeting via the signal recognition particle 
(SRP54 and its receptor SRa) also share a G-domain. 
The group of interferon g-inducible GNBPs involve 
human guanylate binding protein 1 (hGBP1) and MxA 
proteins (MW 47–65 kDa). Especially interesting is the 
capability of these proteins to induce GTP hydrolysis 
down to the level of GMP [14, 15]. In contrast to the 

large GNBPs, the small GNBPs (also known as ‘small 
GTPases’) are globular proteins (MW ~21 kDa) that are 
commonly counted into the superfamily of Ras-related 
GNBPs [16], named after its founding member Ras [17, 
18]. Among a variety of other processes they control 
cellular growth and differentiation (Ras family [19]), 
cytoskeletal dynamics and transcription (Rho/Rac/Cdc42 
family [20]), vesicular transport (Rab family [21]), mem-
brane traffi cking (Arf family [22]), nucleocytoplasmic 
transport and mitotic spindle assembly (Ran family [23, 
24]). Apart from these major groups and with increasing 
evaluation of (structural) genomes, one can distinguish 
other families with growing functional and structural 
diversity [25]. 
The GTPase mechanism has attracted considerable at-
tention, largely due to the observation that characteristic 
G-protein mutants that are not able to hydrolyse GTP 
contribute to pathological developments [26–28], with 
cancer leading a growing list of partly life-threatening 
diseases. In these cases and with Ras in particular, the 
role of GAPs has been investigated in specifi c detail 
since GTPase-defi cient mutants are not responsive to 
these regulators [29–32].
The picture of the general GTPase cycle (fi g. 1A) as de-
picted now in biochemistry textbooks emerged originally 
from investigations of heterotrimeric G-proteins and 
EF-Tu. The present conceptual view, that every GNBP is 
regulated by a GEF, a GAP and in some cases (Rho and 
Rab families) a guanine nucleotide dissociation inhibitor 
(GDI), started out with the discovery of the fi rst GAP by 
Trahey and McCormick 18 years ago [29]. A recent sur-

Figure 1. Basic features of GNBPs. (A) Conformational switch as the basis functions for the GNBP cycle. GEFs switch ‘ON’ the GNBPs by 
binding to the GDP-bound inactive GNBP (green) and catalyse the GDP/GTP exchange reaction. In their GTP-bound active state GNBPs 
(cyan) either specifi cally interact with and activate the downstream effectors or are downregulated by GAPs, which switch ‘OFF’ the signal 
transduction by stimulating the GTPase reaction of the GNBPs. (B) Common characteristics of the G-domain (ribbon). Conserved guanine 
nucleotide-binding motifs (base and phosphate binding motifs in brown and blue, respectively), the nucleotide (magenta), the Mg2+ ion (gray 
sphere), the invariant threonine (as ball-and-stick in yellow) and the highly conserved catalytic glutamine (red sphere) are highlighted on the 
G-domain of Ras in both conformations, the GDP-bound (green) [6] and in the GTP-bound state (cyan) [6, 7]. Sw I and Sw II indicate switch 
I and switch II. (C) Schematic view of the intrinsic GTPase reaction mechanism. In the GTP-bound state of the GNBPs, the switch regions 
(Sw I and Sw II) provide critical residues that fi x both the g-phosphate directly but also via the Mg2+ ion and the catalytic water molecule. 
Release of the g-phosphate after GTP hydrolysis induces a conformational change of switch regions that relax into the GDP-bound state.
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Figure 2. Modular architecture of different GAP families. Multifunctional domain features of different GAP families are illustrated with eu-
kargotic catalytic GAP domains in black. (A) RasGAPs, (B) RhoGAPs, (C) RapGAPs, (D) RabGAPs, (E) ArfGAPs, (F) RanGAPs (G) RGS 
proteins (GaGAPs). The total number of amino acids is shown at the C-terminal end. Abbreviations: Act1/2, actin regulatory; Ank, ankyrin 
repeat; BAR, Bin-Amphiphysin-Rvs; BTK, Bruton’s tyrosine kinase; C2, Ca2+-dependent lipid binding; CAM, calmodulin binding; CC, 
coiled-coil; DH, Dbl homology; GoLoco, Ga interacting motif; GKBD, guanylate kinase-like binding domain; IRA-HR, IRA homology 
region; LZ, leucine zipper; P, proline-rich; PBS, paxillin binding subdomain; PDZ, Drosophila septate junction protein/Discs-large/ZO-1; 
PH, pleckstrin homology; PTB, phosphotyrosine binding; RA, Ras association; Sec14, phosphatidylinositol binding; SHD1, Spa2 homology 
1 domain; S/T kinase, serine/threonine kinase; Syn., syndecan binding; SH2, Src homology 2; SH3, Src homology 3; SUMO-AD, SUMO 
association domain; acidic, highly acidic region; TAD, transcription activation domain; Transl., translocation domain; Tub., tubulin-binding; 
Y-phosphatase, tyrosine phosphatase domain; Zn, zinc fi nger domain.

vey explored the Drosophila and human genomes with 
respect to GAPs, arriving at the conclusion that about 
0.5% of the genes (173 in human and 64 in Drosophila) 
may encode GAPs for Ras superfamily members, many 
of which still await investigation [4]. Typically and with 
only few exceptions, GAP activity is contained in a seg-

ment of 100–350 residues in a module accompanied by 
other domains frequently involved in signalling or locali-
zation (see fi g. 2). 
A number of diseases have been found to be associated 
with genetic alterations of GAPs. The RasGAP encod-
ing neurofi bromin, responsible for the pathogenesis of 
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neurofi bromatosis type 1 [33], is one of the best explored 
in a list of examples that also includes p120GAP [34], 
N-GAP [35] and the RapGAP homolog tuberous sclero-
sis protein tuberin [36]. In addition, bacterial pathogens 
have evolved strategies that interfere with the GTPase 
cycle of Rho family members and particularly with the 
GTPase reaction in the absence and presence of func-
tional GAPs [37, 38].
In this article, we review the current knowledge about 
GAPs with an emphasis on structure-function aspects. 
We try to focus on concepts where possible and 
supply more detail where necessary, hoping that 
both students and advanced researchers will ben-
efi t. We do not consider regulatory mechanisms that 
control GAP activities, which is an important issue 
most recently reviewed by Bernards and Settleman 
[39, 40].

Exploring GAP mechanisms

Several approaches have been used to measure the GAP-
stimulated GTP-hydrolysis reaction:
1)  The most frequently used assay is nitrocellulose fi lter 

binding of the (g-32P)GTP-bound GNBPs, which is 
inexpensive and rather useful for multiple turnover 
experiments using catalytic amounts of the GAP.

2)  A spectrophotometric method has been developed for 
measuring the release of Pi during GTP hydrolysis 
by coupling 2-amino-6-mercapto-7-methylpurine 
ribonucleoside and purine-nucleoside phosphorylase 
[41]. The assay was shown to quantitate Pi in solution 
at concentrations of down to 2 µM.

3)  The most accurate technique to date is provided by 
high-performance liquid chromatography (HPLC), 
which allows separation of the GTP and GDP peaks 
and determination of the nucleotide-content [42]. This 
method, however, consumes high protein quantities.

4)  Stopped-fl ow measurements allow monitoring of 
the kinetics of the stimulated GTPase reaction under 
single turnover conditions and determining individual 
rate constants for the GAP-GNBP interaction using 
fl uorescently labelled GTP analogs [43]. Fluores-
cence measurements also allow easy observation of 
the formation of an aluminium fl uoride bound state 
(see below), which is believed to mimic the transition 
state of the GTPase reaction [44, 45].

Intrinsic GTP hydrolysis
As a hallmark of GNBP function the rate of GTP hy-
drolysis limits the lifetime of the activated GTP-bound 
state. While GNBPs have a conserved recognition site for 
guanine nucleotides, the mechanisms of GTP hydrolysis 
differ in detail. Small GNBPs are ineffi cient enzymes 

and exhibit a large variation in the GTP hydrolysis reac-
tion rates, e.g. Rac1 (0.11 min–1) [46], Ras (0.028 min–1) 
[47, 48], Rap (0.0031 min–1) [49]. Arf, on the other hand, 
lacks intrinsic GTPase activity [50, 51]. Isotopic label-
ling has shown that Ras hydrolyses GTP via direct in-line 
transfer of the g-phosphate from GTP to water [52]. The 
activating group was originally proposed to be provided 
by the critical glutamine (Gln61 in Ras) [7, 53], but stud-
ies substituting Gln61 in Ras by the non-natural NGln 
[54] and linear free energy perturbation calculations [55] 
disfavoured this mechanism. A detailed investigation us-
ing linear free  energy relationships (LFERs) suggested 
that GTP itself acts as a general base in the substrate-as-
sisted catalysis of GNBPs. In the proposed mechanism 
Mg2+-polarized GTP abstracts a proton from the catalytic 
water molecule, which then acts as the attacking nucle-
ophile [48]. The role of a second water molecule has been 
discussed on the basis of a GTP-bound Ras structure, de-
termined at 1.26 Å resolution, proposing a proton-shuf-
fl ing mechanism between two attacking water molecules 
and one oxygen of the g-phosphate [56].
The GTPase reaction catalyzed by GNBPs involves a 
rather complex free energy surface [57] and several reac-
tion pathways, which can be grouped into two extreme 
classes: (i) an associative mechanism that involves a 
phosphorane intermediate, with no bond cleavage to the 
leaving group, complete bond formation with the incom-
ing nucleophile and a decrease in bond order of the non-
bridging oxygens [48]; and (ii) a dissociative mechanism 
that involves a metaphosphate intermediate characterized 
by complete bond cleavage on the leaving group, absence 
of bond formation to the incoming nucleophile and an 
increase in bond order of the non-bridging oxygens [58]. 
Typically, a phosphoryl transfer reaction is concerted, 
with a transition state that is intermediate in structure 
between metaphosphate and phosphorane extremes [59]. 
The vast majority of studies have aimed at elucidating 
the transition state for the phosphoryl transfer reaction 
of Ras, which is described by a structure somewhere be-
tween dissociative and associative extremes [48, 58–61].
Replacement of the catalytic glutamine (Gln61) by 
virtually any other amino acid signifi cantly reduces the 
intrinsic hydrolysis rate up to 50-fold [62, 63], prevents 
GAP-mediated inactivation and thus induces oncogenic 
transformation by constitutive activation of the GTPase 
[32, 63–66]. This is because a glutamine has enough po-
larity and the correct size to be stabilized by the arginine 
fi nger of the GAP in order to orient the catalytic water 
molecule for optimal nucleophilic attack [67, 68]
A second amino acid that is critical for GTP hydrolysis is 
a glycine in the P-loop (Gly12 in Ras), which appeared to 
be involved in conformational stabilization of the Gln61 
side chain [7]. Glycine 12 mutations in Ras reduce GT-
Pase activity about 20-fold [62, 63, 69, 70] and are onco-
genic due to their insensitivity towards RasGAP [71]. Arf 
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proteins contain an aspartate residue in the P-loop, in the 
position equivalent to Gly12 in Ras, which may be one of 
the reasons for the lack of intrinsic GTP hydrolysis [72]. 
Moreover, two GNBP subgroups, the Rnd proteins of the 
Rho family [73–75] and DexRas proteins of the Ras fam-
ily [76, 77], contain amino acid deviations at both posi-
tions equivalent to 12 and 61 in Ras. They may thus exist 
predominantly in the GTP-bound conformation [78, 79] 
since they are unable to hydrolyse GTP and are insensi-
tive to GAPs [73–75].

GAP-stimulated GTP hydrolysis
Essentially, two models of how GAPs could accelerate 
the hydrolysis of GTP-bound GNBPs have been pro-
posed. In the fi rst model the GNBP would provide the 
whole catalytic machinery, and the role of GAPs would 
be to stabilize the catalytically competent conformation 
[80–82]. The second model proposed that GAPs supply a 
catalytic residue into the active site of the GNBP [44, 45, 
83]. Arginine would be a good candidate since the long 
side chain could bridge larger inter-protein distances and 
the positively charged guanidinium group could contrib-
ute to transition state stabilization, as has been derived 
from structures of adenylate kinase-like enzymes [84].
A breakthrough in the biochemical investigation of the 
GAP mechanism came from studies employing alu-
minium fl uoride (AlFx). These compounds have been 
identifi ed as transition state mimics with heterotrimeric 
G-proteins [85]. In complexes with GDP-bound a-subu-
nits of heterotrimeric G-proteins (Ga) AlF4 was found in 
a planar conformation in the position normally occupied 
by the g-phosphate of the bound GTP [86, 87]. This was 
interpreted to represent an approximate mimic of the 
transferred phosphate moiety, with an oxygen of the GDP 
b-phosphate and a water molecule serving as the transax-
ial ligands to complete a tetragonal bipyramid [86, 87]. In 
contrast to Ga-proteins, GDP-bound Ras alone does not 
bind AlFx. Addition of RasGAP promotes the formation 
of a stable ternary complex between the GDP-bound Ras, 
AlFx and the GAP component. In addition, oncogenic 
Ras mutants did not form such a complex nor did inac-
tive GAP mutants, in keeping with the impaired GTPase 
activity and GAP insensitivity [44]. These observations 
appeared to be the beginning of a catalytic concept unify-
ing heterotrimeric G-proteins and small GNBPs. Forma-
tion of a GDP-AlFx bound ternary complex is now seen 
as indicative of a transition state stabilizing mechanism. 
Those residues playing a critical role in this process can 
frequently be identifi ed by mutational analysis in which 
formation of an AlFx bound complex should be impaired 
if the functional group is not available. 

GAPs for different GNBP families

In the following paragraphs, we review the current 
knowledge about GNBP-GAP interactions with a focus 
on the structural and biochemical aspects. Table 1 sum-
marizes current knowledge about the most important fea-
tures of GAPs, which are discussed below. These features 
are schematically visualized in fi gure 4.

RasGAPs
p120GAP [29, 88, 89] and the neurofi bromatosis type 1 
gene product neurofi bromin [90–94] represent the fi rst-
identifi ed and best-characterized GAPs. Neurofi bromin 
is the protein responsible for the pathogenesis of neu-
rofi bromatosis type 1 [33], a common genetic disorder 
which predisposes to the formation of tumours and is 
associated with numerous clinical complications, includ-
ing learning disabilities. In addition to homologs in Dro-
sophila melanogaster, yeast, Dictyostelium discoideum 
and Caenorhabditis elegans, 14 RasGAP-related genes 
are known in mammalian species [4].
The modular structure frequently comprises pleckstrin 
homology (PH) and C2 [called conserved domain 2 in 
protein kinase C (PKC)] domains in addition to the cata-
lytic RasGAP module. P120GAP also contains Src ho-
mology 2 (SH2) and 3 (SH3) domains and a proline-rich 
region at the N-terminus (fi g. 2A). It appears that at least 
in some cases these domains are involved in membrane 
recruitment. Most biochemical studies have been per-
formed with fragments comprising the catalytic domains 
of neurofi bromin and p120GAP. The commonly used 
segment (330–450 residues) [91, 95] could be reduced to 
a minimal domain of only 230 residues [96].
Several biochemical studies suggested residues important 
for the GAP-mediated acceleration of GTP hydrolysis on 
the Ras as well as on the GAP side. Apart from Gly12, 
mutation of which to most other residues except proline, 
unfolds the oncogenic potential of the protein [71], and 
Gln61 [64], the switch regions are important for the interac-
tions [30, 97, 98]. In RasGAP the primary candidates were 
derived primarily from the conserved sequence blocks 
(block1, 2, 3A, 3B), including a fi ngerprint FLR motif.
The crystal structure of the catalytic domain of p120GAP 
presented the fi rst three-dimensional model of an active 
GTPase activating protein [99]. The bowl-shaped helical 
protein (see fi g. 3A) is composed of a central domain that 
contains all residues important for the interaction with 
Ras. It basically represents the minimal catalytic domain 
(GAPc) reported on the basis of biochemical studies [96]. 
The function of a less conserved extra-domain (GAPex) 
composed of similar portions from the N- and C-termi-
nus, also present in the GAP-related domain (GRD) of 
neurofi bromin NF1GRD [100], is so far unclear. The 
conserved residues line up around a shallow groove that 
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has been proposed to be the docking site for Ras [99] and 
was confi rmed by the crystal structure of the Ras-Ras-
GAP complex (fi g. 3A) [101].
In this complex, composed of GDP-AlF3 bound Ras and 
the catalytic domain of p120GAP, an invariant arginine 
(Arg789, the ‘arginine fi nger’), contacts the b,g por-
tion of the nucleotide in the transition state mimic of 
the hydrolysis reaction (fi g. 3A) [101]. This suggested 
a catalytic contribution to compensate developing nega-
tive charges accumulating during phosphoryl transfer. 
The arginine fi nger is presented by the fi nger loop that 
also stabilizes the orientation of the catalytic Gln61, 
whose proposed role is the positioning of the catalytic 
water molecule for optimal nucleophilic attack, as sug-
gested for Ga-proteins [87] (fi g. 4A, B). Mutation of the 
arginine fi nger to lysine or alanine reduces GAP activity 
2000-fold but does not affect binding, thus representing 
a major contribution to catalysis. The mutation of the 
arginine fi nger in neurofi bromin to proline, as found in 
NF1-patients with malignant peripheral nerve sheath tu-
mors, slightly reduced the binding affi nity to Ras, but re-
sulted in an 8000-fold reduction of GAP-stimulated GTP 
hydrolysis [102]. The conformation of the fi nger loop is 
stabilized by the arginine from the FLR fi ngerprint motif. 
Its mutation to alanine or lysine decreases GAP activity 
50-fold without affecting binding, suggesting a second-
ary role in catalysis [103, 104].
A number of additional interactions involve an exposed 
loop segment, termed variable loop, opposite to the fi nger 
loop. This segment provides additional basic and acidic 
residues contributing to the network of polar interactions 
found in the complex interface [101]. The complex struc-
ture explains why oncogenic Ras mutants, particularly 
those in position 12 [71], are not GAP sensitive: these 
mutants would interfere with the geometry of the tran-
sition state of the GAP assisted GTPase reaction [101]. 
The observation that they still bind to GAP [105] sug-
gests that the ground state adopts a conformation differ-
ent from that seen in the transition state. Indeed, nuclear 
magnetic resonance (NMR) studies have demonstrated 
that in the ground state GAP does not interact directly 
with the nucleotide [106], as observed similarly in the 
Rho-RhoGAP system [107] (see below). 
Extensive mutagenesis of NF1-GRD and of GAP-334 
has identifi ed three structural fi ngerprints governing 
the GAP reaction. These include the catalytic arginine 
(Arg789)-presenting fi nger loop, the so-called FLR-
region containing the RasGAP fi ngerprint FLR motif and 
the a7/variable loop region, which has been identifi ed 
on the basis of a structure-based sequence alignment 
[101, 108]. Of particular interest is the fi nger loop that 
represents an attractive target to interfere with the Ras-
RasGAP interaction in oncogenic Ras mutants. The FLR 
region and a7/variable loop determine the specifi city of 
the Ras-RasGAP interaction [103, 108].

Fourier transform infrared (FTIR) difference spectros-
copy has become an increasingly important tool in the 
study of the complete intrinsic [109] and GAP-stimulated 
GTPase reaction pathway of GNBPs in atomic detail and 
on a millisecond time resolution [110]. FTIR studies have 
shown [61, 110] that coupled vibrations of the phosphate 
groups of GTP become largely uncoupled upon Ras bind-
ing, and negative charge is shifted towards the non-bridg-
ing b-oxygen of GTP [109]. Thereafter, (i) GAP binding 
increases the negative charge shift towards the non-bridg-
ing oxygen of GTP presumably due to the positively 
charged guanidinium group of the arginine fi nger, and (ii) 
a GDP•Pi intermediate accumulates during the reaction. 
The rate-limiting step is Pi release or dissociation of the 
GAP from the Ras•GDP•Pi•GAP intermediate, which is 
in line with conclusions drawn from stopped-fl ow experi-
ments [82, 111, 112]. The FTIR data also showed that the 
GTPase reaction is reversible, similar to what is known 
for other phosphoryl transfer reactions.
Understanding why oncogenic mutants of Ras cannot be 
switched off by GAP has invoked the concept of restoring 
GTPase activity of oncogenic Ras mutants by small 
molecules as a therapeutic approach for Ras-directed 
cancer therapy [42, 113]. The latter notion has gained 
impetus by recent reports showing for the fi rst time that 
oncogenic Ras mutants can be chemically inactivated 
and are not irreversibly damaged in their capability to act 
as molecular switches. The defective GTPase reaction of 
different oncogenic mutants of Ras could be increased by 
up to three orders of magnitude by using a modifi ed GTP 
analog, 3,4-diaminobenzophenone-phosphoramidate-
GTP (DABP-GTP [114, 115]), instead of GTP [63]. 
The structures of DABP-GppNHp bound to Pro12 and 
Val12 mutants of Ras have shown that the DABP moiety 
is accommodated close to a hydrophobic patch of Pro12 
or Val12 in the P-loop. DABP-GTP provides an aromatic 
amino group that is critical for the mechanism of DABP-
GTP cleavage, which differs substantially from the 
intrinsic and GAP-stimulated GTP hydrolysis by Ras 
[63, 116]. Catalytic drugs that target the GTPase reaction 
may be able to complement the insensitive GAP activities 
in Ras-transformed cancer cells and restore the defective 
GTPase reaction of oncogenic Ras proteins.

Rho/Cdc42/Rac-specifi c GAPs
Members of the Rho family of small GNBPs control signal 
transduction pathways that link cell surface receptors to a 
variety of intracellular responses. They are well known as 
regulators of the actin cytoskeleton, but they also control 
cell polarity, gene expression, microtubule dynamics and 
vesicular traffi cking [20, 117, 118]. The fi rst RhoGAP 
activity was found by biochemical analysis of cell extracts 
testing with recombinant RhoA to identify a protein 
subsequently termed p50rhoGAP [119]. Up to now, at 
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least 68 RhoGAPs have been identifi ed from the human 
genome analysis from which about 26 proteins have been 
analysed [4, 120, 121]. The reason for this vast amount 
of RhoGAPs refl ects the number of different regulatory 
circuits Rho-like proteins are involved in, requiring coor-
dinated compartmentalized control of Rho activity [121]. 
RhoGAPs are characterized by the presence of a con-
served catalytic module, spanning approximately 150 
residues [120], which is suffi cient for productive interac-
tion with Rho targets. They are frequently accompanied 
by domains implicated in regulation, membrane target-
ing and localization (fi g. 2B). Among the well-studied 
p190RhoGAP and the breakpoint cluster region (BCR) 
of the BCR-Abl fusion oncogene, the catalytic domain 
of p50rhoGAP (residues 198–439) has been studied 
extensively on a structural and biochemical level (fi g. 
2B). In vitro, p50rhoGAP, also referred to as Cdc42GAP 
or RhoGAP, has been shown originally to stimulate the 
intrinsic GTP hydrolysis of both Cdc42 [122] and RhoA 
[123], and to support the formation of an AlFx-bound 
transition state mimic [45, 124]. 
The catalytic domain of RhoGAPs folds into a helical to-
pology whose core appears to be arranged as a four-helix 
bundle as established by crystallographic analysis of the 
corresponding modules of p50rhoGAP (fi g. 3B) [125] 
and the BCR-homology (BH) domain of Graf [126] 
(fi g. 3B). The structures closely resemble that of the 
previously solved BH domain from the phosphoinositide 
3-kinase p85a-subunit [127], which binds to Cdc42 and 
Rac but does not show GAP activity [128, 129]. Com-
parative structural analysis revealed topological similar-
ity with RasGAPs, suggesting that these GAPs are evo-
lutionarily related [5, 130–132]. Crystallographic studies 
of RhoGAP domains in complex with the Rho targets 
Cdc42 bound to GppNHp [107] and RhoA/Cdc42 bound 
to GDP•AlFx [133, 134] gave insight into the catalytic 
mechanism of GTPase stimulation (fi gs. 3B, 4A). 
As in RasGAP, the GAP domain interacts primarily 
with the P-loop, the switch I/II regions and the 
nucleotide itself. The GAP- and the G-domain appear 
to undergo a rigid body rotation of about 20° relative 
to each other, when proceeding from the ground 
(Cdc42•GppNHp•RhoGAP) [107] to the transition state 
complex (RhoA•GDP•AlF4

–•RhoGAP) [133], resulting 
in additional contacts with the G-domain [135]. As with 
the Ras-RasGAP system, in the transition state complex 
but not in the ground state, the RhoGAP domain sup-
plies an arginine fi nger directly into the active site of the 
Rho target to stabilize the transition state. In addition, 
the catalytic glutamine (Gln63 in Rho, Gln61 in Rac/
Cdc42) of the switch II region is oriented to position the 
nucleophilic water molecule, similarly to Gln61 in the 
Ras-RasGAP complex [101]. Comparison of the ground 
state and the transition state complex reveals that the 
GTPase-impaired Gly12 mutants, as in the Ras-RasGAP 

system, would sterically interfere with the transition state 
geometry but are compatible with the ground state com-
plex [107, 133]. Taken together, binding of GTP-bound 
Rho appears to establish the complex interface that in a 
subsequent step adjusts to position the catalytic arginine 
in the GTPase-competent conformation within the active 
site of the GNBP component.
The role of the arginine (Arg282 in p50rhoGAP, Arg305 
in Cdc42GAP) has been investigated in detail using 
site-directed mutagenesis along with structural studies. 
In contrast to the Ras-RasGAP system [103, 104], its 
mutation to alanine still results in a signifi cant GTPase 
stimulation and in formation of the GDP•AlFx bound 
transition state mimic [136, 137], as visualized in the 
crystal structure of the Cdc42-Cdc42GAP(R305A) 
complex. A likely explanation of how the residual GAP 
activity can be maintained lies in the stabilization of the 
switch regions, particularly switch II for (sub)optimal 
catalytic adjustment [134].
It has been pointed out that a catalytic arginine is 
necessary but may not be suffi cient for mediating GAP 
activity, since the regulatory subunit of phosphoinositide-
3-kinase (p85), which is homologous to Cdc42GAP (21% 
identity, 47% similarity), does have the corresponding 
arginine, but does not display GAP activity [138]. The 
authors present mutational analyses of GAP residues 
in the switch interface and suggest that residues from 
GAP may be critical for stabilization of the switch 
regions, a function distinct from the contribution of a 
catalytic residue. The reverse experiment, however, in 
which corresponding residues of p85 are mutated to their 
Cdc42GAP counterparts, did not impart GAP activity 
on p85, suggesting that other interactions or additional 
protein factors may be important [138]. 
Of particular importance for the GAP catalysis in Rho/
Cdc42 appears to be a conserved tyrosine (Tyr32) in 
the switch I region, which in the complex with Cdc42 
interacts with the guanidinium group of the arginine 
fi nger. As has been proposed for Rap proteins [139], 
Tyr32 appears to be important for GTP hydrolysis 
through its terminal hydroxyl group, whose precise role 
is still unclear [138].
Most recently, the crystal structure of full-length b2-
chimaerin has been determined, which has been suggested 
to be in its inactive conformation [140]. b2-Chimaerin 
contains three conserved domains, an N-terminal SH2, 
a central C1 and a C-terminal Rac-specifi c GAP domain 
(fi g. 2B). The latter shows the typical RhoGAP topology 
and in the crystal structure is sterically blocked in Rac 
binding through direct interaction with N-terminal regions 
of b2-chimaerin. Phospholipid binding to the C1 domain, 
which is buried by extensive intramolecular contacts, has 
been implicated in triggering the cooperative dissociation 
of these interactions, resulting in the release of the GAP 
domain [140].
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RhoGAPs as bacterial toxins
Rho family GNBPs and their regulatory circuits play 
important roles in host invasion by bacterial pathogens. 
Bacteria have evolved strategies to interfere with host 
cell Rho signalling at various stages of the GTPase cycle 
[141]. They encode toxins that reversibly or irreversibly 
modify the activity of Rho proteins [142]. Employing a 
multi-protein molecular syringe termed type III secre-
tion system [143], these toxins are injected directly into 
the cytoplasm of the host cell. Here they act reversibly 
as mimics of GEFs or GAPs or covalently, i.e. irrevers-
ibly, modify critical residues of Rho proteins, with the 
catalytic glutamine (Gln63 in RhoA) being an important 
target [144]. It has been proposed that Rho activation by 
bacterial GEF mimics induces cytoskeletal rearrange-
ments required for pathogen uptake, while inactivation 
by GAP mimics contributes to restoration of the resting 
state [145]. Bacterial toxins acting on Rho proteins have 
been reported from Salmonella (SptP [146]), Pseudomo-
nas (ExoS [147], ExoT [148]) and Yersinia (YopE [147]) 
(fi g. 2B). They encode small proteins with a catalytic 
portion (~140 residues) that has two highly conserved 
sequence patterns characteristic for these proteins [149]. 
In three-dimensional structures derived from the crystal-
line proteins [150, 151], these sequence motifs fold into 
exposed loop structures, termed bulges, that carry the 
functionally most important residues of the helical pro-
tein. Most important, they have implemented an invariant 
arginine, which acts like the arginine fi nger in the cellular 
RhoGAPs [135]: it stabilizes the transition state of the 
GTPase reaction as visualized in complexes with AlFx 
and GDP-bound Cdc42 or Rac [152, 153]. It is interest-
ing to compare the positions of the guanidinium groups 
of the catalytic arginine in the various models (fi g. 3B). 
In the transition state, it is consistently in the same posi-
tion relative to the b/g-phosphate region, but is presented 
from different topological areas in the GAP component. 
Transition state stabilization appears to require the pres-
ence of Gly12 in the Rho component, since any larger 
amino acid in this position would lead to steric hindrance 
with the arginine and the transferred phosphate, as mim-
icked by AlF3. 

RapGAPs
The small GNBPs of the Rap family (Rap1a, Rap1b, 
Rap2a, Rap2b), the closest relatives of Ras, are involved 
in several biological processes, ranging from modulation 
of growth and differentiation to secretion, integrin-medi-
ated cell adhesion and morphogenesis [154–157]. Rap1 
was initially discovered as a protein reverting the pheno-
types of Ras transformed cell lines [158].
Several RapGAPs have been found to downregulate 
Rap specifi cally, with Rap1GAP (MW 73 kDa) be-
ing the fi rst identifi ed [159]. Its GAP activity resides 
in a 36-kDa segment encompassing 341 amino acids 
(residues 74–415) [160], which has been detected in the 
presumed tumour suppressor Spa1 [161] and the papil-
loma oncoprotein target E6TP1 [162] (fi g. 2C). RapGAP 
activity has been detected also in proteins not containing 
the typical sequence pattern but containing a RasGAP-
domain associated with C2-domains [163, 164] (fi g. 
2A) (see below). In line with these observations, Bud2 
from Saccharomyces cerevisiae has sequence homol-
ogy to the RasGAP domain but acts on Bud1p/Rsr1p, a 
putative yeast homolog of Rap1 [165]. Such a protein, 
which exhibits high homology to RasGAP, is GAPIP4BP 
with multiple GAP activities towards both Ras and Rap 
proteins [166] (fi g. 2A).
RapGAP-mediated GTP hydrolysis displays a number of 
features distinct from its close relative Ras and from oth-
er families of small GNBPs. A threonine (Thr61 in Rap1) 
corresponds to the position of the catalytic glutamine in 
Ras (and other GNBPs). This results in a 10-fold de-
crease of the intrinsic rate of GTP hydrolysis, which can 
be reconstituted by replacing Thr61 by glutamine [167]. 
In addition, Thr61 has been shown to be dispensable for 
the intrinsic and RapGAP-stimulated GTPase reaction of 
Rap1 [168]. Contrary to the constitutive active mutants 
of most other small GNBPs, the G12V mutant of Rap1 
is effi ciently inactivated by Rap1GAP [169]. Instead, 
replacement of a phenylalanine (Phe64) in the switch II 
region by alanine in Rap1 results in a drastic reduction of 
the intrinsic and Rap1GAP-stimulated GTPase activity 
[169]. The catalytic domain of Rap1GAP, which acceler-
ates the GTPase reaction of Rap by fi ve orders of mag-
nitude, contains several conserved arginines and lysines, 
but none of them is involved in the reaction mechanism 

Figure 3. Representative structures of isolated and GNBP-complexed GAPs. All structures are illustrated with GAPs in blue, arginine fi nger 
(Arg) and fi nger loop in red, GNBPs in grey, switch I and II in cyan, the nucleotide in magenta and the critical glutamine in light green. (A) 
Ras-RasGAP complex in the GDP-AlFx transition state [101]. (B) Rho-RhoGAP complexes in the GDP-AlFx transition state with RhoA/
Cdc42 and the eukaryotic RhoGAP (left panel) [133, 134] and Rac1 and the catalytic domain of the bacterial GAP ExoS/SptP (right panel) 
[152, 153]. The insert helix of RhoA and Rac is shown in yellow (C) RapGAP structure [170] with the proposed catalytic asparagines (Asn). 
(D) The structure of the yeast RabGAP Gyp1 [190] modelled in the complex with yeast Rab protein Ypt51. (E) ArfGAPs in the complex 
with Arf1 (left panel) [207] or alone with the C-terminal ankyrin repeats (green, middle panel) [211] and in the structure of the multidomain 
Sec23 complexed with the Arf-like GNBP Sar1 (right panel) [216]. (F) The ternary Ran-RanGAP-RanBP complex [229]. (G) The a-subunit 
of the heterotrimeric G-proteins with a built in arginine fi nger positioned by the helical domain in the complex with its GAP RGS4 (left 
panel) [243] or with p115RGS (right panel) [269]. (H) Heterodimeric complex of the GTP-binding multidomain FtsY-FfH proteins [279, 
280].
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[169]. These data suggest that the GAP-accelerated GT-
Pase reaction of Rap proteins proceeds via a mechanism 
completely different from that of other small GNBPs. 
Interestingly, Rap1GAP supports the binding of AlFx 
to Rap•GDP even though it does not contain a catalytic 
arginine [111]. 
The crystal structure analysis of the catalytic domain of 
Rap1GAP reveals a two-domain arrangement (fi g. 3C), 
of which the C-terminal part represents the catalytic por-
tion. The N-terminal a/b fold domain appears to mediate 
dimer stabilization, which is not critical for GAP activity 
[170]. However, RapGAP activity appears to require the 
presence of the dimerization domain, possibly to support 
binding of the Rap target, as concluded by mutational 
analysis of residues in the contact area with the catalytic 
domain [170]. In particular, two invariant lysine residues 
have been demonstrated to interfere with RapGAP activ-
ity primarily by reducing target affi nity [169]. Intrigu-
ingly, the catalytic domain has the G-domain fold known 
from the GNBPs [11]. In a region corresponding to the 
switch II regions of G-domain proteins, a highly con-
served asparagine (Asn290) was identifi ed to be crucial 
for the GAP activity, as concluded from its mutation to 
alanine, which failed to promote the formation of a ter-
nary complex with AlFx that the wild-type protein forms 
[170]. These data are supported by a recent FTIR spec-
troscopic study suggesting that RapGAP compensates 
the absence of both the Gln61 and possibly the catalytic 
arginine, when compared with the catalytic machinery of 
the Ras-RasGAP system [61, 110]. In a potential mecha-
nism RapGAP supplies an asparagine into the active site 
and contributes to the adjustment of the GTP-bound 
conformation of Rap for catalysis [171] (fi g. 4D). The 
proposal that the catalytic asparagine plays the role of 
the water-positioning glutamine in Ras and other GNBPs 
is supported by the observation that the corresponding 
residue in Rap proteins is a threonine, but we will have to 
await the structure of a Rap-RapGAP complex for confi r-
mation. Exploring the catalytic properties of the homolo-
gous protein tuberin, the above-mentioned asparagine is 
found mutated during genetic analyses of tuberous scle-
rosis patients [172]; indeed, the engineered mutant has 
dramatically decreased activity. This indicates that im-
paired RapGAP activity plays a role in the pathogenesis 
of the disease. A similar observation was made in an NF1 
patient with severe tumour growth, where the catalytic 
arginine of neurofi bromin is mutated to abolish RasGAP 
activity [102]. 

Rab/YptGAPs
Small GNBPs of the Ypt/Rab family have emerged as 
essential regulators of all stages of membrane traffi c [21, 
173–175]. These GNBPs have been implicated in diverse 
aspects of vesicular transport, including vesicle forma-

tion, motility, docking and fusion. The Ypt/Rab-proteins 
constitute the largest family within the Ras superfamily. 
There are 11 Ypt (yeast protein transport) proteins and 52 
mammalian Rab (Ras genes from brain) proteins known 
so far [176]; in addition 57 genes encoding Rab-like 
proteins have been identifi ed in the Arabidopsis genome 
[177].
On the basis of sequence similarity with two Ypt-directed 
GAPs known, Gyp6 [178] and Gyp1 [179], four other 
Gyp proteins (Gyp2, 3,4,7) and a mammalian RabGAP 
(called GAPCenA) have been identifi ed [180–183]. 
Other RabGAPs include the ubiquitously expressed 
Rab3GAP [184] and RN-tre, which has been implicated 
to play a role in the pathogenesis of prostate cancer [185] 
(fi g. 2D). RabGAPs share common sequence patterns but 
vary considerably in their target specifi city within the 
Rab/Ypt-family of small GNBPs.
RabGAPs seem to be ineffi cient GTPase binders but rath-
er effi cient catalysts. For example, Gyp6p has a very low 
affi nity for Ypt6p but is able to accelerate the extremely 
low intrinsic GTPase activity of Ypt6p by a factor of 5 
x 106 [186, 187]. Similarly, Rab3GAP affi nity for Rab3 
is rather low (75 µM); it is nevertheless able to form the 
transition state mimic with Rab3•GDP•AlFx, presum-
ably by providing a critical arginine residue (Arg728 
in Rab3GAP) [188]. Mutational analysis of Gyp6p has 
shown that replacement of the presumed arginine fi nger 
(Arg155) by either alanine or lysine abolished its GAP 
activity without impairing Gyp6p/Ypt6p binding [187].
Detailed structural information is so far only available 
for Gyp1p, whose major target is Ypt51p [179, 180]. 
The catalytic domain (residues 239–638, termed Gyp1-
46p) [189] has been described as a helical molecule 
that folds the six characteristic sequence motifs in a 
distinct topological arrangement unrelated to other GAPs 
[190] (fi g. 3D). Sequence heterogeneity in loop regions 
of RabGAPs has been attributed to determinants of 
selectivity and specifi city for the interaction with other 
proteins, particularly with substrate GNBPs [190].
Site-directed mutagenesis studies have identifi ed an 
exposed highly conserved arginine (Arg343) being critical 
for GAP activity [189]. Together with other conserved 
residues (including Tyr376, Gln378, Asp340) it is located 
in a cleft that has been proposed to be the binding site for 
activated Ypt proteins [190]. A docking model based on 
the location of conserved residues and on biochemical data 
with Ypt51 [191] as representative Rab target suggests a 
GAP mechanism very similar to that of the Ras-RasGAP 
[101] and Rho-RhoGAP [133, 134] systems (fi g. 4A).

ArfGAPs
ADP-ribosylation factors (Arfs) are 21-kDa GNBPs, ini-
tially identifi ed as stimulators of cholera toxin-catalysed 
ADP-ribosylation of Gsa [192]. We now know that Arfs 
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play a critical role in many vesicular traffi cking events 
in eukaryotic cells, mediated by protein-coated carrier 
vesicles [193–197]. Activation of Arf1, mediated by Arf-
GEFs, triggers association of Arf1•GTP in the heptamer-
ic coat protein complex I (COPI) and consequently the 
recruitment of COPI to the Golgi membrane [198–202]. 
Hydrolysis of Arf-bound GTP leads to destabilization 
of the COPI-Arf1 complex. Different from many other 
GNBPs, this process ultimately requires the participation 
of ArfGAPs, since Arf itself does not show measurable 
GTPase activity [50, 51, 72].
The fi rst ArfGAP identifi ed, ArfGAP1, has been reported 
as a 49-kDa protein which requires additional N-termi-
nal residues including a zinc fi nger domain for its full 
GAP activity in vitro [203] (fi g. 2E). Most recently, it 
has been demonstrated that ArfGAP1 activity is sensi-
tive to membrane curvature that controls the timing of 
Arf1-mediated GTP hydrolysis in a COPI bud [204]. At 
least 15 ArfGAPs exist in humans [205] from which four 
representative examples are highlighted in fi gure 2E. The 
Arf specifi city, using predominantly Arf1/5/6 targets, has 
been investigated for most ArfGAPs with ArfGAP1 be-
ing the best-characterized member. Typical Kd values are 
in the low micromolar range [205, 206].
A catalytic fragment of ArfGAP1 (residues 1–146) has 
been co-crystallized with N-terminally truncated Arf1 
[207]. The structure of this complex was interpreted to be 
a mimic of the product state, as obtained after incubation 
of the protein with Arf1•GTP, with GDP bound to the 
nucleotide-binding pocket [207]. An invariant arginine 
(Arg50) of ArfGAP1, which has been proposed a candi-
date arginine fi nger [5], is distant from the active site of 
Arf1 and makes extensive contacts with the zinc fi nger 
residues (fi g. 3E). A unique feature of this structure is that 
the switch I of Arf1 does not participate in GAP binding. 
Instead, the vesicle coat protein, coatomer, which binds 
to the switch I region of the Arf1-GAP complex [208, 
209], has been shown to dramatically stimulate GTP 
hydrolysis on N-terminally truncated Arf1 [207]. Thus, 
it has been suggested that coatomer rather than GAP 
may contribute a catalytic residue, e.g. arginine fi nger, 
for the GTPase reaction (fi g. 3E). Using myristoylated 
full-length Arf1 bound to phospholipid vesicles, on the 
other hand, it has been suggested that coatomer indirectly 
facilitates GTP hydrolysis by bringing GAP into proxim-
ity with its substrate Arf1 [210] (fi g. 4C).
The crystal structure of a fragment of Pyk2-associated-
protein-b (PAPb), another Arf-specifi c GAP, that encom-
passes the GAP domain and the C-terminal ankyrin repeats 
[211] reveals extensive intramolecular interaction between 
the ankyrin repeats and a region of the GAP domain con-
siderably overlapping the Arf binding area identifi ed in 
the Arf1-ArfGAP1 complex [207] (fi gs. 2E, 3E). Thus, 
formation of an Arf1-PAPb complex would require exten-
sive structural rearrangements to allow binding in a way 

similar to the complex with the Arf1GAP-fragment. With 
respect to the ArfGAP mechanism [207, 211], a series of 
mutational and biochemical analyses suggest a catalytic 
role of an invariant arginine in PAPb (Arg292) [211], and 
in the PAPb-like ArfGAPs ACAP1 (Arg448) and ACAP2 
(Arg442) [212]. In addition, ASAP-like proteins have 
been shown to interact with the switch I region of Arf1 
and thus compete with effector binding [213]. 
The N-terminal Helix (aa 2–17) of Arf1 (missing in the 
Arf1-ArfGAP1 structure) seems to be crucial not only 
for anchorage of myristoylated Arf1 to the membrane but 
also for the interaction with ArfGAPs [214]. In support 
of a catalytic residue contributed by the ArfGAP compo-
nent, the crystal structure of a homologous complex com-
posed of the GppNHp-bound Sar1 and the GAP compo-
nent Sec23 in yeast [215] reveals a conserved arginine 
(Arg722 in Sec23) protruding into the active site [216] 
(fi g. 3E). In contrast to other GAP complexes with small 
GNBPs, adjustment of switch II with the catalytic histi-
dine (corresponding to Gln71 in Arf1) to a catalytically 
competent conformation does not appear to be the major 
feature of GTPase stimulation. Clearly, more biochemi-
cal and structural studies are needed for a comprehensive 
understanding of this complex system.

RanGAP
Ran plays a central role in nucleocytoplasmic transport, 
mitotic spindle assembly and nuclear envelope assembly 
in eukaryotic cells [24, 217, 218]. Consistent with its 
function in shuttling between intra- and extranucleocyto-
plasmic compartments, it lacks posttranslational target-
ing signals. The asymmetric distribution of GDP/GTP 
nucleotide exchange and GTP hydrolysis causes nuclear 
Ran to be predominantly GTP-bound, and cytosolic Ran 
to be predominantly GDP-bound [219]. This is because 
during interphase, the RanGEF RCC1 is nuclear, while 
RanGAP is cytosolic [220, 221]. Both proteins accelerate 
the slow intrinsic reaction rates by several orders of 
magnitude [222–224]. 
RanGAP has been identifi ed as Rna1p in the yeast Sac-
charomyces cerevisiae [222, 225, 226] with acceleration 
rates similar to those of other GAPs [224]. All known 
RanGAPs show a common modular architecture with a 
leucine-rich repeat domain comprising approximately 
350 residues, followed by a highly acidic region (50 
residues) (fi g. 2F). In higher eukaryotes, RanGAP1 
contains an additional domain at the carboxy terminus, 
which localizes RanGAP to the nuclear pore complex 
via modifi cation by the ubiquitin-like protein SUMO-1 
[220, 221].
RanGAP is a crescent-like molecule [227] made up 
of 11 leucine-rich repeats similar to the horseshoe 
structure of ribonuclease inhibitors [228] (fi g. 3F). 
In the ternary complex of RanGAP with activated 
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Ran (bound to either GppNHp or GDP-AlFx) and the 
GTPase co-activating Ran binding domain (RBD) of 
RanBP1, no arginine was found in the vicinity of the 
active site [229] (fi gs. 3F, 4E). Candidate residues 
(Arg74, Arg170) are not involved in nucleotide 
contacts, neither in the ground nor in the transition 
state of the GTPase reaction, nor did they show an 
appreciable effect on the GTPase reaction [227, 229]. 
A conserved tyrosine (Tyr39) derived from the switch 
I region interacts with the nucleotide similarly to 
the homologous Tyr32 in GTP-bound Rap2 [139]. 
This tyrosine has been implicated to be important in 
catalysis, also because it is in a position equivalent to 
the catalytic arginine in heterotrimeric G proteins [86, 
87, 230] (fi gs. 3G, 4B). However, its contribution to 
catalysis is only minor, as the authors concluded from 
mutational analysis [229]. In the ternary complex, 

the RBD component interacts with Ran in a similar 
molecular embrace, as in the complex with GTP-bound 
Ran alone [231]. In that complex, the C-terminal 
extension, which is important for binding to RanGAP 
[232], is seen in tight interaction with the RBD 
component that structurally resembles the well-known 
PH domains [233, 234]. It was proposed that RanBP1 
acts as a GTPase coactivator [235] through binding 
to the C-terminal extension of Ran, which otherwise 
would inhibit Ran-RanGAP interaction [229].
From the structure of the Ran-RanGAP complex, the 
major contribution of RanGAP-assisted catalysis appears 
to derive from stabilization of the switch regions, par-
ticularly switch II, with the catalytic glutamine (Gln69 
in Ran). Similar to other small GNBPs such as Ras, its 
mutation to alanine or leucine reduces GAP activity by 
several orders of magnitude [222, 224].

Figure 4. Requirements for effi cient GTP-hydrolysis. G-domains of the respective GNBPs are shown in grey with a number of functionally 
important residues, especially a critical glutamine. GAP is shown in dark grey with the integral elements that are required to bind and fi x 
the switch I and II regions (SwI/SwII) but also in most cases to supply a catalytic residue into the active site. (A) GAPs of Ras/Rho/Rab 
supply a catalytic arginine in trans. (B) Ga-RGS with catalytically essential arginine supplied in cis by the inserted helical domain of the 
G-domain. (C) ArfGAP activity is assisted by coatomers one of which may provide a catalytic arginine. (D) RapGAP supplies an asparagine 
as a catalytic residue. The role of Thr61 instead of a Gln is unclear. (E) Ran-RanGAP requires the catalytic glutamine and stabilization of 
the switch regions; no catalytic residue provided in trans has been identifi ed. (F) SRP/SR asymmetrically dimerize as GTP-binding proteins 
and provide several residues to accelerate the GTPase reaction.
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Regulators of G-protein signalling: GaGAPs
The family of heterotrimeric GNBPs (designated as G-
proteins) serves an essential role in transducing recep-
tor-generated signals across the plasma membrane [236]. 
The GDP/GTP-binding a-subunit (Ga) hydrolyzes GTP 
much more rapidly (3 min–1) [47] than other GNBPs, 
which has been ascribed to the GAP-like activity of a 
helical domain within the G-domain, not found in other 

GNBPs [237]. This inserted domain positions an ar-
ginine in cis into the active site of the G-domain, thereby 
stabilizing the developing negative charge during the 
phosphotransfer reaction [86, 87].  Consistent with its 
importance in catalysis, mutations or cholera toxin-cata-
lysed ADP ribosylation of this arginine abolish GTPase 
activity of the Ga-protein [87, 238–241].
Despite the high intrinsic GTPase rates, the processes of 

Table1. Representative GAPs and their characteristics.

GAP- Representative  Rate  Catalytic feature Structural models: components, resolution, 
type example enhancement  PDB code, reference

RasGAP P120GAP [29] 30,000–70,000  arginine [103, 104] p120GAP(714–1047), 1.6 Å, 1WER, [99];
 neurofi bromin [43, 62, 313]  p120GAP(714–1047).H-Ras(1–166).GDP.AlF3, 
 [90–92]   2.5 Å, 1WQ1, [101];
    neurofi bromin(1198–1530), 2.5 Å, 1NF1, [100]

RhoGAP P50rhoGAP [123]  38,000 [136] arginine [136] p85(BH) of PI3K(105–319), 2 Å, 1PBW, [127];
 Cdc42GAP [122]   p50rhoGAP(198–439), 2 Å, 1RGP, [125];
    p50rhoGAP(198–439).Cdc42(1–184).GppNHp, 
    2.7 Å, 1AM4, [107];
    p50rhoGAP(198–439).RhoA(F25N).GDP.AlF4, 
    1.65 Å, 1TX4, [133];
    Cdc42GAP(239–443).Cdc42.GDP.AlF3, 2.1 Å, 
    1GRN, [134];
    Cdc42GAP(239–443,R305A).Cdc42.GDP.AlF3, 
    1.9 Å, 1GRN, [134];
    GrafGAP-BH(161–391), 2.4 Å, 1F7C, [126];
    b2-Chimaerin, 3.2 Å, 1XA6, [140]

RhoGAP SptP [146], ExoS  n.d. arginine [152, 153] SptP(70–543).Rac1(1–184).GDP.AlF3, 2.3 Å, 
 [147], YopE [314]   [152];
    ExoS(96–234).Rac1(2–284).GDP.AlF3, 2 Å, 
    1HE1, [153];
    ExoS(96–234), 2.4 Å, 1HE9, [151]

RapGAP Rap1GAP [159, 315] 100,000 [169] asparagine [170] Rap1GAP(75–415), 2.9 Å, 1SRQ, [170]

RabGAP Gyp1 [178] 45,000 [180] arginine [180, 190] Gyp1(249–637), 1.9 Å, 1FKM, [190]

ArfGAP Arf1GAP [203, 316] ~1000 in the presence  potentially arginine  Arf1GAP(1–146).Arf1(18–181).GDP, 1.95 Å,  
  of coatomer [207] [211] no entry found [207];
    PAPb(112–522), 2.1 Å, 1DCQ, [211]

Sec23 Sec23 [215] 10–15 in the absence  arginine [216] Sec23(1–768).Sar1(24–190).GppNHp, 2.5 Å, 
  of the membrane   1M2O, [216]
  fractions [215] 

RanGAP RanGAP1 [222] 40,000 [224] switch stabilization/ Rna1p, 2.66 Å, 1YRG, [227]; 
 Rna1p [225]  coactivation [317] Rna1p.RanBP1.Ran.GppNHp, 2.7 Å, 1K5D, 
    [229];
    Rna1p.RanBP1.Ran.GDP.AlFx, 3.1 Å, 1K5G, 
    [229]

RGS RGS4 [242] 1000–2000 [244–246] switch stabilization RGS4.Gia1.GDP.AlF4, 2.8 Å, 1FQK, [243];
 RGS9 [318]  [243] RGS4, NMR, 1EZY/1EZT, [260];
    RGS9(276–422), 1.94 Å, 1FQI, [263];
    RGS9(276–422).Gat/i1.GDP.AlF4, 2.3 Å, 1FQK,  
    [263];
    RGS9(276–422).Gat/i1.GDP.AlF3.PDEg 46–87), 
    2.02 Å, 1FQJ, [263];
    p115RhoGEF(1–239).Ga13/i-5.GDP.AlF4 , 2.8 Å, 
    1SHZ, [269]

SRP/SR FtsY/Ffh [274] 40 [320, 321] arginine [322] FtsY(1/2–304).GppCHp.Ffh(1–
 SSRP/SR [319]   300/297).GppCHp, 1.9 Å/2.05, 1RJ9/1OKK 
    [279]/[280]
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G-protein-mediated cell responses require rapid down-
regulation typically by GAPs specifi c for Ga-subunits, 
which are called regulators of G-protein signalling 
(RGSs) [242]. RGS proteins bind with high affi nity to 
the GDP•AlFx-bound Ga-proteins, as demonstrated for 
RGS4 and its Ga target [242, 243] and to accelerate the 
GTPase reaction rate of the a-subunits up to 2000-fold 
[244, 245, 246]. RGS proteins form a superfamily of 
about 37 proteins which are highly diverse in structure, 
expression patterns and specifi city [246–248]. They 
share the conserved RGS domain consisting of 120 ami-
no acids, which exhibits GTPase accelerating activity for 
Ga-subunits, and thus are negative RGSs [247–250].
Besides the classic RGS proteins, there is another group 
of proteins that link G-protein signalling to the small 
GTPases of the Rho family [251]. In addition to an N-
terminal RGS domain – which binds to and inactivates 
the Ga12 and Ga13 subunits [252] – these proteins contain 
a central Dbl homology (DH) domain that exhibits GEF 
activity for Rho proteins (fi g. 2G) [253]. Association of 
p115RhoGEF with Ga12 and Ga13 results in stimulation 
of its GEF activity towards Rho [253–255]. Similar data 
have been reported for the other RGS-containing GEFs, 
such as PDZ-RhoGEF/GTRAP48 and LARG [256–258]. 
Another protein that accelerates GTP hydrolysis of Gqa 
by three orders of magnitude is phospholipase C-b, the 
principal Gq-regulated effector, which has no structural 
relationship to the RGS proteins [245, 259]. 
The three-dimensional structure of an RGS-domain was 
fi rst determined in the GDP•AlF4

–-bound transition state 
complex of RGS4 with its Gia target [243], followed by 
solution structures of GAIP and RGS4 determined by 
NMR [260, 261], by the crystal structures of Axin-RGS 
[262], and by the isolated and transition state complex-
bound RGS9-domain with Gta and the inhibitory 
domain of phosphodiesterase-g (PDEg) [263]. The 
RGS domain (residues 51–178 in RGS4, 276–422 in 
RGS9) folds into a helical module that consists of two 
subdomains: a central classical right-handed antiparallel 
four-helix bundle and an extra domain intertwining 
helical elements derived from the N- and C-terminus 
[243] (fi g. 3G). Structural variations adding a helical 
layer to the C-terminal region have been observed in the 
RGS portion of p115RhoGEF [264] and PDZ-RhoGEF 
[265]. The RGS box interacts primarily with the switch 
regions of Ga with no RGS residue of catalytic potential 
in the immediate vicinity of the nucleotide (fi gs. 3G, 
4B). The structural arrangement suggests stabilization 
of the switch regions as the major determinant of GAP 
activity, in contrast to Ras- and RhoGAP [101, 133], 
but consistent with the view that Ga-proteins have the 
above-mentioned built-in arginine that is important for 
catalytic activity and whose guanidinium group is in the 
functionally equivalent position of the arginine fi nger in 
the Ras/RhoGAP complexes (fi gs. 3A, 4A) [101, 133, 

266]. A conserved asparagine (Asn128) found within 
potential hydrogen bonding distance to the hydrolytic 
water molecule or the nucleophile derived from it does 
not contribute signifi cantly to catalysis but rather appears 
to be important for binding to Ga, as concluded from 
extensive mutational analyses, suggesting an indirect role 
in the GAP-assisted reaction [244, 267]. On the basis of 
the crystal structure of the Gia•GppNHp complex and 
its comparison with the transition state-stabilized RGS 
complex, Asn128 was proposed to displace the side chain 
of the catalytic glutamine (Gln204 of Gia) from its ‘anti-
catalytic’ position observed in the GppNHp (but not in 
the GTPgS)-bound ground state [268]. The proposal that
RGS-domains stimulate Ga-mediated GTP hydrolysis 
by a transition state mechanism is consistent with the 
observation that these domains bind much more tightly to 
the GDP•AlFx-bound than to the GTP-bound form [242].
Recently, the structure of the RGS domain of p115RhoGEF 
was determined in complex with a Gasubscript/subscript 
chimera, which functionally resembles a Gasubscript 
domain and was generated to facilitate overexpression 
in Escherichia coli [269]. In contrast to RGS4/RGS9, 
productive complex formation requires an N-terminal 42-
residue extension [270], which in the structure interacts 
with the catalytic machinery (fi g. 3G), with a direct 
stabilization of the catalytic arginine not seen in other 
Ga-RGS complexes. It turned out that the N-terminal 
extension is in fact suffi cient for GAP activity, raising 
the question for the role of the RGS core domain. It was 
proposed that this portion might have a role in stimulating 
the RhoGEF activity in the full-length protein, an 
interpretation corroborated by effector-like interactions 
with the Ga-component [269]. Taken together it appears 
that also in the Ga-system the mechanism of GTPase 
stimulation may act via different structural scaffolds that 
adjust different portions of the catalytic machinery.

Signal-recognition particle and its receptor
A somewhat unusual case of GTPase stimulation is 
found in the cotranslational targeting of nascent proteins 
to membrane compartments, which requires the GTP-
dependent interaction of the two structurally homologous 
GNBPs Ffh and FtsY [271]. These are core components 
of the signal-recognition particle (SRP) and its receptor 
(SR), a ubiquitous protein-targeting machinery found in all 
kingdoms of life, but whose complexity has considerably 
increased throughout evolution [272, 273]. In a series 
of complex events SRP binds to signal sequences on 
nascent proteins, thereby forming a ternary SRP nascent 
chain ribosome complex, which is targeted to membrane 
compartments in a GTP-dependent interaction with SR. 
Resumption of translation through the translocation 
channel is associated with the release of SRP from the 
complex [273]. This requires direct interaction between 
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GTP-bound Ffh (SRP54 in mammals) in the SRP with 
GTP-bound FtsY (SRa in mammals) in the SR, which is 
associated with mutual GTPase stimulation on Ffh and 
FtsY. Thus, FtsY acts as an Ffh-GAP and vice versa [274]. 
Structures of the so-called NG-domain of SRP-GNBPs, 
containing an N-terminal helical segment followed 
by a G-domain module, have been determined in the 
nucleotide-free state [275, 276] for Ffh and FtsY, and 
in complex with GDP•Mg2+ [277] or GppNHp [278] for 
Ffh. The SRPs are not related to other families and thus 
represent a distinct family of GNBPs [1], with an unusual 
domain, termed insertion box domain (IBD), inserted 
between the switch regions and the N-terminal helical 
segment, which is tightly packed against the G-domain 
core (fi g. 3H). 
The structure of the complex between FtsY and Ffh, each 
bound to a nonhydrolysable GTP-analog, reveals a highly 
symmetric heterodimer stabilized by extensive interaction 
between the two proteins involving large parts of the G- 
and to a smaller extent the N- and IBD-domains. The 
nucleotide binding sites interact to form an ‘active site 
chamber’ or ‘composite GTP binding cavity’, with the P-
loop structures interacting with each other, and the bound 
nucleotides aligned in an unprecedented head-to-tail 
fashion, described as substrate twinning [279, 280] (fi g. 
3H). In the complex the IBD domain contributes critical 
residues to the active site. Acidic residues (Asp135Ffh 
and Asp138FtsY) position water molecules close to the g-
phosphate of the bound nucleotide. The arrangement of 
conserved arginine (Arg138Ffh, Arg142FtsY) and glutamine 
residues (Gln144Ffh and Gln148FtsY), as supplied by major 
conformational rearrangements of the IBD-domain, 
have been interpreted to support an arginine fi nger 
mechanism, i.e. in trans transition state stabilization 
[280], or in cis catalysis involving interaction with the 
b,g-phosphates [279] (fi gs. 3H, 4F). The presence of 
the 3’-OH group on the sugar moiety, which forms a 
hydrogen bond with the g-phosphate of the neighbouring 
nucleotide, appears to be critical, as concluded from the 
observation that 3’-deoxyGTP is not a substrate [279, 
280]. Extensive mutagenesis of residues in the interface 
area has identifi ed at least 25 amino acids important for 
the interaction [279], underscoring the requirement of 
all interactions for successful complex formation. The 
comparison with the isolated structures of Ffh and FtsY 
in different states reveals considerable conformational 
changes upon assembly of the composite active site, with 
major rearrangements seen in the N-domain, the NG-
domain interface and in the switch regions (see above). 
While the mechanistic details of the GTPase acceleration 
need further experimental investigation, it seems obvious 
that the development of negative charges upon GTP 
hydrolysis would destabilize the composite active site 
and thus the heterodimeric complex.

Elongation factors
One of the best-characterized roles of GNBPs is in pro-
tein biosynthesis, where the elongation factor-Tu (EF-
Tu) is responsible for loading amino-acyl transfer RNAs 
(aa-tRNAs) onto the ribosome during protein biosynthe-
sis [281–283]. EF-Tu in the GTP-bound conformation 
forms a high-affi nity ternary complex with aa-tRNA 
that binds to the ribosomal A site. Codon recognition 
by a ternary complex presenting a cognate anticodon 
induces conformational changes of the ribosome, which 
in turn stabilize tRNA binding, and triggers the GTPase 
activity of EF-Tu (10–20 s–1) [284]. Non-cognate ternary 
complexes are rejected at the initial selection stage prior 
to GTP hydrolysis, which is due to both the lack of sig-
nifi cant codon interaction (no base pair possible), and, 
most important, a very low rate of GTPase stimulation 
(~10–4 min–1) for such tRNAs [285]. Among the ribos-
omal proteins that were thought to be responsible for 
GTPase stimulation of EF-Tu was the L7/L12 protein. It 
turned out that isolated L7/L12 strongly stimulates GTP 
hydrolysis of elongation factor G (EF-G) but not that of 
EF-Tu [286], although a direct interaction between EF-
Tu and L7/L12 was recently demonstrated [287]. GTPase 
stimulation of EF-Tu appears to be controlled by a rota-
tion of the ribosomal 30S subunit upon cognate codon-
anticodon duplex recognition that directly stabilizes the 
position and conformation of EF-Tu [281].

Substrate specifi city: promiscuous GAPs

GAPs are typically seen as rather specifi c catalysts, be-
ing unrelated in sequence or structure and acting only on 
members of a certain family of GNBPs. RasGAPs and 
RhoGAPs follow this view in that they are GNBP-specif-
ic but make an exception in sharing common topological 
features [5, 130–132]. A curiosity came with the discov-
ery of a GAPIP4BP, which acts on Rap and Ras proteins. Its 
domain scheme places a RasGAP-domain between an N-
terminal C2- and a C-terminal PH-domain [166]. While 
the structural basis for this bifunctionality is unknown, 
it is interesting to note that SynGAP has been shown 
to activate the GTPase of Rap1/2 much more potently 
than that of Ras [164] and can also act as Rab5-GAP 
in vitro [288]. Whether these common features reside 
in the neighbouring domains or have a different origin 
will have to be investigated. Another GAP protein is the 
product of a familial tuberous sclerosis gene, tuberin, that 
has been reported to weakly stimulate GTP hydrolysis of 
Rab5 [289] and Rap1a [36] in vitro, and to function as 
a RhoGAP in vivo [290]. More recently, an increasing 
body of evidence supports the notion that tuberin acts as 
a GAP towards the small GTPase Rheb (Ras homolog 
enriched in brain) [291]. 
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Moreover, in vitro experiments have shown that iso-
lated catalytic domains of the GAPs are active on several 
members within a GNBP family, e.g. p50GAP on Rac1, 
Cdc42 and RhoA, p120RasGAP [292] and neurofi bro-
min on H-, K-, N-, R-Ras proteins [43, 293] or Gyp3p on 
Sec4p, Ypt6p, Ypt51p, Ypt31/Ypt32p and Ypt1p [180]. 
However, the specifi city of the GAPs in vivo is not only 
controlled by the spatial and temporal expression pattern 
but also by second messengers [294, 295], phospholipids 
[166, 212, 296, 297] and adapter proteins [298–300]. 
Phospholipids have been shown to be involved in deter-
mining the substrate specifi city of the GAPs. For exam-
ple, the specifi city of p190 for Rho can be switched to 
Rac in the presence of phosphatidylserine [297]. 
The catalytic domains of GAPs are generally conserved 
in sequence. However, the yeast homologs of neurofi bro-
min, IRA1 and IRA2 [301], are exceptions. These GAPs 
are highly specifi c for the yeast RAS1 and RAS2, but are 
completely inactive on human Ras [302]. A residue adja-
cent to the catalytic arginine (Gly1277 in neurofi bromin 
and Arg1743 in IRA2) has been suggested to determine 
the substrate specifi city [42]. Substitution of Arg1743 in 
IRA2 to glycine alters the specifi city of IRA2 towards hu-
man Ras [303], and G1277R mutation of neurofi bromin 
affects both binding to Ras•GTP and Ras•GDP•AlFx, 
and thus the GAP-catalysed reaction [42].

RasGAP-like domains

There are two groups of signalling proteins containing 
portions related to RasGAP domains. The proteins be-
long to the IQGAP and plexin families. IQGAPs have 
been proposed in mammalian cells as potential regulators 
of cadherin-based cell adhesion downstream of Cdc42 
and Rac1 [304, 305]. All three IQGAPs (called IQGAP1, 
2 and 3) found in humans have, among other signalling 
modules, a RasGAP-related domain at the C-terminus 
[306]. This domain does not show any GAP activity but 
specifi cally binds GTP-bound Rac1 and Cdc42 and inhib-
its their intrinsic GTP-hydrolysis activity [307–309]. It 
has been shown that IQGAP1 and a-catenin compete for 
binding to b-catenin and IQGAP1, thereby dissociating 
b-catenin from the b-catenin/a-catenin complex [304]. 
This results in weakening of cell-cell adhesion that can 
be re-established by activated Cdc42 and Rac1, which 
specifi cally bind to the GAP-like domain of IQGAP and 
inhibit its b-catenin-binding activity of IQGAP1.
Plexins are widely expressed transmembrane proteins 
that transduce an extracellular semaphorin signal to-
wards axonal guidance through direct interaction with 
specifi c Rho-like GNBPs [310]. The cytoplasmic part 
of plexins shows sequence homology to the catalytic 
domains of RasGAPs which is, however, interrupted by 
a central segment of 200 amino acids. This segment has 

been shown to be responsible for binding to Rho family 
members [310]. Based on sequence homology between 
plexins and Ras-GAPs, two conserved arginines, cor-
responding to the arginine fi nger and the FLR arginine 
of RasGAPs, have been shown to be essential for plexin 
A1 signal transduction [311]. It has been suggested that 
plexins may be integral membrane proteins with an 
intrinsic GAP activity that is essential for their ability 
to induce growth cone collapse. GAP activity has been 
recently shown for the semaphorin 4D (Sema4D) recep-
tor plexin-B1, which increases the GTPase reaction rate 
of R-Ras (a member of the Ras family) only in complex 
with Rnd1, a GTPase-defi cient member of the Rho fam-
ily and Sema4D [312]. It will not be surprising if, with an 
increasing number of GNBP-systems being discovered 
and characterized, the situation turns out to be much 
more complex than originally anticipated.

Concluding remarks

It is well established that GNBPs hydrolyse GTP inef-
fi ciently by providing relatively weak catalytic groups 
from the P-loop and from the mobile switch regions, e.g. 
a glutamine residue (a threonine in Rap) with an unfour-
able geometry. Accumulating structural and biochemical 
information about GAP proteins of GNBP subfamilies 
supports the view that there is no general mechanism of 
GTPase acceleration in the sense of the contribution of 
a catalytic residue (fi g. 4, table 1). The GAPs for Ras, 
Rho and most likely Rab GTPases stimulate the slow 
reaction rate both by inserting a strong catalytic group 
(an arginine fi nger) into the nucleotide binding pocket 
and by stabilizing the switch regions (fi g. 4A). The Gln 
side chain positions the nucleophilic water molecule for 
attacking the g-phosphate of GTP. In contrast, the mecha-
nism of GTPase stimulation of Arf GNBPs by ArfGAPs 
or coatomer – possibly both together – is still a matter 
of debate (fi g. 4C). The formation of Arf1-ArfGAP1-
coatomer complexes suggests that the coatomer serves 
to localize ArfGAP1 spatially on membranes so that 
ArfGAP1 catalytic activity is confi ned to Arf1 molecules 
in association with the COPI coat. A different function of 
these complexes could be to allow the coatomer to exert 
a stimulatory effect on GTPase activity; for example, by 
increasing the affi nity of ArfGAP1 for Arf1, by assisting 
ArfGAP1 in orienting the Arf1 catalytic machinery or by 
supplying an arginine fi nger residue to the Arf1 active 
site. The GAPs for Ran and Ga-subunits, on the other 
hand, enhance the reaction rate primarily by stabilizing 
the switch regions at the transition state, suggesting that 
correct positioning of the nucleophilic water molecule 
relative to the g-phosphate of the GTP substrate is a more 
conserved mechanism of GTP hydrolysis (fi gs. 4B, E). 
In this regard, the SRP-SR complex also provides a com-
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posite active site where the nucleophilic water molecule 
is stabilized by a catalytic aspartate residue for GTP 
hydrolysis, while RapGAP most likely uses a catalytic 
asparagine to position the nucleophilic water molecule. 
However, stabilization of the switch regions containing 
catalytically important residues appears to be a general 
feature observed in all known cases.
A remarkable feature of GAP-assisted GTP hydrolysis 
consists of the transient formation of an effi cient catalytic 
site by two entirely different proteins, thus forming a 
heterodimeric enzyme that normally only exists for 
the time of the catalytic reaction. It appears that the 
physical separation of the GTPase active centre facilitates 
differential control of GTP hydrolysis depending on the 
physiological conditions, i.e. effi cient GTP hydrolysis 
when the activation level of the respective GNBP is high 
and low GTPase activity otherwise. While a large number 
of structural, biochemical and biophysical studies of in-
dividual GNBP/GAP systems have contributed greatly to 
our current understanding of GAP-stimulated GTPase re-
action mechanisms, more detailed studies of the underly-
ing protein-protein interactions will undoubtedly have an 
important role to play in the future. Finally, the upstream 
signalling processes regulating the GAPs themselves are 
a very important and yet open issue for future research. 
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