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Abstract. Gangliosides, a heterogeneous family of gly-
cosphingolipids abundant in the brain, have been shown 
to affect neuronal plasticity during development, adult-
hood and aging. This review will examine old and recent 
evidence that exogenous gangliosides and in particular 
GM1, the prototype member of this family, exhibit mul-
timodal neurotrophic effects. Since these compounds are 
a potential therapeutic tool for the treatment of various 

forms of acute or chronic neurodegenerative diseases, 
understanding the dynamic interplay of gangliosides 
and neuronal cells is essential in the effort to cure neu-
rological disorders. Focus will be given to the novel and 
provocative hypothesis that gangliosides’ neuroprotec-
tive properties may derive from their ability to mimic 
endogenous neurotrophic factors. 
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Gangliosides: Biosynthesis, Structure and 
Nomenclature

The purpose of this article is to provide a brief overview 
of evidence supporting a role for gangliosides in neuro-
nal plasticity. However, some information about their 
structure and biosynthesis is required to understand their 
functional significance. 
Gangliosides are classified as acidic glycosphingolipids 
because they contain sialic acid linked to an oligogly-
cosyl backbone attached to a ceramide base [1] (fig. 1). 
They are initially synthesized by the modification of 
serine to 3-ketosphinganine followed by the addition of 
various sugar groups, always including at least one sialic 
acid residue [1]. The sialic acid is usually N-acetyl-neu-
raminic acid, but it can also be N-glycolyl-neuraminic 
acid [2]. The synthesis of ceramide appears to take place 
in the endoplasmic reticulum, while most of the subse-
quent glycosylations will take place in various compart-

ments of the Golgi apparatus [3]. Following synthesis, 
gangliosides are transported to the outer leaflet of the 
plasma membrane, and are found almost exclusively in 
this region of the cell (very low concentrations of gan-
gliosides have been found in the endoplasmic reticulum, 
the Golgi apparatus and lysosomes). Their charged sialic 
acid-containing region projects into the extracellular 
space, while the nonpolar regions remain inserted in the 
plasma membrane [4]. Exogenous gangliosides added to 
culture media may mimic endogenous gangliosides by 
binding to the cells through insertion into the membrane 
or by adhering as micelles. 
There are many types of gangliosides potentially pro-
duced by a cell, and this heterogeneity is due to the 
various combinations of sugar residues which are subse-
quently attached to the ceramide base. These sugars can 
include glucose, galactose, N-acetylgalactosamine, N-
acetyglucosamine and fructose [5]. Particular oligosac-
charide sequences attached to the ceramide base can be 
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used to identify five categories of gangliosides: ganglio, 
gala, globo, lacto and hemato. The number of sialic acid 
residues, which is also used to classify the different 
ganglioside species, is designated by M (monosialo), 
D (disialo), and so on [5]. Thus, GM1 (monosialotetra-
hexosylganglioside), the prototype ganglioside, indicates 
a member of the ganglio series of gangliosides which 
contains one sialic acid residue (fig. 1). 

Gangliosides and neuronal Plasticity: historical 
background

Gangliosides were first identified in the 1930s by Ernst 
Klenk, who suggested the name gangliosides due to the 
association of these compounds with brain gray matter or 
Ganglionzellen [6]. During the 1950s and 1960s a number 
of studies confirmed that gangliosides are abundant in the 
brain in neural cells (neurons and glia) [7, 8], but also in 
all known vertebrate tissues [9,10]. The omnipresence of 
gangliosides in all cell types suggests that they are criti-
cal in cell physiology. However, their high concentration 

in developing and adult neurons, up to 10% of a neuron’s 
total lipid content [11], appears to indicate a crucial role 
for gangliosides in the nervous system. 
The pioneering studies of Svennerholm [8] and Suzuki 
[12] demonstrated a profound variability in the types 
and amounts of brain gangliosides which appear during 
mammalian development. The developmental changes in 
neural gangliosides have been further characterized by 
a number of investigators [13–19]. Most important, the 
presence of gangliosides in the nervous system has led 
most investigations to study and characterize their poten-
tial role(s) in modulating brain plasticity and recovery of 
function.
The therapeutic potential of gangliosides was first ex-
plored in studies performed more than 30 years ago. 
Early investigations by Van Heyningen [20] attributing 
the effects of tetanus toxin on the central nervous system 
(CNS) to an interaction with gangliosides led McIlwain 
[21] to demonstrate that gangliosides can restore the ex-
citability of cerebral tissues left in cold media. In 1976, 
there were notable studies which stimulated a great deal 
of interest in the pharmacotherapeutic uses of ganglio-
sides. Purpura and Suzuki [22] performed careful mor-
phological analyses of post-mortem tissues from patients 
with lysosomal storage diseases. In some of these cases, 
there was an abnormal accumulation of gangliosides in 
the brains of the patients due to the loss of activity of spe-
cific lysosomal hydrolases, leading to lethal neurological 
damage. Golgi staining of brain sections indicated the 
presence of bizarre neuritic outgrowths termed meganeu-
rites. These formations occurred between the cell body 
and the axon, and were usually many times the area of the 
cell body. In addition, meganeurites contained what ap-
peared to be dendritic spines, which was quite abnormal 
considering that these structures were part of the axon. 
There were also secondary neurites associated with these 
formations in some cases [22]. These studies appeared to 
indicate that the abnormal accumulation of glycosphin-
golipids could profoundly influence the development 
and/or differentiation of neurons. 
Ceccarelli et al. [23] performed the first in vivo test of 
the ability of exogenous gangliosides to promote the 
regrowth of damaged neurons. By using a model of pre-
ganglionic and postganglionic anastomosis of the feline 
superior cervical ganglion, these investigators were able 
to demonstrate that intraperitoneal administration of a 
ganglioside mixture was able to accelerate the func-
tional recovery of the damaged nerves [23]. In addition, 
the fact that the preganglionic fibers were cholinergic 
and the postganglionic fibers were adrenergic suggested 
that exogenously administered gangliosides were able 
to affect different classes of neurons [23]. Indeed, a 
plethora of evidence later confirmed that gangliosides 
affect multiple neuronal populations. These include 
dopaminergic, cholinergic, glutamatergic, serotonergic 

Figure 1. Chemical structure of ganglioside derivatives of acethyl-
neuraminic acid (sialic acid) and ceramide. Four carbohydrates are 
present in GM1, one glucose, two galactoses and one N-acethyl-
galactosamine. In GM2 and GM3, the first galactose and the N-
acethylgalactosamine are lost, respectively. LIGA 20 is a semisyn-
thetic derivative of GM1 modified in the ceramide tail.
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and noradrenergic neurons (reviewed in [24]). These 
findings prompted studies to examine the potential use 
of exogenous gangliosides as therapeutic agents for neu-
rological diseases. 

Exogenous gangliosides and neurological diseases

Chronic degeneration 
The positive effect of gangliosides in neuronal regen-
eration and plasticity [22, 23] provoked a great deal 
of interest in examining their therapeutic use in neuro-
logical disorders. Most of the chronic neurodegenerative 
diseases are characterized by a slow but progressive 
loss of neurons. Parkinson’s disease (PD), for instance, 
is associated with the loss of dopaminergic neurons 
in the nigrostriatal system, Alzheimer’s disease (AD) 
with cholinergic neurons of the basal forebrain. Animal 
models have been generated to recapitulate the motor 
and cognitive impairments seen in patients with these 
diseases. These models include mechanical and chemi-
cal lesions of specific pathways relevant for PD and AD, 
the nigrostriatal fibers and fimbria fornix, respectively. 
Administration of GM1 to rodents exposed to 1-me-
thyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 
6-hydroxidopamine (6-OHDA), two neurotoxins that 
elicit Parkinson-like signs by inducing the degeneration 
of dopaminergic neurons in the substantia nigra, stimu-
lated the regeneration of these neurons and ameliorated 
the abnormal motor responses [25–29]. Importantly, the 
rescue effect of GM1 on dopaminergic neurons was also 
observed in nonhuman primates [30, 31]. These preclini-
cal findings led to a small (~50 patients) clinical trial of 
GM1 in patients with PD. These patients responded to 
the treatment with an overall improvement of motor 
function, including decreased rigidity and bradykinesia 
[32, 33]. Although we are waiting for the conclusion of a 
larger clinical trial, these data demonstrate the usefulness 
of GM1 as a treatment for PD. 
The prospect that exogenous gangliosides could be ex-
ploited for therapeutic purposes has also been assessed in 
other models of chronic neurodegenerative diseases, such 
as AD. One of the characteristics of AD is the atrophy 
of cholinergic neurons of the basal forebrain. The basal 
forebrain cholinergic system consists of acetylcholine-
synthesizing neurons distributed across several distinct 
areas. These include the medial septal nucleus, the verti-
cal and horizontal limbs of the diagonal band of Broca, 
the magnocellular preoptic area, the substantia innomi-
nata, the nucleus basalis of Meynert and the nucleus of 
the ansa lenticularis. Experimental evidence has shown 
that gangliosides facilitate cholinergic reinnervation after 
lesions of the septal nuclei or of the nucleus basalis, or 
after transection of the fimbria-fornix [34–38]. In addi-
tion, GM1 exhibited neuroprotection and promoted rein-

nervation of cholinergic neurons after cortical infarction, 
which produces well-defined anatomical and biochemical 
deficits of the nucleus basalis in rats as well as nonhuman 
primates [39–42]. Remarkably, GM1 can also promote 
morphological and functional recovery in normal aged 
animals. In fact, both morphological and behavioral data 
have shown that the degeneration of cholinergic neurons 
typically associated with aging is attenuated by GM1 
[43–45]. Overall, the studies in animal models of chronic 
neurodegenerative diseases support a role for GM1 as a 
neuroprotective and neurotrophic agent. 

Apoptosis, ischemic stroke and spinal cord injury 
A common feature seen in chronic neurodegenerative 
diseases is apoptosis, a form of programmed cell death 
believed to be caused by secondary injury processes 
[46]. Apoptotic neurons, however, can be rescued as 
they remain viable for some time. Thus, there is a need 
for antiapoptotic agents to rescue injured neurons. Are 
exogenous gangliosides neuroprotective because they 
reduce apoptosis? The answer appears to be yes. In fact, 
studies from different laboratories have established that 
gangliosides possess antiapoptotic effects in a variety of 
experimental models, such as growth factor deprivation 
[47], low potassium [48], ethanol [49] and glutamate [50, 
51]. These data raise a salient point that gangliosides may 
be useful in a wide range of neuronal diseases character-
ized by apoptosis, including stroke. 
Current experimental strategies to limit the incidence of 
stroke in the CNS are focused on the first or recurrent 
strokes by reducing risk factors (e.g. high blood pres-
sure). While such an approach may be beneficial, it is 
clear that other strategies should be developed, such as 
minimizing neuronal damage. It has been suggested that 
glutamate, released during brain ischemia/hypoxia, can 
induce secondary neuronal injury via an apoptotic path-
way. Similarly, injury to the spinal cord triggers an ab-
normal release of glutamate and other excitatory amino 
acids that contribute significantly to the neurological out-
come. Thus, anti-excitotoxic or anti-apoptotic agents are 
viewed as potential therapies against the neuropathologi-
cal consequences of stroke and trauma. Anti-excitotoxic 
compounds, however, exhibit side effects which limit 
their clinical use. Exogenous gangliosides appear to be a 
valid alternative therapy as anti-excitotoxic compounds. 
In fact, GM1, GD1b and GT1b have been shown to ef-
fectively block glutamate excitotoxicity in vitro, [52–54] 
and to limit the severity of ischemic brain lesions after 
experimental stroke [55–57]. The neuroprotective ef-
fect does not appear to result from direct inhibition of 
glutamate receptor function, as indicated by an absence 
of changes in glutamate-mediated ionic conductance fol-
lowing incubation with gangliosides [51, 52, 58]. Rather, 
it appears that gangliosides act on both intracellular and 
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extracellular events involved in apoptosis, which will be 
presented later. 
The use of gangliosides in humans is still limited despite 
the positive outcome of clinical trials showing that GM1 
and other gangliosides, either alone or in combination with 
other neuroprotective agents, reduce neuronal damage af-
ter stroke [59] and spinal cord trauma [60]. Major setbacks 
preventing a wide use of gangliosides in human neurode-
generative disorders are concerns about side effects, such 
as the potential of GM1 to cause allergic reactions [61] 
or an acute Guillain-Barré syndrome [62, 63]. However, 
these cases were sporadic and uncommon in large clinical 
trials [64] and also occurred after ganglioside withdrawal 
[65]. In addition, because GM1 used for clinical studies 
has been extracted and purified from bovine brain, there is 
still apprehension that it can be contaminated by prions (or 
other viruses) that cause bovine spongiform encephalopa-
thy. This can be easily avoided by extracting gangliosides 
from pig brain or designing new procedures to extract 
viral-free GM1 from cattle brain [66]. Nevertheless, evi-
dence that GM1 is safe is overwhelming. Thus, clinicians 
should be encouraged to consider gangliosides as potential 
therapy for acute stroke or trauma. 

Semisynthetic gangliosides
GM1 is efficacious in animal models of neurodegenera-
tive diseases. Combined with evidence that lower levels 
of endogenous gangliosides inhibit nerve regeneration 
and induce axonal damage [67, 68], and that individuals 
that do not synthesize GM3 gangliosides suffer seizures 
[69], this evidence should encourage more clinical inves-
tigators to consider applying ganglioside to a variety of 
neurological disorders. As no therapies are still currently 
available to reduce atrophy and loss of CNS neurons, 
gangliosides would be a welcome therapy. However, gan-
gliosides administered by mouth are rapidly inactivated. 
When given systemically, they insert and concentrate in 
neuronal membranes very slowly. Thus, gangliosides 
may have a limited therapeutic application for human 
diseases. These considerations prompted the synthesis of 
ganglioside derivates having properties similar to natural 
gangliosides but possessing physicochemical character-
istics for oral administration and facilitated rates of inser-
tion into neuronal membranes. 
Relatively few classes of semisynthetic gangliosides 
have been characterized. These include derivatives of 
sphingosine or LIGA [52]. The LIGA analogs have 
the basic structure of GM1, but the ceramide portion is 
modified so that the fatty acid tail at the 2-amino posi-
tion is substituted by acetyl (LIGA4) or dichloroacetyl 
(LIGA20) groups (fig. 1). These compounds possess 
very rapid onset of action. In the case of LIGA20,it is 
more potent than GM1 [52, 70, 71], can be administered 
by mouth [71–73] and has fewer side effects [74, 75]. 

Moreover, because of the preparation and purification 
procedures, these compounds may be less likely to be 
contaminated by proteins or infectious agents from the 
cattle brains. Therefore, semisynthetic ganglioside may 
be a more suitable alternative for preventing or slow 
down neurodegenerative processes in humans. 

Mechanisms of action

The plethora of effects of gangliosides in the nervous 
system has been confounded by the inability to define a 
clear mechanism of action. This is mostly due to the fact 
that exogenous and endogenous gangliosides do not share 
the same effects. Thus, it is important to distinguish the 
physiology of gangliosides from their pharmacology. The 
subcellular localization of gangliosides would suggest an 
interaction between gangliosides and the extracellular 
milieu, and the ongoing characterization of these com-
pounds has mostly supported this notion. For example, 
GM1 can serve as a receptor for cholera toxin [76] and 
appears to be absolutely necessary for internalization of 
this toxin [77, 78], while ganglioside GT1b appears to 
be involved in the effects of tetanus toxin on the brain 
[79]. The known extracellular roles of gangliosides are 
complemented by studies indicating that they may serve 
as reservoirs of bioactive products which can profoundly 
affect cell function. These breakdown products include 
ceramide, sphingosine, sphingosine-1-phosphate, as well 
as other ganglioside derivatives [2, 80–82]. On the other 
hand, ceramide is often considered a downstream media-
tor of various apoptotic signal transduction cascades [83, 
84]. There is also evidence in hematopoietic cells that 
GD3 ganglioside can be a downstream agent of cera-
mide-induced apoptosis [85–87]. Thus, ceramide may not 
modulate the neuroprotective properties of gangliosides. 
Endogenous gangliosides may be involved in the forma-
tion of glycosphingolipid rafts in cell membranes. It has 
been suggested that these domains serve as platforms for 
bringing various signaling proteins together (i. e., recep-
tors and their targets) [88, 89]. These rafts may also serve 
to sort proteins in the trans-Golgi network to particular 
domains of the cell [89]. Additionally, Hakomori and 
Handa [90] have suggested a function of detergent-insol-
uble glycosphingolipid-enriched microdomain (DIGEM) 
as direct signaling receptors, which, upon interaction 
with various lectins, can transduce a signal intracellu-
larly through DIGEM-associated signaling factors. The 
ganglioside-specific sialidase Neu3, which has been 
shown to act as a transducer molecule [91], may also par-
ticipate in the neurotrophic mechanisms of gangliosides. 
Thus, gangliosides may be able to modulate cell function 
through a variety of avenues. Nevertheless, none of the 
above theories may fully explain the ability of exogenous 
gangliosides to improve neuronal plasticity. 
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There are a number of viable theories to account for the 
pharmacological use of exogenous gangliosides, includ-
ing (i) Effects on intracellular calcium, (ii) activation of 
intracellular enzymes and (iii) modulation of receptors. 
These theories will not be presented because they have 
already been reviewed elsewhere [92–96]. Instead, to 
provide a valid alternative explanation of the neurotroph-
ic theory of gangliosides, I will discuss the interaction of 
gangliosides with the neurotrophins (NTs). 

Ganglioside properties are similar to those of NTs
The NT family of neurotrophic factors includes nerve 
growth factor (NGF), brain-derived neurotrophic fac-
tor (BDNF), neurotrophin-3 (NT-3) and NT-4/5. These 
small, basic, homodimeric proteins are required for 
the growth, differentiation and survival of specific but 
overlapping neuronal populations. Because of space 
constraints, comparatively little of the biology of NTs 
and their receptors themselves are critically examined in 
this review, which focuses instead on the effects of NTs 
that may be relevant to gangliosides. Interested readers 
are referred to many excellent reviews on the biological 
actions of NTs [97–100].
One of the crucial aspects of the neurobiology of the NTs 
is their ability to prevent damage to CNS neurons caused 
by neurotoxic agents, trauma and ischemia. For instance, 
NGF reduces the atrophy of cholinergic neurons and the 
associated impairment in learning and memory occurring 
either following a lesion of the cholinergic septohippoc-
ampal projection or in age-impaired rats [101]. BDNF 
has similar effects, although with a lower potency [102]. 
On the other hand, BDNF protects the nigro-striatal 
pathway against the toxic property of MPTP or 6-OHDA 
[103–105]. Similarly, NGF prevents 6-OHDA mediated 
oxidative stress in PC12 cells [106]. Both BDNF and NT-
3 can promote sprouting of corticospinal neurons after 
spinal cord injury [107], and prevent the retrograde cell 
death of axotomized red nucleus in developing rats [108]. 
BDNF has also been shown to reduce secondary injury 

caused by ischemia [109]. The neuroprotective activity of 
the NTs has also been extended to neurotoxins in vitro. 
These include glutamate [110, 111], amyloid [112], etha-
nol [113] and human immunodeficiency virus glyprotein 
120 [114]. Significantly, most of the trophic effects of 
NTs mentioned above can be reproduced using GM1 or 
other gangliosides, although the NTs are more potent 
pharmacologically (table 1).

Gangliosides and the Trk receptors
The trophic and neuroprotective properties of gan-
gliosides such as GM1 appear to demonstrate striking 
(although not identical) similarities to the NTs, and 
therefore suggest a similar mechanism of action. NTs 
bind to two types of receptors: transmembrane tyrosine 
kinase receptors (Trks) and the p75 neurotrophin recep-
tor (p75NTR) [115]. The three most well characterized 
Trk family members include TrkA, TrkB, TrkC, where 
NGF binds primarily to TrkA, BDNF and NT-4/5 bind to 
TrkB, while NT-3 binds primarily to TrkC, but can also 
activate TrkA and TrkB [98]. The p75NTR binds all NTs 
with relatively equal affinity. Trks are 140-kDa proteins 
possessing intrinsic tyrosine kinase activity which can be 
stimulated by ligand binding, resulting in dimerization 
of the receptors [116]. The subsequent phosphorylation 
of intracellular target proteins such as phospholipase c-g 
(PLCg), extracellular signal-regulated kinase (Erk1/2), 
phosphatidylinositol-3-kinase/Akt and Suc-associated 
neurotrophic factor target (SNT) initiates a cascade of 
events resulting in growth, differentiation or survival 
[117]. Most of the trophic effects of NTs are mediated 
by Trks, although there is evidence indicating that the 
p75NTR can potentiate Trk’s activity, affect the specifi-
city of Trk binding and mediate some responses, such as 
apoptosis, in the absence of Trk [118]. 
Different laboratories have independently shown that 
GM1 activates TrkA via tyrosine phosphorylation of its 
tyrosine kinase domain [119–121]. This event is followed 
by TrkA dimerization [122] and activation of a number of 

Table 1. Neuroprotective effects of GM1 and neurotrophins on major neurological disorders and/or experimental models of neurodegenera-
tive diseases.

Diseases/animal models  GM1  BDNF NGF NT-3

AIDS dementia* + ++ – –

Alzheimer’s disease/degeneration of basal forebrain + +/– ++ +/–

Motor neuron degeneration/axotomy + + – +

Parkinson’s disease/degeneration of substantia nigra + ++ – +

Seizure + + + –

Spinal cord injury/descending motor pathways + + – +

Stroke + ++ + +/–

+ or – denotes the neuroprotective effect: ++ robust, + mild, +/– weak, - no effect. *Unpublished. For appropriate references see text. 
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target proteins, including PLCg, Erk1/2 and SNT [121, 
123]. The ability of GM1 to induce TrkA tyrosine phos-
phorylation helps elucidate the variety of intracellular 
events attributed to GM1 and perhaps other gangliosides. 
For instance, TrkA activation by GM1 may explain the 
positive effect of this ganglioside on the induction of 
cholinergic parameters such as choline acetyltransferase 
activity and choline uptake, and it is reminiscent of the 
effect of NGF [38, 124]. Activation of TrkA, known to 
promote accumulation of intracellular Ca2+ [125], may 
explain ganglioside induction of the Ca2+-dependent 
protein kinase [126] and changes in intracellular Ca2+ 
concentrations [58, 127]. SNT phosphorylation, which is 
associated with neurite outgrowth and somatic hypertro-
phy in PC12 cells, may help clarify the ability of GM1 
to potentiate the neuritogenic effects of NGF as well as 
to act as a survival factor [128] in these cells. Moreover, 
activation of Erk phosphorylation by GM1 is likely to 
underlie its neuroprotective property in stroke, as BDNF-
mediated induction of the Erk pathway has been shown 
to reduce ischemic neuronal damage [129]. However, 
since the metabolism of gangliosides may result in the 
production of metabolically active byproducts such as 
sphingosine and ceramide, it is believed that the entire 
range of properties exhibited by gangliosides is probably 
not explainable by activation of TrkA alone. Moreover, 
GM1 or other gangliosides exert neurotrophic activity 
on neurons that do not respond to NGF activation of 
TrkA [24]. For instance, the neuroprotective activity 
of LIGA20 on cerebellar granule cells is mediated by 
TrkB and not TrkA activation [75]. These considerations 
prompted exploration of the interaction of gangliosides 
with each of the Trk neurotrophin receptors. 
Studies aimed at determining the relative potency of 
GM1 on Trk tyrosine phosphorylation have proven that 
gangliosides activate different Trks. In fact, GM1 is more 
potent in activating TrkC tyrosine phosphorylation than 
TrkA or TrkB [130]. Due to the abundant distribution 
of Trks and neurotrophins in the PNS and CNS, these 
findings shed light on the broad and overlapping trophic 
activity of exogenous gangliosides. Such complexity 
might be critical for generating the remarkable diversity 
and specificity with which gangliosides regulate neuronal 
function. 

Gangliosides induce the release of NTs
The interaction of GM1 with more than one Trk recep-
tor may explain the discrepancies between the range of 
biological effects modulated by gangliosides and the 
restricted distribution of TrkA-responsive neurons in the 
nervous system. For instance, the trophic effect of GM1 
on PC12 cells is instructive in demonstrating the contrast-
ing biological activity of gangliosides in different cellular 
environments. In these cells, GM1 ganglioside is able to 

promote survival but not differentiation [131], a property 
of NT-3. However, GM1 can induce the differentiation of 
other cells, i. e. neuroblastoma cells [132, 133], which are 
responsive to BDNF. How can glycosphingolipids simul-
taneously activate different Trks given the fact that each 
neurotrophin has a different affinity for these receptors? 
The answer appears to lie in the ability of gangliosides to 
induce the release of NTs. GM1, in fact, has been shown 
to increase the release of NT-3 and NGF in non-neuro-
nal cells [130, 134], while LIGA20 induces the release 
of BDNF from cerebellar granule cells [75, 130]. To 
understand the importance of these findings in relation 
to synaptic plasticity, a brief overview of the NT release 
field is necessary.
NTs are stored in large dense-core vesicles from which 
they can be released by constitutive or activity-depend-
ent secretory pathways [135, 136]. Neurons of both, the 
peripheral nervous system (PNS) [137] and the CNS 
[111, 138], as well as non-neuronal cells, release NTs. 
Released NTs are able to activate Trks on the neurons 
themselves, through an autocrine mechanism [111, 137, 
139], or activate a cognate receptor through a para-
crine mechanism. As mentioned above, while BDNF 
binds more selectively to TrkB, NT-3, in the absence of 
p75NTR, activates TrkA and TrkB in addition to TrkC 
[140]. This lack of selectivity for a particular Trk recep-
tor is pharmacologically important because it increases 
the possible combination of ligand-receptor interactions 
and consequently the number of neurons that can be af-
fected by the NTs. In addition, NTs are released from 
both synapses and extrasynaptic sites. While the latter 
affects dendritic branching [141], NTs released from 
synapses modulate both presynaptic and postsynaptic 
events, including neurotransmitter release and synthe-
sis, and receptor function [136, 142]. Reduced release 
of NTs causes severe deficits in synaptic potentiation 
and stabilization, which have been shown to contribute 
to the pathogenesis of neurodegenerative diseases [143, 
144]. Therefore, compounds such as gangliosides, which 
induce the release of NTs, are crucial for the proper dy-
namic of neuronal plasticity. 
The ability of exogenous gangliosides to exert trophic 
activity in a variety of neuronal cells could be explained 
by their relative potency in affecting the constitutive 
and activity-dependent secretory pathways of NTs. For 
instance, the effect of GM1 on NT-3 secretion may ex-
plain why GM1 can promote the survival of PC12 cells 
but is unable to promote neurite outgrowth from these 
cells [119]. The NT-3 released from these cells [145] 
would only be able to weakly activate the TrkA receptor, 
as has been demonstrated, resulting in survival but not 
differentiation of the treated cells. The ability of GM1 
to induce the differentiation of other cell lines, such as 
neuroblastomas [146], can potentially be due to fact that, 
unlike PC12 cells, neuroblastomas produce NTs [147]. 
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Thus, the released NT-3 could synergize with the NTs al-
ready secreted by these cells, resulting in differentiation. 
Similarly, the weak activity of GM1 as compared with 
LIGA20 in preventing glutamate toxicity [52] could be 
explained by the relative potency of GM1 and LIGA20 to 
release BDNF [75], which among the NTs is the strong-
est anti-glutamatergic factor. 

Potential mechanisms
The autocrine mechanism of NT regulation provides a 
link between the ability of gangliosides to induce the 
release of NTs and to activate Trk tyrosine phosphoryla-
tion. However, the molecular mechanism(s) whereby 
gangliosides induce the release of NTs is still a matter 
of speculation. Presynaptic release of NTs is modulated 
by increased intracellular Ca2+ either from opening Ca2+

channels or mobilization from internal stores [148, 149]. 
As mentioned before, GM1 has been shown to increase 
intracellular Ca2+ levels in neurons via Ca2+ channels 
[150–152], making the Ca2+ influx hypothesis an attrac-
tive possibility to explain the ability of gangliosides to 
release NTs (fig. 2). Thus, it may be possible that gan-
gliosides may induce the release of NTs from neurons or 
glial cells in a Ca2+-dependent manner. On the other hand, 
GM1 induces the release of NTs in non-neuronal cells as 
well [130] suggesting a Ca2+-independent mechanism. 
Gangliosides, like other glycosphingolipids, are able to 
form protein-lipid interactions and as, mentioned before, 
participate in the formation of membrane microdomains 
such as glycosphingolipid-based membrane rafts or bind 
to VIP21-caveolin within the plasma membrane [153]. 
Caveolin is a membrane protein distinct from the coated 
pit and localized in caveolae [154], a plasma membrane 
invagination rich in cholesterol and sphingolipids and 
specialized in the cellular transport of molecules. Caveo-
lin has been shown to exert an important function as an 
anchoring protein for signaling molecules, including var-
ious kinases, tyrosine kinase receptors, Trk and p75NTR 
within the plasma membrane [155–157]. By interacting 
with caveolin, gangliosides may enhance or inhibit the 
activity of these molecules, which, in turn, may promote 
the release of NT-3. Alternatively, gangliosides, though 
their lipid moiety, may interact with synaptophysin or 
other proteins that are essential for synaptic vesicles 
[158], and modulate the fusion of vesicles with mem-
branes and the release of their content. Therefore, it is 
possible that multiple mechanisms control ganglioside-
mediated release of NTs. 

Gangliosides modulate NT synthesis 
In addition to modulating their own secretion [139, 159], 
NTs are also capable of upregulating their own synthesis 
in a Trk-mediated manner [134, 145, 149]. This event is 

essential to avoid depleting intracellular stores and keep 
a ready supply of NTs. Studies aimed at testing whether 
gangliosides regulate NT expression as well as NT secre-
tion revealed that GM1 increases NGF messenger RNA 
(mRNA) in rats [160] as well as in vitro [134]. The effect 
is mediated by Trk because Trk-positive cells exposed to 
GM1 exhibited higher levels of NGF mRNA and protein 
than Trk-negative cells or cells exposed to control me-
dium [134]. Therefore GM1, by modulating constitutive 
or activity-dependent release of NTs, activates Trk recep-
tors by an autocrine loop, which in turn triggers a positive 
feedback to increase their synthesis. It is reasonable to 
speculate that gangliosides positively modulate the inter-
play between NT release and synthesis, a major departure 
from the classical view that signaling molecules released 
from neurons provide a negative feedback to reduce their 
synthesis. The reciprocal induction of NT synthesis by 
secreted NTs suggests a novel molecular framework by 
which gangliosides might influence synaptic plasticity. 
It remains to be established whether the GM1-mediated 
autocrine/paracrine interaction between NTs and their re-

Figure 2. Suggested mechanism of NT release by gangliosides. 
Exogenous GM1 induces Ca2+ influx and release of Ca2+ from 
internal stores both in neurons and glial cells. Increased intracel-
lular Ca2+ concentrations evoke the release of NTs from vesicular 
stores. GM1-mediated intracellular Ca2+ increase can also activate 
Ca2+calmodulin-dependent protein kinase II, which may induce di-
rectly the release of NTs from vesicles or through Ca2+ mobilization 
from internal stores. Once released, NTs activate presynaptic NT re-
ceptors or diffuse across the synaptic cleft and activate postsynaptic 
NT receptors and related signaling proteins (e. g. ERK1/2, Akt).
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ceptors occurs in multiple cell populations. Nevertheless, 
the overlapping distribution of NTs with their receptors 
supports the broad action of gangliosides. 

Conclusions

Exogenous gangliosides have been used as an experimen-
tal tool to promote the recovery of function of various 
types of neurons following neuronal damage. Although 
there is evidence that GM1 ganglioside can promote the 
survival and/or regrowth of injured neurons, the specific 
mechanism of action of gangliosides has been difficult 
to define. It is now recognized that gangliosides can 
potently, although indirectly, activate Trk receptors by 
enhancing the endogenous release of NTs, resulting in 
autocrine and paracrine activation of Trk receptors and 
associated signaling molecules (fig. 2). 
The ability of gangliosides to induce the release of NTs 
from different cell types appears to explain the spectrum 
of effects seen by gangliosides on different neuronal 
populations. The fact that NT-3 can interact with differ-
ent Trk family members, as well as potentiate the effects 
of NGF and possibly BDNF, would allow GM1 to be 
effective on a variety of neuronal populations express-
ing different NT receptors. Whether GM1 can induce 
the release of other factors besides NTs requires further 
examination. In addition, it remains to be established 
whether gangliosides induce the release of mature fully 
processed NTs as well as pro-NTs. The pro-NTs pref-
erentially bind to p75NTR and mediate apoptosis [161, 
162], which may explain why higher concentrations of 
gangliosides cause neuronal damage [163] or abolish the 
trophic effect of NGF [164]. Similarly, it remains to be 
established whether changes in the types of gangliosides 
present in the nervous system during neuronal develop-
ment may modulate levels of NTs being secreted by these 
cells. Furthermore, the identification of gangliosides in 
a variety of cell types, both neuronal and non-neuronal, 
may also be due to a particular role of glycosphingolipids 
in differential exocytosis. These and other possibilities, 
which can be extrapolated from experimental evidence, 
may allow for a greater understanding of the role of these 
compounds in vivo, as well as their more informed use as 
neuro-therapeutic drugs. 
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