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Abstract. The adaptations in extracellular signal-
regulated kinase (ERK) pathway activity result in 
alterations in transcription of several genes that can be 
essential for development of both opioid tolerance and 
dependence. In this study, we investigated the effect of 
acute and prolonged opioid treatment on ERK pathway 
activity in SH-SY5Y cells. Acute administration of 
morphine and DAMGO stimulated ERK activity and 
this stimulation required activation of Ca2+/calmodulin-
dependent kinase II (CaMKII) and protein kinase C 
(PKC). In contrast, prolonged morphine treatment de-

creased the level of phosphorylated ERK. The precipita-
tion of withdrawal further decreased the ERK1/2 activity. 
The principal finding of these studies is demonstration 
that the activation of CaMKII and PKC is required for 
ERK stimulation following acute opioid treatment while 
in a chronic morphine treatment and withdrawal, the 
up-regulation of PKC and CaMKII pathways seems to 
be engaged in the ERK inhibition. These results provide 
evidence that both opioid administration and opioid 
withdrawal, affecting similar intracellular pathways, can 
exert different effects on ERK activity.

* Corresponding author.

Key words. Opioids; ERK; SH-SY5Y; protein kinase.

The mitogen-activated protein kinase (MAPK)/
extracellular signal-regulated kinase (ERK) pathway 
is a signaling cascade, which plays a crucial role in 
several cellular regulatory processes [1, 2]. The MAPK/
ERK pathway can also integrate second-messenger 

systems, such as calcium, protein kinase A (PKA), and 
diacylglycerol (DAG) in activity-dependent regulation 
of neuronal function [3]. ERKs 1 and 2 (ERK1/2) are 
the most abundant ERK kinases in neurons [4]. The 
role of the ERK pathway in neuronal differentiation 
and survival is well established [5, 6] but several lines 
of evidence have recently pointed to an involvement of 
ERK1/2 signaling in the rewarding properties of drugs 
of abuse [7, 8] and adaptative responses of the central 

nervous system (CNS). The functional relevance of 
ERK1/2 to reinforcing properties of morphine has been 
shown recently by demonstrating the hypersensitivity of 
ERK1 mutant mice to the rewarding properties of mor-
phine [2]. ERK1/2 catalytic activity is regulated by dual 
phosphorylation on specific tyrosine and threonine resi-
dues which causes their activation. In rat/mouse brain, 
chronic morphine treatment has been shown to regulate 
ERK1/2 catalytic activity in a region-specific manner. 
The chronic, but not acute, administration of morphine 
has been shown to increase [8–10], to decrease [11, 
12] or not to influence ERK catalytic activity [8]. After 
chronic morphine, a decrease in ERK1/2 phosphoryla-
tion level was observed in the nucleus accumbens [11] 
and also in some other structures of the rat brain [12]. In 
contrast, in the ventral tegmental area (VTA) – a brain 
region involved in the rewarding properties of morphine, 
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chronic administration of morphine was reported to in-
crease ERK catalytic activity [13]. In the pons/medulla 
also, the p-ERK immunoreactivity increased remark-
ably after 7 days of repeated morphine injections [8]. 
Chronic morphine has also been shown to increase the 
ERK1 and ERK2 levels in the rats locus ceruleus and 
caudate/putamen [14].
The MAPK/ERK pathway is among numerous signal 
transduction pathways that could alter gene expression 
in distinct brain regions in response to repeated opioid 
exposure. These drug-induced changes in gene expres-
sion are considered to be the main reason for long-lasting 
alterations in the brain neuronal plasticity responsible for 
the state of addiction manifested as complex behavioral 
abnormalities. Phosphorylation of transcription factors 
via MAPKs kinases leading to changes in target gene 
expression has been postulated to be involved in the de-
velopment of opioid dependence. A long, and ever-grow-
ing over the past few years list of multiple transcription 
factors phosphorylated by ERKs indicates the complex-
ity of this regulation of gene expression [for a review see 
ref. 15].
At the cellular level, ERK can phosphorylate not only 
nuclear proteins including transcription factors but 
also some cytosolic proteins. Studies with HEK cells 
transfected to express the d opioid receptor showed that 
activated ERK could phosphorylate cytosolic proteins 
participating in the process of receptor internalization 
thereby preventing this process. Moreover, blockade of 
morphine-mediated ERK activation enabled opiates to 
strongly induce d opioid receptor internalization [16]. 
On the other hand, experiments with CHO cells tran-
fected to express µ opioid receptor revealed that MAPK 
activity contributed to the receptor internalization and 
that blocking of ERK phosphorylation suppressed the 
receptor desensitization caused by DAMGO exposure 
[17]. The activation of the ERK cascade in response 
to opioids has been suggested to trigger initial events 
leading to phosphorylation and desensitization of the µ 
opioid receptor [18]. However, µ and d opioid receptor 
internalization is not an obligatory requirement for ERK 
activation [19]. At any rate, ERKs have been shown to 
be involved in the processes of receptor desensitization 
(uncoupling of the receptor from its effector) followed by 
their internalization. Both processes leading to a decrease 
in functional receptor number on the cell membrane have 
been suggested to be one of the mechanisms underlying 
the phenomenon of opioid tolerance.
Although the acute activation of ERK in cultured cells 
has been reported, we still know relatively little about 
ERK activity following chronic opioid treatment. This 
raises the question how chronic morphine action can af-
fect ERK phosphorylation at the cellular level and which 
molecular mechanisms are involved in the regulation of 
ERK activity. In the present study, the effects of both 

acutely administered opioids and of chronic morphine 
treatment and withdrawal on cellular ERK1/2 phospho-
rylation were examined in the human neuroblastoma 
SH-SY5Y cell line. These cells were chosen because 
they express endogenous µ opioid receptor and develop 
cellular tolerance and dependence to morphine after pro-
longed treatment [20]. In the present study, we show that 
acute activation of µ opioid receptors rapidly induced 
ERK1/2 phosphorylation, whereas prolonged stimula-
tion was associated with a decrease in ERK1/2 phos-
phorylation. Moreover, precipitation of withdrawal with 
an opioid receptor antagonist profoundly augmented the 
existing decrease in ERK1/2 phosphorylation. Protein 
kinase C (PKC) and Ca2+/calmodulin-dependent kinase 
II (CaMKII) are responsible for the induction of ERK1/2 
phosphorylation following acute opioid exposure but, on 
the other hand, they seem to be involved in the inhibition 
of ERK1/2 phorphorylation during prolonged morphine 
treatment and withdrawal.

Materials and methods

Materials. Morphine sulfate was purchased from 
POCh Gliwice; Dulbecco’s modified Eagle’s medium 
(DMEM) and fetal calf serum were purchased from 
GIBCO Laboratories; bisindolylmaleimide I, a highly 
selective cell-permeable PKC inhibitor was purchased 
from Calbiochem; autocamtide-2 inhibitor peptide, 
myristoylated, which acts as a highly specific and po-
tent, cell-permeable inhibitor of CaMKII, was purchased 
from Merck; [D-Ala2, MePhe4, Gly5-ol]enkephalin 
(DAMGO) and naloxone were obtained from RBI. All 
other reagents were purchased from Sigma.

Cell culture. SH-SY5Y cells were maintained at 37 °C 
in a humidified CO2 incubator in DMEM containing 
10% fetal calf serum and antibiotics. Aproximately 10 
h before experiments, complete medium was substituted 
by serum-reduced DMEM medium containing 0.5% fetal 
calf serum. Cells remained in the serum-reduced medium 
until the end of the experiments to avoid activation of 
ERKs/MAPKs kinases by growth factors. Experiments 
were carried out after an adaptation period, and reagents 
were added directly to the medium.

Western blotting. Cells were immediately lysed in 
a warm 2% sodium dodecylsulfate (SDS)-sample 
buffer. Protein concentration was determined using the 
BCA Protein Assay Kit (Sigma-Aldrich). Aliquots of 
crude extracts (containing 5–20 µg of protein) were 
then subjected to electrophoresis on a 12% SDS-
polyacrylamide gel, and proteins were electroblotted 
onto microporous polyvinylidene difluoride (PVDF) 
membranes (Boehringer-Mannheim). The membranes 
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were blocked for 1 h, washed, and incubated overnight 
with primary antibodies at 4 °C. After washing 
steps, immunocomplexes were detected using a 
Chemiluminescence Western Blotting Kit (mouse/
rabbit; Boehringer-Mannheim). For immunoblotting, 
mouse monoclonal antibodies raised against a peptide 
corresponding to amino acids 196–209 of ERK1/2 of 
human origin phosphorylated at Tyr-204 (a modification 
that reflects ERK1/2 activation [21]) were used (Santa 
Cruz). For the control of total unphosphorylated ERK1/
2 expression, rabbit polyclonal antibodies were used 
(Santa Cruz). The relative protein level in each lane was 
controlled after transfer by staining the polyacrylamide 
gels with Coomassie Brilliant Blue G250. To control 
transfer quality, each blot (membrane) was stained with 
Ponceau S. Levels of immunoreactivity were visualized 
and quantified with a Fujifilm LAS-1000 fluoroimager 
system and Fujifilm software (Image Gauge).

Results

ERK1/2 phosphorylation following acute opioid treat-
ment. Immunoblots of extracts from SH-SY5Y cells 
demonstrated that the anti-phosphorylated ERK (p-ERK) 
antibody reacted with two bands of molecular weight 42 
and 44 kDa. Incubation with a selective agonist of the 
µopioid receptor, DAMGO (100 nM–10 µM), or mor-
phine (100 nM–10 µM) for 5 min caused a significant 
and dose-dependent stimulation of ERK1/2 phosphoryla-
tion (fig. 1A, B). Both opioids, morphine and DAMGO, 
elicited a rapid but transient increase in phosphorylated 
ERK1/2 levels, which peaked at 5 min (5–10 min in the 
case of DAMGO) after receptor activation, and decreased 
to the control levels after 30 min of incubation (fig. 2A, 
B). Morphine (1 µM) triggered ERK1/2 phosphorylation 
(5 min, approx. two-fold), albeit to a lesser extent than 
DAMGO (fig. 1). The different efficacy of DAMGO and 
morphine in ERK activation is probably caused by differ-
ent affinity for these ligands. The effect of both opioids 
was reversed by the opioid receptor antagonist naloxone 
(fig. 2A, B). Treatment with 3 µM naloxone alone did not 
produce any significant effect on ERK1/2 phosphoryla-
tion (fig. 2B).

ERK1/2 phosphorylation during prolonged morphine 
treatment and withdrawal. In contrast to acute expo-
sure, prolonged (up to 3 days) treatment with morphine 
significantly decreased ERK1/2 phosphorylation below 
the levels seen in control cells. Administration of 3 µM 
naloxone to SH-SY5Y cells exposed to morphine for 
72 h profoundly inhibited phosphorylation of ERK1/2 
(fig. 3). At 5 min after addition of the opioid receptor 
antagonist, the ERK1/2 phosphorylation was 2.5-fold 
when compared with the level seen after prolonged mor-

phine treatment and about 4-fold in comparison with the 
control untreated cells. The maximal decrease in ERK1/2 
phosphorylation level occurred 5 min after naloxone and 
then, with time, it returned to the level noted after chronic 
morphine administration.

Total ERK expression during chronic morphine treat-
ment. Unphosphorylated total ERK immunoreactivity 
after chronic morphine treatment (fig.4) did not show 
any changes in the expression level of ERK during the 
entire experimental period (72 h).

PKC and CaMKII activity is required for acute 
opioid-induced ERK phosphorylation. Inhibitors of 
PKC (bisindolylmaleimide I, 100 nM) and CaMKII 
(autocamtide-2 inhibitory peptide, myristoylated, 20 
µM) abolished opioid-induced ERK1/2 phosphorylation 
in SH-SY5Y cells (fig. 5A, B). These data indicate that 
stimulation of µ opioid receptors in SH-SY5Y cells may 
result in phospholipase C (PLC) activation and subse-
quently activation of PKC and CaMKII kinases. 

Figure 1. The effect of opioid treatment on ERK1/2 phosphorylation 
in SH-SY5Y cells. All data are expressed as the means ± SD of three 
independent experiments. ANOVA followed by Tukey’s multiple-
comparison test was performed; *p < 0.05, **p < 0.01, ***p < 0.001, 
compared with the control (C). (A) Cells were incubated with 
increasing concentrations of DAMGO for 5 min. (B) Cells were 
incubated with increasing concentrations of morphine for 5 min.
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Inhibition of PKC or CaMKII  during morphine 
withdrawal superactivates  ERK1/2. In contrast to 
their effects during acute opioid treatment, inhibitors of 
PKC and CaMKII (bisindolymaleimide I, 100 nM and 
autocamtide-2 inhibitor peptide, myristoylated, 20 µM 
applied for 5 or 20 min) did not decrease but, in fact, 
increased ERK1/2 phosphorylation level when applied 
to the cells subjected to chronic morphine action (fig. 
6A–C). This was further augmented after the addition 
of naloxone to SH-SY5Y cells exposed to morphine for 
72 h. Both PKC and CaMKII inhibitors caused superac-
tivation of ERK1/2 phosphorylation (fig. 6).

Discussion

The data presented here provide evidence that µ opioid 
receptor activation differentially modulates ERK1/2 ac-
tivity after acute and chronic opioid treatment as well as 
during morphine withdrawal in SH-SY5Y cells. When 
given acutely, opioids (morphine and DAMGO) activate 
ERK1/2, while chronic morphine treatment/withdrawal 
leads to ERK1/2 dephosphorylation. The observed in-
crease in ERK phosphorylation following acute opioid 
treatment has also been shown previously by others [18, 
22]. The acute administration of a selective µ opioid re-
ceptor agonist, DAMGO, exerted a stronger effect than 
morphine. The different efficacy of DAMGO and mor-
phine in ERK activation is probably caused by different 
affinity of these ligands for the µ opioid receptor, although 
this effect may also be connected with the involvement of 

Figure 2. Time courses of opioid-induced ERK1/2 phosphorylation 
in SH-SY5Y cells. All data are expressed as the means ± SD of three 
experiments. ANOVA followed by Tukey’s multiple-comparison 
test was performed; **p < 0.01, ***p < 0.001, compared with the 
control (C). (A) Cells were incubated with 1 µM morphine (M) 
for the indicated periods of time. Additionally, the effect of the 
opioid receptor antagonist, naloxone (NLX), on morphine-induced 
ERK1/2 phosphorylation was tested. The cells were preincubated 
with naloxone (3 µM, 5 min), then incubated with morphine 
(1 µM, 10 min). (B) Cells were incubated with 1 µM DAMGO 
for the indicated periods of time. Additionally, the effect of the 
opioid receptor antagonist, naloxone (NLX), on DAMGO-induced 
ERK1/2 phosphorylation was tested. The cells were preincubated 
with naloxone (3 µM, 5 min) and then incubated with DAMGO (1 
µM, 5 min). The last bar presents the effect of naloxone on ERK1/2 
phosphorylation.

Figure 3. The effect of opioid withdrawal on ERK1/2 phos-
phorylation in SH-SY5Y cells. The cells were incubated with 1 µM 
morphine for 72 h (CM 72h) and after that period the withdrawal 
was precipitated with 3 µM naloxone (NLX). All data are expressed 
as the means ± SD of three experiments. ANOVA followed by 
Tukey’s multiple-comparison test was performed; *p < 0.05, **p < 
0.01, compared with the prolonged morphine (CM 72h) treatment.

Figure 4. Changes in ERK1/2 expression level during chronic (72 
h) morphine treatment. (C), control, untreated cells; CM chronic 
morphine. All data are expressed as the means ± SD of three 
experiments.
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ERK1/2 in the process of opioid receptor internalization 
[18]. In fact, several reports have indicated that DAMGO 
induced µ opioid receptor internalization much more ef-
ficiently than morphine [17]. 
We found that in SH-SY5Y cells, the opioid-induced 
ERK1/2 phosphorylation was connected with the activa-
tion of PKC and CaMKII. These observations are in line 
with data showing that although acute opioid exposure 
inhibits cAMP production and Ca2+ current [23], at the 
same time it may activate PLC, which can lead to the 
activation of PKC and mobilization of Ca2+ from intracel-
lular stores [24, 25]. Indeed, in SH-SY5Y cells, µ opioid 
receptors appear to be coupled to PLC. CaMKII itself is 

Figure 5. The effect of protein kinase inhibitors on ERK1/2 phos-
phorylation after acute morphine-treatment. All data are expressed 
as the means ± SD of three independent experiments. ANOVA 
followed by Tukey’s multiple comparison test was performed, *p 
< 0.05, compared with the control (C). ##p < 0.01 compared with 
morphine treatment (M). (A) Cells were preincubated with 100nM 
PKC I (Bisindolymaleimide I) for 5 min and then were incubated 
with 1µM morphine for 10 min (M+PKC I). Control group (C), 
morphine treatment (M). (B) Cells were preincubated with 20µM 
CaMKII I (Autocamtide-2 inhibitor peptide, myristoylated) for 
5 min and then were incubated with 1µM morphine for 10 min 

(M+CaMKII I). Control group (C), morphine treatment (M).

Figure 6. The effect of protein kinase inhibitors on ERK1/2 phos-
phorylation after chronic morphine (CM) treatment as well as 
during the naloxone-precipitated withdrawal (PW). All data are 
expressed as the means ± SD of three independent experiments. 
(A) Cells were incubated with 1 µM morphine for 72 h and then 
preincubated with 0.1 µM PKC I (bisindolylmaleimide I) for 5 or 
20 min; the withdrawal was precipitated with 3 µM naloxone for 
10 min (PW+PKC I). Control untreated group, (C). An ANOVA 
followed by Tukey’s multiple-comparison test was performed; 
**p < 0.01, ***p < 0.001 compared with the prolonged morphine 
group (CM); ###p < 0.001 compared with the control group (C). 
(B) Cells were incubated with 1 µM morphine for 72 h (CM) and 
then preincubated with 20 µM CaMKII I (Autocamtide-2 inhibitor 
peptide, myristoylated) for 5 min; the withdrawal was precipitated 
with 3 µM naloxone for 10 min (PW+CaMKII I). An ANOVA 
followed by Tukey’s multiple-comparison test was performed; ***p 
< 0.001 compared with the precipitated withdrawal group (PW); 
**p < 0.01, ***p < 0.001 compared with the prolonged morphine 
group (CM). (C) Cells were incubated with 1 µM morphine for 72 
h (CM) and then preincubated with 20 µM CaMKII I (autocamtide-
2 inhibitor peptide, myristoylated) for 20 min; the withdrawal was 
precipitated with 3 µM naloxone for 10 min (PW+CaMKII I). 
An ANOVA followed by Tukey’s multiple-comparison test was 
performed; **p < 0.01, compared with the prolonged morphine 
group (CM); *p < 0.05 , ***p < 0.001 compared with the precipitated 
withdrawal group (PW).
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inhibition of the MAPK/ERK pathway following acute 
and chronic opioid treatment, respectively [41]. 
Another mechanism controlling ERK activity would involve 
the stress-activated protein kinases (SAPK) pathway. We 
observed that chronic morphine activates the JNK/SAPK 
signaling cascade (unpublished data). Sustained JNK acti-
vation uncouples ERK activation from MEK, resulting in 
ERK resistance to activation. Interestingly, Jun-mediated 
gene transcription is required in this negative cross-talk 
between the JNK and ERK pathways [42]. Finally, the de-
crease in ERK activity observed during chronic morphine 
treatment appears to be a result of the balance established 
between oppositely acting pathways, a balance which 
favors inhibitory pathways. These pathways seem to be 
further up-regulated during withdrawal. In such an adapted 
system, inhibition of either CaMKII or PKC results both in 
inhibition of stimulatory, ERK-phosphorylating pathways 
and inhibition of inhibitory or dephosphorylating pathways, 
thus allowing ERK activation via so far unidentified CaM-
KII- and PKC-independent pathways. To understand the 
obtained results, instead of thinking about the individual 
pathways, we should, rather, think of a complex signaling 
network created by many cross-talks resulting in properties 
that the individual pathways do not have. 
Whatever is the nature of the above regulations, PKC and 
CaMKII seem to act either after the acute opioid signal 
or during prolonged morphine treatment and withdrawal. 
Interestingly, the time courses of the ERK1/2 phosphor-
ylation after acute exposure, and dephosphorylation after 
chronic treatment withdrawal were similar, suggesting 
that some common pathways may be responsible for 
these phenomena. 
In summary, acute opioids transiently activate ERK1/2 
phosphorylation, whereas prolonged morphine adminis-
tration exerts a long-lasting inhibitory effect on the ERK 
pathway. Moreover, activation of Ca2+/calmodulin and 
PKC is required for ERK1/2 activation following acute 
opioid treatment while upon chronic morphine exposure, 
the up-regulation of PKC and CaMKII pathways seems 
to be engaged in ERK1/2 inhibition. 
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