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Gene expression signatures in blood from a
West African sepsis cohort define host
response phenotypes

Josh G. Chenoweth 1,14 , Carlo Colantuoni2,14, Deborah A. Striegel1,
Pavol Genzor 1, Joost Brandsma1, Paul W. Blair1,3, Subramaniam Krishnan1,
Elizabeth Chiyka1, Mehran Fazli 1, Rittal Mehta1, Michael Considine4,
Leslie Cope4, Audrey C. Knight2, Anissa Elayadi1, Anne Fox 5, Ronna Hertzano6,
Andrew G. Letizia5, Alex Owusu-Ofori7,8, Isaac Boakye9, Albert A. Aduboffour7,
Daniel Ansong10,11, Eno Biney12, George Oduro 12, Kevin L. Schully13 &
Danielle V. Clark1

Our limited understanding of the pathophysiological mechanisms that oper-
ate during sepsis is an obstacle to rational treatment and clinical trial design.
There is a critical lack of data from low- and middle-income countries where
the sepsis burden is increased which inhibits generalized strategies for ther-
apeutic intervention. Here we perform RNA sequencing of whole blood to
investigate longitudinal host response to sepsis in a Ghanaian cohort. Data
dimensional reduction reveals dynamic gene expression patterns that
describe cell type-specific molecular phenotypes including a dysregulated
myeloid compartment shared between sepsis and COVID-19. The gene
expression signatures reported here define a landscape of host response to
sepsis that supports interventions via targeting immunophenotypes to
improve outcomes.

Sepsis is a dysregulated immune response with an infection that
results in organ injury1. The global burden of sepsis is much higher
than previously thought with nearly 50 million incidents in 2017
including 11 million deaths2. Although our understanding of the sepsis
host response has advanced considerably, it has not translated into
effective care and management. A major barrier to progress is the
broad definition of sepsis syndrome, which encompasses an array of

clinical and biological features. There is an urgent need to better
understand the heterogeneous dynamicprocesses that operate during
the course of sepsis to identify treatable traits and support the
development of new interventions that improve outcomes3.

Precision-medicine approaches to better define sepsis through
‘endotypes’, biologically distinct subgroups with a companion diag-
nostic and targeted treatment, offer promise. The potential to stratify
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sepsis subjects by host response is supported by unsupervised ana-
lyses of largemulti-omics datasets.Whole blood RNA sequencing from
a 306-subject Western Europe cohort identified four molecular sepsis
endotypes distinguished by 28-day mortality risk4. The high mortality
Mars1 group displays gene expression phenotypes consistent with
immunosuppression. Another study using a 265-subject cohort from
the United Kingdom analyzed global gene expression in peripheral
blood leukocytes and revealed two distinct clusters denoted sepsis
response signature groups 1 and 2 (SRS1 and SRS2)5. Similar to the
Mars1 endotype, the SRS1 group gene expression profile indicated
T-cell exhaustion and endotoxin tolerance. A third study identified
three robust subgroups from a combined 14-cohort analysis of host
gene expression data coined by the authors as Coagulopathic, Adap-
tive, and Inflammopathic6. These studies and others extend the
pathology of sepsis beyond the cytokine storm and specifically high-
light the opportunity to target immunophenotypes to improve
outcomes7,8.

To catalyze clinical trials it will be important to generalize sepsis
sub-phenotypes to diverse populations9. Notably, the highest burden
for sepsis has been described for low, and middle-income countries
(LMICs) in sub-Saharan Africa and Asia. However, to date, most sepsis
clinical research has not focused on LMICs or populations with diverse
bacterial, viral, and parasitic infections that differ from Western
countries. To address this gap, we characterized the longitudinal host-
response to sepsis in a Ghanaian cohort using RNA sequencing of
whole blood. Using dimension reduction and latent space exploration
techniqueswith public RNA sequencing data, we define transcriptional
phenotypes in a West African cohort that are shared across diverse
cohorts and infection contexts. These gene expression phenotypes
map a dynamic cellular landscape of host response to sepsis through
time. Our results support interventions that target treatable traits of
immunophenotypes to promote improved sepsis outcomes.

Results
Dynamic gene expression of the cellular host-response to sepsis
Total RNA from peripheral blood was sequenced from 120 subjects in
an observational study of sepsis at Komfo Anokye Teaching Hospital
(KATH) in Kumasi, Ghana to define host processes that are active
during progression and recovery from sepsis (Fig. 1a)10. The study
included longitudinal blood collection at enrollment (0 h), 6 hours (h),
24 h, 48h, 72 h, 28 days (d), 6 months (m) and 12m, followed by host
RNA sequencing (Fig. 1b, c). Specimens were not available for all sub-
jects at all points due to death or loss to follow-up resulting in a total of
531 samples sequenced. Total RNA from 42 healthy Ghanaian donors
was also sequenced. Of the 120 subjects analyzed by RNA sequencing,
63 subjects survived to day 28, 54 died by day 28 and 3 had unknown
mortality data (Fig. 1d and Supplementary Data 1). Following pre-
processing and quality control, Principal Component Analysis (PCA)
was applied to explore longitudinal host response and identify
expression changes associated with 28-day mortality. Principal com-
ponent 1 (PC1) segregates healthy donors from those who died by day
28 (Fig. 1e). Transcriptomes from subjects that survive beyond 28 days
occupy the full range of PC1 values. The average trajectory of the
survivors is a net movement toward healthy donors through time. In
contrast, host expression from non-survivors shows no net movement
across PC1 through time. Visualization of PC1 across time and survival
shows a systematic change in the transcriptome of survivors where
later time points (28 d, 6m, 12m) co-localize with the healthy donors
(Fig. 1f). To assess the generality of the dynamic PC1 pattern, we used
available public datasets to quantify similarities with our dataset. A
feature mapping projection between two datasets can identify and
characterize relationships betweendatasetswithout the complications
of normalization or sample alignment11,12. We downloaded public leu-
kocyte gene expression data from healthy donors and subjects that
progress to septic shock (Supplementary Fig. 1a)13. Projection of these

expression data onto PC1 of the Ghana cohort recapitulates the seg-
regation of healthy controls from septic subjects (Supplemen-
tary Fig. 1b).

Next, we assessed the relationship between host gene expression
in our West African cohort and previously reported sepsis endotypes.
To compare host gene expression in our Ghanaian cohort to the sepsis
response signatures SRS1 and SRS2, we used the published machine
learning tool SepstratifieR5,14. This analysis revealed that our cohort
was most aligned with the high-mortality SRS1 group and the prob-
ability of being in SRS1 decreases over time in subjects that survive
(Fig. 1g, h and Supplementary Fig. 1e). Inspection of genes that define
theMARS and the Coagulopathic, Inflammopathic and Adaptive sepsis
subgroups also shows these patterns resolve through time in survivors
(Supplementary Fig. 1c, d)4,6. Innate and adaptive immune dysregula-
tion are common phenotypes across these sepsis subgroups. To
explore cellular dynamics in the Ghana cohort the CIBERSORT15 tool
was used to deconvolve bulk gene expression patterns into cell-type
specific signatures. We used the LM22 cell-type signatures from New-
man et al.15, as well as those reported by Vallania et al.16, that use
training data from a broad array of healthy and sick patients. Unsu-
pervised clustering identifies sample groups characterizedby time and
outcome (Supplementary Fig. 2a, b). Notably, healthy donors and
survivors 28 days beyond enrollment are distinguished from acute
survivors and non-survivors. CIBERSORT-derived proportional cell
estimates from both classifiers show that neutrophils and CD4+\CD8+
T cells are positively and negatively correlated to PC1, respectively,
consistent with neutrophilia and lymphopenia reported previously for
sepsis subjects (Supplementary Fig. 2c)17,18. Taken together, these
results suggest that themajor variation in our Ghana dataset describes
a sepsis-associated transcriptional signature with cellular components
that resolves in survivors through time.

Transcriptional features in peripheral blood define prognostic
and dynamic phenotypes in sepsis
Given our observations,we sought to further reducedimensions in our
data to identify biologically relevant phenotypes. PCA is limited by the
constraint that components be orthogonal, and variability is max-
imized for the earliest components. This often leads to conflation
wheremultiple biological effects canbe contained in a single PC.Other
tools are needed for the analysis of dynamic, high-dimensional data in
heterogeneous illnesses such as sepsis to gain biological insight.
Coordinated Gene Activity in Pattern Sets (CoGAPS) is a sparse Baye-
sian non-negative matrix factorization (NMF) method that decom-
poses expression data into component patterns19–21. CoGAPS can
identify gene expression modules that are specific for subgroups of
patients, diseases, transient processes, or other clinically relevant
features in a complex dataset that PCA may combine into one
component22. CoGAPS was applied to the data from the Ghana cohort
along with the healthy donors to generate 30 patterns that in combi-
nation describe the full variation in the data. Inspection of the results
by the 28-day mortality outcome reveals multiple dynamic patterns
similar to PC1 that resolve through time (Fig. 2a and Supplementary
Fig. 3). CoGAPS also identified patterns that distinguish survivors and
non-survivors at enrollment (Fig. 2a, g). We used logistic regression
adjusted for age and gender to ask if the CoGAPS patterns predict 28-
daymortality. This analysis revealed qualitatively distinctpattern types
distinguished by those that are prognostic at enrollment versus
dynamic patterns that predict mortality only at later time points
(Fig. 2b, h). Some patterns offered little or no predictive power across
the cohort and were observed only in a small number of samples or
subjects (Fig. 2b and Supplementary Fig. 3). Taken together these
results suggest that the features of the biology captured by individual
CoGAPS patterns could, in combination, define the host response to
sepsis. To test this idea, we used a Random Forest model to determine
which CoGAPS patterns are most important for the 28-day mortality
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Fig. 1 | Host gene expression describes recovery in sepsis subjects that survive.
a Description of the study cohort geographic location and size (N = subjects). b The
longitudinal collection time points from subjects starting at enrolment (0h).
c Analytical pipeline used in this study. d Breakdown of the sepsis cohort subjects by
28-daymortality and sex. The red line and number show the combined percent 28-day
mortality for both sexes. e Principal component analysis of gene expression in sepsis
subjects and healthy donors. Left plot: the size of the points corresponds to collection
time (d: days, m: months). Healthy (gold), surviving (tan), and subjects that died by
28 days (red). Lines with arrows and green shading show the average PCA signal for 28-
day survivors (blue), and those who died by 28 days (orange). Right plots: the same
threegroupsof subjectswherefill intensity corresponds to collection timepoints. fThe

PC1 values of healthy (gold), 28-day surviving (tan), and subjects who died by 28 days
(red) at each collection timepoint.g Subjects were analyzedwith SepstratifieRmachine
learning algorithm to determine their membership in one of three sepsis response
groups (SRS) (Cano-Gamez et al., 2022). h Regression analysis (locally weighted least
squares [loess] fit line ± confidence intervals [c.i.] as shaded area) with the same groups
as in (g) depicting the change in SRS groupmembership over time for 28-day survivors
(gray) and thosewho died by 28 days (red). Exact sample numbers (n) for figure panels
are described in Supplementary Data 2. The boxplots in (f, g) describe the median
(middle horizontal line), 1st and 3rd quartiles (bottom and top of box, respectively),
and data minimum and maximum (vertical whiskers).
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outcome. This modeling method showed comparatively better per-
formance in predicting 28-day mortality (Supplementary Fig. 4d). Top
features include both prognostic (P23, P4, P15) and dynamic patterns
(P27, P12, P14) (Supplementary Fig. 4a). Latent space exploration using
the public gene expression data from subjects that progress to septic
shock generated by Cazalis et al., confirms that these top CoGAPS
patterns readily distinguish cases and controls13 (Supplementary
Fig. 3). Notably, pattern 23 more specifically describes septic shock
(Supplementary Fig. 4).

To define the biological significance of the CoGAPS patterns we
compared individual sample pattern values to clinical and hematology

features. Prognostic patterns 23 and 4 that predict mortality at
enrollment correlate most strongly with clinical chemistries and
functional assessments including albumin, BloodUreaNitrogen (BUN),
sodium, glucose, and Glasgow Coma Scale (GCS) (Fig. 2e). Compar-
isons of patterns with CIBERSORT deconvolution (Fig. 2c) and hema-
tology (Fig. 2d), cell proportions show that dynamic patterns 14 and 26
describe neutrophil numbers (Fig. 2d). In contrast, dynamic patterns
27 and 12 monitor CD4+ and CD8+ T-cells\CD56+NK-cells, respec-
tively. We also looked at circulating factors measured in peripheral
blood samples from these subjects (Fig. 2f). Neutrophil-associated
patterns 14 and 26 correlate positively with IL-17a and ANG2 and

Fig. 2 | Identification of dynamic and prognostic transcriptional patterns in
sepsis and their correlation to laboratory and clinical parameters. a The study
participant gene expression was analyzed using CoGAPS and the resulting thirty
(30) patterns were plotted by their z-scores. Shown groups include healthy donors
(H), 28-day survivors (tan), and those who died by 28 days (red) over time. The
patterns were organized by unsupervised clustering depicted by the dendrogram
on the left, and values for each collection time point (0, 6, 24, 48, 72 h, 28 days, 6,
and 12 months) are shown on top. b Heatmap of AUROC values from logistic
regression of CoGAPS patterns fitting to 28-day mortality for the first five time
points. c Spearman correlation of CIBERSORT ranks to all time points CoGAPS
patterns. d Hematology results correlated to all available sample time point values
(0, 6, and 24 h). e Spearmancorrelationof clinical chemistries and vitals tomatched
time point CoGAPS values. Chemistries—Albumin, Glucose, Sodium, Blood Urea

Nitrogen (BUN)—were correlated to all available sample time point values (0, 6, and
24h). Vitals—Temperature (Temp.), heart rate (HR), and Glasgow coma scale (GCS)
were correlated to all available sample time point values (0, 6, 24, and 72 h).
f Spearman correlation of peripheral blood protein measurements to matched
CoGAPS pattern values to a matched 6 h time point. g Boxplot of selected CoGAPS
pattern values—pattern 23 and 26 (dashed boxes in a–e)—that distinguish survivors
from non-survivors at enrollment or during recovery, respectively. h Model
showing four dynamic and prognostic longitudinal pattern classes that distinguish
survivors (tan) fromnon-survivors (red). Exact samplenumbers (n) forfigurepanels
are described in Supplementary Data 2. The boxplot in (g) describes the median
(middle horizontal line), 1st and 3rd quartiles (bottom and top of box respectively),
and data minimum and maximum (vertical whiskers).
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negatively with TRAIL, consistent with neutrophil recruitment in bac-
terial infections23. These results indicate that CoGAPS gene expression
patterns are linked to physiological and cellular components of the
immune response in sepsis.

Shared myeloid phenotypes in sepsis and COVID-19
To further define the cellular phenotypes in our cohort, we compared
the Ghanaian cohort CoGAPS patterns to single-cell (sc) RNA sequen-
cing datasets from bacterial sepsis24 and SARS-CoV-2, a major cause of
viral sepsis25,26. We initially focused on patterns 12, 27, and 4 which are
elevated in healthy controls (Fig. 3a–c). Projection of these public
sepsis and COVID-19 single-cell datasets onto the CoGAPS patterns
supports a lymphocyte phenotype most specific to NK and effector
CD8 + T-cells for pattern 12, andCD4 +T-cells andB-cells for pattern 27

(Fig. 3a, b). Pattern 4 best captures a dendritic cell phenotype in both
public single-cell datasets (Fig. 3c). Because pattern 4 is both prog-
nostic and dynamic we inspected the single-cell datasets for severity-
related phenotypes. Most notably pattern 4 was highly enriched in
myeloid cells of healthy individuals in the COVID-19 dataset and was
depleted in severely ill subjects (Supplementary Fig. 5a–c). The mye-
loid compartment has recently been shown to be highly dysregulated
in both sepsis and COVID-19 with evidence of immunosuppressed
monocytes and dysfunctional neutrophils27–29. We lookedmore closely
at myeloid populations in CoGAPS patterns selected by the Random
Forest Model that are elevated in sepsis. Pattern 11 is enriched in the
recently reported MS3 population that describes classical CD16+ high
monocytes while pattern 14 identifies the sepsis and COVID-19-
associated CD14+ monocyte state 1 (MS1)24,27 (Supplementary

Fig. 3 | Cellular phenotypes in sepsis subjects. Projection of published dimen-
sionally reduced uniform manifold approximation and projection (UMAP) single-
cell RNA-Seq data describing immune cells in bacterial sepsis (Reyes et al., 2020,
PMID: 32066974) and COVID-19 (Wilk et al., 2020, PMID: 32514174) into a pattern
12,b pattern 27, and c pattern 4. The boxplots show pattern value dynamics during
the longitudinal course of the study comparing healthy donors (gold), 28-day
survivors (tan), and thosewhodied by 28days (red). Theprojections are colored by
the magnitude of the CoGAPS patterns in individual cells. The color gradient bar
shows the range of projected values, percentile pins (%-tile) show selected

percentile cutoffs, and the histogram depicts the distribution of all pattern values.
Small boxplots at eachUMAPprojection represent CoGAPS pattern values grouped
by cell types. The stars (*) correspond to the significance of cell type enrichment
using permutations of group means (p-value < 1e−5, see “Methods” for more
details). Exact sample numbers (n) for figure panels are described in Supplemen-
tary Data 2. All boxplots describe the median (middle horizontal line), 1st and 3rd
quartiles (bottom and top of box, respectively), and data minimum and maximum
(vertical whiskers).
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Fig. 6a, b). MS1 cells display a dysregulated response to antigenic sti-
muli and inspection of genes that characterize theMS1 state, including
RETN and IL1R2, reveals that they are top contributors topattern 14 and
are regulated through time (Fig. 4a, b). MS1 cells can be induced from
hematopoietic stem and progenitor cells by IL6 and IL1027. Pattern 14
has the greatest correlation with IL10 in our analysis of circulating

proteins compared to all other CoGAPS patterns consistent with a role
in MS1 induction (Fig. 2f). During our comparative analysis, we also
found that prognostic CoGAPS pattern 15 is enriched for a class of
granulocytes in severe COVID-19 that have been designated “devel-
oping neutrophils” that express genes characteristic of low density
immature pre- and pro- neutrophils such as DEFA3, CAMP and LCN2
(Fig. 5a–e)25,28. Low-density neutrophils can have immunosuppressive
properties in severe infections30. The top genes that define CoGAPS
patterns 14 (MS1 monocytes) and 15 (granulocytes\developing neu-
trophils) are shared and include RETN, S100P, MMP8/9, and CD177
(Fig. 4a). These genes are consistent with those identified in previous
reports that define dysfunctional monocytes and neutrophils in
sepsis31,32. Closer inspection of the expressed genes specific to recently
reported classes of sepsis-associated immunosuppressive neutrophil
populations shows that they are regulated in our cohort and enriched
in patterns 14 and 15 (Fig. 5d, e and Supplementary Fig. 7a, b)32. Taken
together, the lymphopenia and neutrophilia detected by hematology
and CIBERSORT along with the cell states revealed through latent
space exploration are consistent with impaired cellular immunity in
the Ghanaian cohort.

CoGAPS patterns map disease trajectories
Current models of sepsis suggest concurrent roles for immunosup-
pressive and pro- and anti-inflammatory responses33. CoGAPS
decomposition of the Ghanaian RNA sequencing data reveals these
phenotypes as sepsis subjects transition through illness and recov-
ery. Included are dynamic processes in the lymphoid and myeloid
compartments as well as features linked to physiological states.
Pattern 23 confers a highly elevated risk for poor outcomes while
pattern 4 is protective (Supplementary Fig. 4b). These findings are
consistent with the pattern 23 link to increased BUN, Sodium and
Glucose and septic shock (Fig. 2e and Supplementary Fig. 3) versus
the pattern 4 connection to the myeloid compartment in healthy
donors (Supplementary Fig. 5b, e). Because Patterns 4 and 23 confer
the greatest protection and risk we mapped these pattern values for
every sample to inspect relationships (Fig. 6a). The healthy donors
occupy an area defined by high values for pattern 4 and low pattern
23 values, and sepsis survivors progress towards this healthy field as
they recover. In contrast, the average longitudinal trajectory of non-
survivors shows little net movement and these subjects have
increased pattern 23 risk and low pattern 4 protection values.
Inspection of individual survivor trajectories reveals a subset that
traverses the high-risk pattern 23 space during their disease course
(Fig. 6b). In these subjects the pathogenic MS1 (P14) and developing
neutrophil (P15) patterns decrease through time and the lymphocyte
patterns 12 and 27 recover (Fig. 6c). Taken together these results
support a clinical management strategy where both immunother-
apeutic interventions that target cellular features defined by these
CoGAPS patterns and supportive therapies to manage shock best
described by pattern 23 would promote improved sepsis out-
comes (Fig. 6d).

Fig. 4 | Top gene amplitude (A) values for CoGAPS patterns enriched in sepsis
subjects and healthy donors. aBinned rank of top CoGAPSgene amplitude values
(A-values) for patterns associated with sepsis (P23, P15, P14, P11) and those asso-
ciated with healthy subjects (P3, P27, P12, P4). The intensity of the color indicates
the binned rank of the gene per pattern. The number (white) indicates the rank of
the genewithin the pattern up to rank 100.bGene expression changes (same genes
as in (a) comparing sepsis versus healthy) for survivors and non-survivors over time
(times: 0, 6, 24, 48, 72 h, 28 days, 6 and 12 months). The star (*) marks a significant
difference (≤0.05) in comparison where the p-value was determined using the
Welch Two Sample t-test and adjusted for multiple comparisons using the Benja-
mini & Hochberg method. Please see Supplementary Data 2 for information about
full results with completed statistical results.
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Discussion
The human host is a sensitive instrument for detecting andmonitoring
infection. The extent to which a “diseased” host-response differs from
normal healthy donors, and their degree of recovery over time cor-
relates with clinical outcomes34. Sepsis subjects have been stratified by
host-response using largemulti-omics datasets andmore recently, the
development and application of single-cell RNA sequencing has

revealed novel host cell populations linked to sepsis and severe
inflammatory disease4,5,24,25. Notably each of these studies implicate
immunophenotypes as key features related to poor outcomes. How-
ever, to date, no rationally developed therapeutics targeting specific
immunological mechanisms approved for sepsis are in wide use. In
addition, data from LMICs and geographically diverse locations is
severely limited and presents a critical gap towards the development
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of generalizable solutions for effective sepsis clinical management
strategies35. Here, using a combination of empirical and bioinformatic
approacheswe show that the host response in aWest AfricanGhanaian
cohort monitors immunophenotypes of significance including lym-
phopenia and the CD14 +MS1 monocyte and developing neutrophil
populations detected in sepsis and severe COVID-1927–29. Using the
CoGAPS matrix factorization tool we also defined physiologic gene
expression phenotypes. CoGAPS patterns 4 and 23 best define this axis
wherepattern 4 describes themyeloid compartment in healthy donors
and pattern 23 shock and organ failure. Inspection of transcripts that
contribute to the CoGAPS gene expression phenotypes include those
previously linked to immunosuppression and sepsis outcomes. Genes
high in the CD8 +T-cell\NK-cell pattern 12 include GZMH (CTLA1),
GZMK and TIGIT 31,36 and IL7R in the CD4 + T-cell pattern 278 (Fig. 4).
Our data suggest that interventions that target treatable traits to
promote patterns 4 and 27 would be associated with improved out-
comes (Fig. 6d and Supplementary Fig. 4c). Notably, pattern 27 is high
in T-cell cell signatures and there are multiple ongoing efforts to
modulate T-cell activity and numbers including IL-7 immunoadjuvants
and PD-L1 antibodies37–39. Examination of genes highly specific to
individual patterns also supports translational opportunities for new
interventions. Protective pattern 4 is uniquely characterized by the
ALOX15 gene, a lipoxygenase that catalyzes the generation of specia-
lized proresolvinmediators with anti-inflammatory properties that are
being evaluated for therapeutic potential40. New insight into
mechanisms of dysregulated myelopoiesis in sepsis also offers
opportunities for treatable traits. We noted that our protein data from
plasma is consistent with results showing that IL10 is linked to induc-
tion of the monocytic MS1 cell state and future immunomodulators
could target this pathway to mitigate sepsis pathophysiology27.

Cellular diversity and abundance are increasingly recognized as
key drivers of patient subgroups in inflammatory disease. Recently
reported cell-type abundance phenotypes (CTAPs) in rheumatoid
arthritis defined by selectively enriched cell types are dynamic and
both monitor and predict response to treatment41. Our longitudinal
data reflect similar dynamic changes in gene expression phenotypes
in sepsis subjects. Identifying complementary features of sepsis
endotypes suitable for evaluation in clinical trials is an intense area of
active investigation9. Although our results in the Ghanaian cohort
reproduce and generalize shared immunophenotypes of significance
to sepsis, we do not more broadly define endotypes in this West
African cohort or if the CoGAPS phenotypes confer risk and protec-
tion across patient subtypes. The subjects described here do have an
increased probability of being assigned to the reported SRS1 endo-
type at enrollment versus SRS2, but pathogen and population
diversity have been shown to impact the performance of genomic
stratification tools42. There is an extreme burden of multidrug-
resistant bacteria and malaria in this hospitalized population in West
Africa as well as emerging pathogens not often included in sepsis
host response studies43,44. Future studies will assess if the Ghanaian

cohort reveals new endotypes characterized by distinct functional or
pathophysiological mechanisms.

Immunosuppression occurs both in the early sepsis and in survi-
vors with continued chronic illness. Progress toward effective clinical
management strategies to improve outcomes will require approaches
to map and interpret immunological states during sepsis progression
and intervention throughout the entire courseof disease and recovery.
Improved time to care and emergency treatment can mitigate the
immediate life-threatening complications of sepsis but those that
survive often experience secondary infections and exhibit long-term
cognitive and clinical sequelae with reduced 5-year survival45. Our
analysis suggests that gene expression patterns in 28-day survivors are
shared with healthy donors, but it is not clear if there are subjects in
this West African cohort that continue to display molecular and cel-
lular phenotypes consistent with prolonged immunosuppression. We
note that individual subjects move between the reported SRS1 and
SRS2 endotypes but a complete molecular dissection of immunologi-
cal dynamics to map continued chronic human sepsis pathology will
require more high-resolution longitudinal gene expression studies of
the host-response (Supplementary Fig. 1e). To that end, we took
advantage of the increasingly available number of datasets in the
public domain to interpret the gene expressionpatterns definedby the
CoGAPS patterns in the Ghana cohort. We have leveraged the NeMO
analytics portal and gEAR platform46 to visualize and explore our
dataset alongside key public datasets. We anticipate that this interface
will facilitate the integration of increasingly available information from
next-generation platforms and drive new insights for therapeutic
intervention by mapping phenotypes with treatable traits onto sepsis
progression and recovery47.

Methods
Ethics statement
Study protocol NMRC.2016.0004-GHA was approved by the Naval
Medical Research Command (NMRC) Institutional Review Board in
compliance with all applicable Federal regulations governing the
protection of human subjects as well as host country IRBs. The pro-
tocol was approved by the Committee on Human Research, Publica-
tion, and Ethics (CHRPE) at Kwame Nkrumah University of Science &
Technology. All procedures were in accordance with the ethical stan-
dards of the Helsinki Declaration of theWorldMedical Association. All
patients, or their legally authorized representatives, provided written
informed consent. Compensation was only provided to cover subject
transportation costs for follow-up visits.

Study cohorts
A detailed description of the sepsis cohort recruited at Komfo Anokye
Teaching Hospital (KATH), in Kumasi, Ghana has been published in
Blair et al., 202310. The subset of subject demographic, clinical, and
laboratory information relevant to this study are described in the
Supplementary Data 1. The analysis was performed in the R48

Fig. 5 | Neutrophil-related signatures in the Ghana sepsis cohort. a Boxplot of
CoGAPS pattern 15 values in subjects who died by 28 days (red) and survivors (tan)
through time. b Projection of single-cell RNA-Seq data describing immune cells in
COVID-19 (Wilk et al., 2020, PMID 32514174) onto pattern 15 values. The color
gradient bar—range of projected values, percentile pins (%-tile)—select percentile
cutoffs, and the histogram—distribution of all pattern values. Enlargement high-
lights region of activated granulocytes (G)/developing neutrophil cells (red
arrows). c Boxplot of pattern 15 values for different cell types. Color fill corre-
sponding to healthy donors (gray, cells of 6 subjects), hospitalized COVID-19 sub-
jects (orange, cells of 1 subject), or COVID-19 subjects in ICU (dark red, cells of
6 subjects). The table below the plot shows the exact number of cells in each group.
The group with less than 20 cells is highlighted with red text. The asterisk (*) labels
the most prominent cell type. d Stacked barplot showing the cumulative rank of
enriched genes associated with four different neutrophil types identified in Kwok

et al., 2023 (PMID 37095375, Fig. 2b, up in sepsis) in each of CoGAPS patterns
described in this study. Neutrophil types: immature IL1R2+ (gold), degranulating
CEACAM8+ (cyan), S100A8/9hi (light blue), and mature CD10 +CD16+ (dark blue).
The top 20 sepsis-enriched genes in Kwok et al., were used to identify the neu-
trophil subtypes. The red dashed line indicates the background signal (bckg, see
“Methods” for details). e Cumulative distribution plot of the neutrophil subtype
enriched genes. Stars indicate significant differences from the background model
calculatedwhere ns = not significant, * ≤0.05, **≤0.01, *** ≤0.001. The p-values were
calculated using the exact two-sample Kolmogorov–Smirnov test (two-sided).
Sample numbers (n) and statistical values for figure panels are described in Sup-
plementary Data 2. All boxplots describe the median (middle horizontal line), 1st
and 3rd quartiles (bottom and top of box, respectively), and data minimum and
maximum (vertical whiskers).
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Fig. 6 | CoGAPs gene expression immunophenotypes map sepsis trajectories.
a Scatter plot comparing values of pattern4 (associatedwith health) andpattern 23
(associatedwith septic shock). Point size indicates the collection times (0, 6, 24, 48,
72 h, 28 days, 6 and 12months) and the point fill corresponds to healthy donors (H,
gold), survivors (tan), and those who died by 28 days (red). The line and arrowwith
a green background correspond to the mean trajectory of the survivors (dark tan),
and those who died by 28 days (dark red). The second column shows individual
group data plots where the sample collection time is represented in greyscale. The

last column shows the paths of all the survivors (tan), and non-survivors (red).
b Selected surviving subject trajectories using pattern 23 and pattern 4. c Barplot
showing the change in health-related patterns (P4, P27, P12) and sepsis-related
patterns (P23, P14, P15) over time for select surviving subjects showing dynamic
recovery over time.dModel highlighting the opportunities to target treatable traits
of phenotypes revealed by analysis of gene expression patterns in this study that
describe sepsis survival or death.
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environment using the table149 package. Briefly, eligible subjects were
identified at the admissiondepartment, the adultmedicalwards, or the
emergency department. Inclusion criteria included subjects with sus-
pected infection, meeting 2 or more systemic inflammatory response
syndrome (SIRS) criteria, and those who were at least 18 years of age.
Considering the parent cohort, subjects for this study were selected to
make a balanced group considering reported sex, age, and 28-day
survival. Therewas a total of 120 sepsis subjects (sepsis cohort) and 42
healthy donors (healthy cohort) whose samples were sequenced
longitudinally at 0 (enrolment), 6, 24, 48, 72 h, 28 days, 6, and
12months post enrolment. A complete set of samples for each subject
and collection time point was not available due to loss to follow-up or
death. A total of 573 samples from both cohorts were sequenced.
Three of the 120 sepsis subjects did not have information about 28-day
mortality and therefore were removed after CoGAPS pattern
calculation.

RNA sequencing
RNA sequencing was performed as reported in Rozo 202050. RNA
samples were quantified using the Qubit 2.0 Fluorometer (Life Tech-
nologies, Carlsbad, CA, USA), and RNA integrity was checked with
4200 TapeStation (Agilent Technologies, Palo Alto, CA, USA). rRNA
depletion along with globin depletion was performed using Globin
Zero Gold kit (Illumina, San Diego, CA, USA). RNA sequencing library
preparation used NEBNext Ultra RNA Library Prep Kit for Illumina by
following the manufacturer’s recommendations (NEB, Ipswich, MA,
USA). Briefly, enriched RNAs were fragmented for 15 minutes at 94 °C.
First-strand and second-strand cDNA were subsequently synthesized.
cDNA fragments were end-repaired and adenylated at 3’ends, and a
universal adapter was ligated to cDNA fragments, followed by index
addition and library enrichment with limited cycle PCR. Sequencing
libraries were validated using the Agilent Tapestation 4200 (Agilent
Technologies, Palo Alto, CA, USA), and quantified by using Qubit 2.0
Fluorometer (Invitrogen, Carlsbad, CA) as well as by quantitative PCR
(Applied Biosystems, Carlsbad, CA, USA). The sequencing libraries
were multiplexed and clustered on a flow cell and loaded on the Illu-
mina HiSeq instrument according to the manufacturer’s instructions.
The samples were sequenced using a 2 × 150 Paired-End (PE) config-
uration to yield approximately 50million, 150bp, paired-end reads per
sample. All time points for a given subject were processed and
sequenced in the same batch except for 0h samples that were pre-
viously sequenced using the same protocol. Image analysis and base
calling were conducted by the HiSeq Control Software (HCS). Raw
sequencedata (.bclfiles) generated from IlluminaHiSeqwas converted
into fastq files and de-multiplexed using Illumina’s bcl2fastq 2.17 soft-
ware. One mismatch was allowed for index sequence identification.
Samples were aligned to the human genome build hg38 using STAR51

and gene level information was quantified using RSEM52.

CoGAPS pattern identification and projections
The Bayesian non-negative matrix factorization (NMF) algorithm
CoGAPS20,21 was run on the entire bulk RNA sequencing data matrix to
define 30 patterns. CoGAPS decomposed the data matrix of experi-
mental observations, “D” into 2 matrices “P” and “A”, hence D ~ P*A.
Here, “D” is the log2 RNA sequencing TPM matrix, with genes as rows
and samples as columns. “P” is the patternmatrix with patterns as rows
and samples as columns inwhich each pattern contains values for each
sample, i.e., the strength of that pattern in each sample. “A” is the
amplitude matrix with genes as rows and patterns as columns, with
values indicating the strength of involvement of a given gene in each
pattern. In this way, the “A” values for the individual patterns provide a
“recipe” for reconstructing the full pattern of gene expression for each
gene. Principal component analysis of gene-level TPM from RNA
sequencing datawas doneusing the prcomp() function inR48. To define
relationships between the datasets generated in this study and public

datasets we used the projectR package11,53. This package identifies
common relationships between a source dataset and a target dataset
based on shared latent spaces such as gene lists generated from data
decomposition techniques such as CoGAPS, principal component
analysis, NMF and UMAP. The projectR package has been developed
and validated to overcome technical and batch confounders in source
and target datasets and to enable the user to quantify similarities
between high-dimensional datasets. Example code utilizing CoGAPS
and projectR can be found at our Github in the “Data availability”
statement. Enrichment analyses were calculated via the geneSetTest()
function in the limma Bioconductor package in R54. Projections into
UMAP space were plotted using ggplot2 (3.4.4)55 and ggrastr (1.0.2)56 R
packages.

Public data
Public datasets used for the comparison of molecular dynamics using
projections were obtained from, Cazalis et al., 2014—GSE5706513, Wilk
et al., 2020—GSE15072825, and Reyes et al., 202024 using the single-cell
portal at the Broad Institute (SCP548). classify our subjects into sepsis
response groups (SRS) initially described byDavenport et al., 20165, we
used SepstratifieR14 package in R. The obtained probability of group
membership, probability values were then plotted using ggplot2
(3.4.4)55 functionality in R. The genes defining the Adaptive, Coagulo-
pathic, and Inflammopathic sepsis subtypes were obtained from the
Supplemental data file—Table 6 in Sweeney et al., 20186. The gene
signaturepatterns corresponding to differentMARS groups (1–4)were
obtained from Supplementary Appendix—Sepsis endotype 140 gene
classifier table in Scicluna et al., 20174. Genes enriched in the different
sub-populations of neutrophils wereextracted fromFig. 2b heatmap in
Kwok et al., 202332. The top 20 sepsis-enriched genes were used to
identify neutrophil subtypes. Only 17 genes for mature neutrophils
were available in our dataset. The backgroundmodelwasgeneratedby
randomly pulling 20 ranks in 10,000 iterations for all 30 patterns. The
mean background signature ranks were used for plotting. Source data
for all public datasets is described in the Supplementary Data 2 and
“Data availability” statement.

Gene expression analysis
The three subjects with unknown 28-daymortality were removed from
the analysis. The differential comparisons were performed for surviv-
ing subjects (Survived), and subjects who died by 28 days (Died) for
each collection time point (0, 6, 24, 48, 72 hours [h], 28 days [d], 6 and
12 months [m]) versus healthy donors (N= 42). The Survived subject’s
numbers were: N0h = 60, N6h = 58, N24h = 52, N48h = 42, N72h = 35,
N28d = 41, N6m = 25, N12m= 14. The Died subject’s numbers were:
N0h = 48, N6h = 51, N24h = 42, N48h = 34, N72h = 22. See Supplementary
Data 2 for additional information. To determine whether there is a
significant difference between the groups, the t.test() base R function
was used on raw TPM values to run the Welch Two Sample t-test and
determine the p-value. To correct for multiple testing, the p.adjust()
base R function was used with the Benjamini & Hochberg (BH) cor-
rection method. The data was then visualized in various plots gener-
ated using ggplot255 R package and finalized using Adobe Illustrator.

Modeling
Scaling and centering of the subject pattern values (P) was performed
using scale() function in base R (2022.02.2)48. The remainder of the
analysis was performed in Python (3.9.12). Classification models were
generated using sklearn python package (1.3.0). Odds ratios and con-
fidence intervals were generated using statsmodels 57 python package
(0.13.2). Data was stored using data frames using pandas (1.4.2) python
package. Means and standard deviations were calculated using
numpy 58 (1.21.5) python package. Visualizations were generated using
matplotlib (3.5.1)59 python package and finished using Adobe
Illustrator.
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Data was filtered to keep only the samples with information about
28-day mortality (N = 117 subjects). After scaling and centering, the
data was split into training and testing sets with a 70/30 proportion.
Repeated stratified k-fold cross-validation with 10 folds and 10 repeats
was performed on the training set (70) consisting of all patterns, using
a random forest classifier for 28-day mortality. This process was
repeated 10 times, to vary the training and testing set populations.
Variable importance was averaged over all runs and measured via Gini
importance. The most important patterns, chosen based on a break in
the variable importance data, were P23, P4, P27, P15, and P12.

Repeated stratified k-fold cross-validation with 10 folds and 10
repeats was performed on the testing set consisting of the most
important patterns (30), using a random forest classifier for 28-day
mortality. This process was repeated 10 times, to vary the training and
testing set populations. Performance was averaged over all runs and
measured via area under the ROC curve (AUROC). Performance was
analyzed additively, starting with the most important pattern and
adding additional patterns one by one. The variable importance and
performance analysis was completed on two additional classifiers,
logistic regression (LR) and support vector machine (SVM) with a lin-
ear kernel to ensure robust results. Variable importance for both
classifiers was measured via model coefficients. The best performing
set of patterns from random forest consisted of 4 patterns. Perfor-
mance of the top 4 patterns from logistic regression and support
vector machine classifiers was lower, so random forest remained the
best classifier option. Logistic regression was run on the top patterns.
95% confidence intervals were generated on the resulting coefficients.
The coefficients were exponentiated to generate odds ratios.

Protein analysis
IL-7, IL-10, IL-16, IL-17A, IP-10, TNF-a, TRAIL, and IL-27 were assayed on
MesoScale Discovery U-plex assay plates according to the manu-
facturer’s protocols. Ang-2 and sPD-L1 were assayed on MesoScale
Discovery R-plex assay plates according to the manufacturer’s proto-
cols. Assay plates were read using aMESOQuickPlex SQ120 reader and
analyte levels were calculated using Discovery Workbench 4.0.12 soft-
ware. Pentraxin-3 and sTREM-1 were assayed on Quantikine R&D Sys-
tems ELISA kits. Assay plates were read using a SpectraMax M3 and
analyte levels were calculated using Softmax Pro 7 GxP.

Statistics and reproducibility
The selection of the study subject is described in the “study cohort”
methods section. No statistical method was used to predetermine the
sample size. Samples for subjects that did not have 28-day mortality
information were excluded from some comparisons. The information
about the precise number of samples used in each analysis, results of
different analyses, and related exact statistical values are described in
Supplementary Data 2 and can be accessed at Zenodo (https://doi.org/
10.5281/zenodo.10916993). In cases wheremultiple comparisons were
performed, when appropriate, the p-value was used to calculate the
adjusted p-value (p-adjust).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequence data and processed subject gene level data used in this
study have been deidentified and deposited in dbGaP (Accession:
phs003608.v1.p1) under restricted access in compliance with study
informed consent and National Institutes of Health Human Subjects
Protection guidelines. Data can be obtained following local IRB
approval and with a letter of collaboration with the primary study
investigator(s). The processed deidentified data used to perform
analyses and generate figures throughout the study can be accessed

in Zenodo (https://doi.org/10.5281/zenodo.10916993). A description
of available processed and source data is provided in the Supple-
mentary Information with this manuscript. Limited computational
methods are available at GitHub (https://github.com/HJF-ACESO/
Sepsis_Ghana/). Source data is provided, however, we have not pro-
vided the line-by-line scripts used for the generation and manipula-
tion of the figure panels. These can be obtained by request to the
corresponding author. Data visualization (https://nemoanalytics.org/
p?l=ChenowethEtAl2024&g=CEBPA), and latent space exploration
(https://nemoanalytics.org/p?p=p&l=ChenowethEtAl2024&c=Ghana
SepsisCoGAPSp30&algo=nmf) can be accessed through the Neu-
roscience Multi-Omic Analytics (NEMO) Portal.
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