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A novel fatty acid 
metabolism‑related signature 
identifies MUC4 as a novel therapy 
target for esophageal squamous 
cell carcinoma
Shanshan Li 1, Zhengcao Liu 2, Qingqing Chen 2, Yuetong Chen 2 & Shengjun Ji 2*

Fatty acid metabolism has been identified as an emerging hallmark of cancer, which was closely 
associated with cancer prognosis. Whether fatty acid metabolism‑related genes (FMGs) signature play 
a more crucial role in biological behavior of esophageal squamous cell carcinoma (ESCC) prognosis 
remains unknown. Thus, we aimed to identify a reliable FMGs signature for assisting treatment 
decisions and prognosis evaluation of ESCC. In the present study, we conducted consensus clustering 
analysis on 259 publicly available ESCC samples. The clinical information was downloaded from 
The Cancer Genome Atlas (TCGA, 80 ESCC samples) and Gene Expression Omnibus (GEO) database 
(GSE53625, 179 ESCC samples). A consensus clustering arithmetic was used to determine the 
FMGs molecular subtypes, and survival outcomes and immune features were evaluated among 
the different subtypes. Kaplan–Meier analysis and the receiver operating characteristic (ROC) was 
applied to evaluate the reliability of the risk model in training cohort, validation cohort and all 
cohorts. A nomogram to predict patients’ 1‑year, 3‑year and 5‑year survival rate was also studied. 
Finally, CCK‑8 assay, wound healing assay, and transwell assay were implemented to evaluate the 
inherent mechanisms of FMGs for tumorigenesis in ESCC. Two subtypes were identified by consensus 
clustering, of which cluster 2 is preferentially associated with poor prognosis, lower immune cell 
infiltration. A fatty acid (FA) metabolism‑related risk model containing eight genes (FZD10, TACSTD2, 
MUC4, PDLIM1, PRSS12, BAALC, DNAJA2 and ALOX12B) was established. High‑risk group patients 
displayed worse survival, higher stromal, immune and ESTIMATE scores than in the low‑risk group. 
Moreover, a nomogram revealed good predictive ability of clinical outcomes in ESCC patients. The 
results of qRT‑PCR analysis revealed that the MUC4 and BAALC had high expression level, and 
FZD10, PDLIM1, TACSTD2, ALOX12B had low expression level in ESCC cells. In vitro, silencing MUC4 
remarkably inhibited ESCC cell proliferation, invasion and migration. Our study fills the gap of FMGs 
signature in predicting the prognosis of ESCC patients. These findings revealed that cluster subtypes 
and risk model of FMGs had effects on survival prediction, and were expected to be the potential 
promising targets for ESCC.

Keywords Fatty acid metabolism, Esophageal squamous cell carcinoma, Prognosis, Immune 
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Esophageal cancer has an increasingly threat to human public health, with an approximate 604,000 new cases 
and 544,000 deaths by 2020  worldwide1. Esophageal squamous cell carcinoma (ESCC) accounts for more than 
90% of pathological type in esophageal  cancer2,3. Despite the emerging breakthroughs employed in the manage-
ment of ESCC, intrinsic or acquired resistance of immunotherapy are still the main obstacle to the prognosis of 
ESCC patients, with a 5-years overall survival rate approximately 20%4. Recently, some studied conducted the 
ferroptosis-related genes  signature5, hypoxia-related genes  signature6, and autophagy-related genes  signatures7 
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to evaluate the predictive value in ESCC patients, while the heterogeneous biological characteristics of patients 
makes it dissatisfied to precisely evaluate the prognosis of patient. Hence, it is imperative to establish reliable 
predictors to identify risk stratification for the individualized management of ESCC patients.

Rapid cell proliferation, growth, and dissemination increase alterations in metabolism, result in cancer cells 
metabolic  reprogramming8. The increasing evidence supports that metabolic reprogramming exhibits a closely 
link with human  cancer9,10. Metabolic heterogeneity is commonly found in different malignant tumors, which 
contributes to the difference of the curative effect of metabolic drugs and may results in drugs  resistance11,12. 
Fatty acid (FA) metabolism, especially in uptake and synthesis of fatty acid (FAs), constitutes an important 
aspect of this reprogramming. FA metabolism, including FA uptake, synthesis, oxidation, and modification, 
has attracted increased research  attention13. Accumulating evidence demonstrates that FAs are fundamental 
components of cancer cells, and FAs are essential for store energy, cell membrane proliferation, and producing 
signaling molecules (such as PI3K/Akt/mTOR)14–16. Metabolic rearrangements in cancer cells often exhibit the 
features of hyperactive FA synthesis and/or β-oxidation. Previous studies have shown that the inhibitions of 
enzymes of FA synthesis or beta-oxidation could inhibit the cancer cells development, proliferation and spread, 
which suggested that FA metabolism confers significant effects on tumor  survival17. Notably, cancer cells can 
release FAs to weaken the anti-tumor immune activity of T-lymphocyte cells by inhibiting T-lymphocyte pro-
liferation, cytokine  production18. Additionally, promoting FA catabolism can remarkably improve the efficacy 
of  immunotherapy19. However, limited number of studies on FA metabolism-related genes signature (FMGs) 
has been investigated in ESCC.

In the present study, by combining the transcription profiles data, we systematically evaluated the prognostic 
value of cluster subtypes and risk model based on FMGs signature. We systematically analyzed the relationship 
among the FMGs signature and immune features in ESCC patients. Furthermore, we explored the inherent 
mechanisms of the target gene for tumorigenesis in vitro. Our study may provide new insights on FA metabolism 
for prognosis and tumor immune microenvironment (TME) heterogenicity for ESCC.

Material and methods
ESCC dataset acquisition
The clinical data and gene expression profile of 259 ESCC samples were obtained from The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) databases. Of all the ESCC samples, the RNA-seq data (FPKM 
format), regarding 80 ESCC samples, was retrieved for TCGA database. Meanwhile, GSE53625 incorporating 
gene expression profiles based on GPL18109 platform was downloaded from GEO database. The ‘caret’ package 
in R software randomly allocated all the ESCC samples (n = 259) into the training and testing cohorts in a 1:1 
ratio. Subsequently, 130 ESCC samples were used as a training cohort, and 129 ESCC samples employing as the 
testing cohort.

We acquired the FA metabolism-related gene sets (KEGG fatty acid metabolism pathways, Reactome fatty 
acid metabolism genes, and Hallmark fatty acid metabolism  genes20–23), and further analyzed for FMGs. FMGs 
were extracted from the Molecular Signature Database v7.4 (MSigDB).

Identification of FMGs subtypes
The consensus clustering arithmetic is used to assess the cancer features differences within a specified data  set24. 
To identify cluster subtypes of ESCC for optimization classification purposes in FMGs, consensus clustering 
was performed in all ESCC samples through the “ConsensusClusterPlus” package by the K-means algorithm, 
which comprised consensus matrix, cumulative distribution function (CDF), and delta area plots. Stable con-
sensus clustering classification was presented with the specific parameters (re-samplings, 50; pltem, 0.8; pearson 
correlation distances, 1). The survival analysis between different cluster subtypes were performed through the 
Kaplan–Meier survival curves method, and chi-squared test was applied to explore the survival difference com-
parisons among different subtypes.

Construction and validation of risk model
Based on the genes expression profiles and prognostic information intersected in training cohort, the FMGs that 
exhibited significance (p < 0.05) in univariate Cox regression analysis for survival were screen as the prognostic-
related FMGs and then included into the least absolute shrinkage and selection operator (LASSO) analysis with 
tenfold cross-validation. Subsequently, LASSO analysis was applied for selecting best candidate FMGs into the 
risk model by using the “glmnet” R package. The specific risk score of each ESCC patients was analyzed based on 
the FMGs expression levels and corresponding regression coefficient, and the detailed formula was as follows: 
risk score = 

∑
i

1
(gene Expression × gene coefficient). Subgroups including high-risk and low-risk groups were 

determined based on their respective median risk score. The same algorithm analysis was used for the testing 
cohort and all ESCC cohorts. The relationship between the risk score and the clinicopathological features (age, 
gender, T stage, N stage, and TNM stage) was explored. Additionally, the "survminer" and "timeROC" R packages 
were utilize to estimate overall survival (OS) difference and the predictive accuracy of the risk model, respectively.

Nomogram construction
Clinicopathological variables and risk score were performed univariate and multivariate Cox regression analy-
ses, and the “forestplot” R package was utilized to screen the independent prognostic factors. A nomogram was 
generated based on age, gender, T stage, N stage, TNM stage, and the risk score with “regplot”, “survival” and 
“rms” R packages. In this nomogram arithmetic system, each clinicopathological variable was serve as a score, 
and overall scores of all variables in each sample were calculated and exhibited. ROC curve was analyzed to 
evaluate the discrimination reliability of the nomogram.
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Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG, https:// www. kegg. jp/ kegg/ kegg1. 
html) analyses of differentially expressed FMGs among different subtypes were conducted through the “org.Hs.eg.
db” and “clusterProfiler” R packages employing all ESCC samples data. In addition, to further search inherent 
mechanisms associated with FMGs among the two risk groups, the gene set enrichment analysis (GSEA) was 
performed to distinguish hallmark pathways associated with FMGs using the “limma” R package, with c5.go.
symbols.gmt and c2.cp.kegg.v7.0.symbols.gmt as reference gene sets. p < 0.05 and q false-discovery rate (FDR) 
value less than 0.25 were considered valid.

Tumor microenvironment analysis
The composition of the 21 kinds of infiltrating immune cells and immune function were performed in ESCC 
samples using “CIBERSORT” R package, and the heatmap was visualized. The ESTIMATE algorithm identifies 
tumor microenvironment features associated with immune, stromal, and ESTIMATE score for each patient using 
“estimate” R package. The associations among the cluster subtypes, risk score, and immune checkpoint expression 
were detected using Spearman’s correlations. Kruskal Wallis test was applied to perform the differences analysis 
between cluster subtypes and risk groups.

Quantitative real‑time polymerase chain reaction (qRT‑PCR)
Normal human esophageal epithelial cells (HEEC) and human ESCC cell lines ECA109 and TE1 were obtained 
by Scientific Research Center of the Fourth Hospital of Hebei Medical University. These cells were cultured 
with RPMI-1640 containing 10% Fetal Bovine Serum (FBS), at 37 °C with 5% carbon dioxide incubator. Total 
RNA of cells was isolated with TRIzol reagent (Thermo Fisher Scientific) and reverse-transcribed to cDNA with 
PrimeScript Strand cDNA Synthesis Kit (Thermo Fisher Scientific). qRT-PCR analysis was performed with 
MonAmp™ SYBR® Green qPCR Mix, and the risk model-relevant genes was analyzed with  2−ΔΔCT method. The 
primer sequences of these gene and GAPDH are displayed in Table 1.

Cell culture
Human ESCC cell lines and HEEC cells, were obtained from the Research Center of the Fourth Hospital of Hebei 
Medical University (Shijiazhuang, China). For the current study, all cells were cultured in RPM1-1640 medium 
(Gibco, USA) containing 10% fetal bovine serum (FBS) (Invitrogen, USA) and 100 U/ml penicillin (Invitrogen, 
USA) and 100 μg/ml streptomycin (Invitrogen, USA) in the 37 °C and 5%  CO2 cell incubator.

Cell transfection
The ECA109 and TE1 cells were transfected with human MUC4 small interfering RNA (si-MUC4) and nega-
tive control shRNA (si-NC) using Lipofectamine 2000 (Invitrogen, USA) in accordance with the instructions of 
manufacturer. After 24 h, ECA109 and TE1 cells were harvested for subsequent functional assays.

Proliferation assays
Cell proliferation was analyzed using Cell Counting Kit-8 (Med Chem Express Princeton, USA). ESCC cell lines 
were harvested and seeded into 96-well plates with five replicate wells for each group per experiment. Different 
groups of ESCC cells lines were incubated with 10 µl CCK-8 at 24 h, 48 h and 72 h. Then, absorbance was meas-
ured following the manufacturer’s instructions, the optical density (OD) value was determined at a wavelength 
of 450 nm by a Multiskan microplate (ELx800; Bio-Tek, Winooski, VT, USA). At least three times dependent 
experiments were repeated.

Wound healing assay
The ECA109 and TE1 cells were plated in 6-well plates. When these ESCC cells grew to confluence > 80%, a 
straight cell-free zone was scratched using a 200-µl pipette tip. These cells were cultured in 2 ml of serum-free 
medium. The scratched areas were examined at 0 h, 24 h by using the microscope and photographed.

Table 1.  The primer sequences of eight FMGs used for qRT-PCR (Sequence, 5ʹ– > 3ʹ). FMGs Fatty acid 
metabolism-related genes.

Genes Forward primer Reverse primer

FZD10 AGC CAT CCA GTT GCA CGA G GAG TCG GGC CAC TTG AAG TT

TACSTD2 ACA ACG ATG GCC TCT ACG AC GTC CAG GTC TGA GTG GTT GAA 

MUC4 CGT TCT GGG ACG ATG CTG AC GAT GGC TTG GTA GGT GTT GCT 

PDLIM1 CCC AGC AGA TAG ACC TCC AG TCT GAG CTT CCA AGT GTG TCATA 

PRSS12 GGA CAG CGC CAC AAC TTT TG CGA AGT CGT ACT GAT CCG TGT 

BAALC GAG CCC CGC TAC TAC GAG A AGT CGG TGT AGG TGA GCC A

DNAJA2 GTG GCT GAC ACG AAG CTG TA AAG ACC TTG CTC TCC GTA TCT 

ALOX12B CCA TCT CAC TGA CCA TTG TGG CAG GCG GAT GAT GAT GAG C

https://www.kegg.jp/kegg/kegg1.html
https://www.kegg.jp/kegg/kegg1.html
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Cell invasion assays
Transwells assays was used for testing the invasive ability of ESCC cells. ECA109 and TE1 cells were diluted 
with serum-free medium and 200 µl RPMI-1640 medium were seeded into the Matrigel-coated (Corning Inc. 
USA) upper chamber. 600 µl RPMI-1640 medium containing 20% FBS was added into the lower chamber. After 
incubation for 24 h with 37 °C constant temperature, cells on the upper side of the chamber were wiped off with 
cotton swabs, and the cells were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet for 15 min. 
Representative images were captured under fluorescence microscope (Nikon Ti2, Japan).

Results
Identification of prognostic FMGs
In this study, we identified prognostic-related FMGs among 259 ESCC samples in the all cohorts. The univariate 
Cox regression analysis identified 128 FMGs associated with prognosis. Moreover, the interaction correlations 
and degree of risk for prognosis of top thirty prognosis-related FMGs were illustrated by a network diagram 
(Fig. 1). The results indicated that PTGS2, ALOX12, IDI1, PECR, EPHX2, ALOXE3, PLA2G4A, ALOX12B, 
CYP2C9, MORC2, ACAT1, and HSD17B8 were favorable factors for OS, others were risk factors for OS.

Establishment of tumor cluster subtypes
Based on the screened prognosis-related FMGs expression data, the consensus matrix k value of 2, 259 ESCC 
patients were clustered into two subtypes (cluster 1 and cluster 2) with optimal consistency and stability 
(Fig. 2A,B). Kaplan–Meier survival analysis revealed that cluster 1 patients had a significantly poorer prognosis 
that in in cluster 2 patients (P = 0.0016; Fig. 2C). A heatmap depicted the prominent difference of prognosis-
related FMGs expression and clinicopathological variables in these two clusters (Fig. 2D). These findings indi-
cated that cluster subtypes could distinguish survival risk stratification of ESCC.

Functional enrichment and immunological characterization of cluster subtypes
GO and KEGG functional analysis were conducted on the differentially expressed genes, with the enriched GO 
and KEGG terms in each category visualizing in Circos plots (Fig. 3A,B). The findings revealed that differentially 
expressed genes were remarkably associated with the FA metabolism related-regulation, such as FA degradation, 
arachidonic acid metabolism, FA elongation, beta-Alanine metabolism, and tryptophan metabolism (Table 2). 
The ssGSEA analysis revealed that the activated dendritic cells, CD56dim natural killer cells, gramma delta T 
cells, natural killer T cells, natural killer cells, and regulatory T cells had significantly higher in cluster 1 than in 
cluster 2 (Fig. 4A). Then, we analyzed the association with immune functions and found that APC co-inhibition, 
CCR, parainflammation, T cell co-inhibition, and type II IFN response had significantly different immune 
function scores in two subtypes (Fig. 4B). As shown in Fig. 4C–E, patients in cluster 1 had the higher stromal, 
immune score and ESTIMATE score than in cluster 2.

Construction of a risk model
The prognostic-related FMGs (p < 0.05) were screened using univariate Cox regression analysis and 
these genes were included into the LASSO regression model for screening the candidate risk model-
related genes. A eight- FMGs risk model was finally established based on the appropriate λ value. The 
risk score calculating formula in the training cohort, validation cohort and all cohorts was as follows: risk 

Figure 1.  The FMGs interaction network of in ESCC patients. FMGs fatty acid metabolism-related genes, ESCC 
esophageal squamous cell carcinoma.
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score = (0.0422) × FZD10 + (0.0034) × TACSTD2 +  (− 0.0941)  × MUC4  + (0.0313 ) × PDLI M1 + (− 0.13 34) × PR 
SS12 + (0. 1114) ×  BAALC + ( 0.2159)  × DNAJA2 + ( −  0. 046 4) × ALOX12B.

Clinical application of risk score in ESCC cohorts
ESCC patients of training cohort, testing cohort and all cohorts were grouped into two risk groups depending on 
median value of risk scores. As shown in Fig. 5A–C, high-risk scores patients accounted for the higher percentage 
of patient deaths. A heatmap depicted the differential expression levels of genes among the different risk scores 
(Fig. 5D–F). The results of risk scores and survival rates in the training cohort were consistent with the testing 
cohort and all cohorts. The results revealed that high risk scores exhibited the unfavorable effect for prognosis. 
Kaplan–Meier survival analysis showed that patients in the low-risk survived longer than those in the high-risk 
group in the training cohort (p < 0.001), testing cohort (p = 0.001) and all cohorts (p < 0.001). The ROC curve 
results suggested that the AUCs for prognostic prediction were 0.748, 0.660, and 0.701, respectively (Fig. 6A–C).

Construction of a prognosis nomogram
We performed the univariate and multivariate prognostic analyses to investigate the predictive ability of FA 
metabolism risk score for survival. Combining FA metabolism risk score with clinicopathological features in 
all cohorts, the results showed that the age (p < 0.001), TNM stage (p < 0.001), and risk score (p < 0.001) were 
proved as independent prognostic factors (Fig. 7A,B). Figure 7C showed calibration curves for predicting ESCC 
patients at OS of 1, 3, and 5 years, indicating that nomogram had reliably prediction capability. Considering 

Figure 2.  ESCC subtypes based on consensus clustering. (A, B) The ESCC patients were divided into cluster 1 
and cluster 2 based on the prognostic FMGs. (C) The Kaplan–Meier analysis of the patients among two clusters. 
(D) A heatmap regarding to the relationships between the clinicopathological features and two clusters. ESCC 
esophageal squamous cell carcinoma, FMGs fatty acid metabolism-related genes.
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Figure 3.  Functional enrichment analysis in two ESCC subtypes. (A) GO enrichment analysis of FMGs. (B) 
KEGG enrichment analysis of FMGs. ESCC esophageal squamous cell carcinoma, FMGs fatty acid metabolism-
related genes.

Table 2.  Functional annotation of FMGs in ESCC. FMGs Fatty acid metabolism-related genes.

Category ID Description P-value

Biology process

GO:0006631 Fatty acid metabolic process 9.58E−90

GO:0001676 Long-chain fatty acid metabolic process 9.07E−46

GO:0033559 Unsaturated fatty acid metabolic process 3.46E−45

GO:0006633 Fatty acid biosynthetic process 6.71E−45

GO:0120254 Olefinic compound metabolic process 1.84E−42

GO:0072330 Monocarboxylic acid biosynthetic process 6.60E−42

GO:0005777 Peroxisome 6.32E−13

GO:0042579 Microbody 6.32E−13

GO:0005782 Peroxisomal matrix 1.54E−09

GO:0031907 Microbody lumen 1.54E−09

GO:0005759 Mitochondrial matrix 2.05E−08

GO:0031301 Integral component of organelle membrane 1.08E−05

GO:0016614 Oxidoreductase activity, acting on CH–OH group of donors 1.37E−19

GO:0016616 Oxidoreductase activity, acting on the CH–OH group of donors, NAD or NADP as acceptor 1.75E−17

GO:0016627 Oxidoreductase activity, acting on the CH–CH group of donors 2.36E−16

GO:0016705 Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen 3.94E−15

GO:0005506 Iron ion binding 1.97E−13

GO:0003995 Acyl-CoA dehydrogenase activity 5.81E−13

KEGG pathway

hsa00350 Tyrosine metabolism 1.72E−08

hsa00380 Tryptophan metabolism 6.28E−08

hsa04146 Peroxisome 1.13E−07

hsa00410 Beta-alanine metabolism 1.25E−07

hsa01212 Fatty acid metabolism 7.78E−37

hsa00071 Fatty acid degradation 5.10E−31

hsa00590 Arachidonic acid metabolism 1.64E−28

hsa01040 Biosynthesis of unsaturated fatty acids 4.26E−22

hsa03320 PPAR signaling pathway 2.15E−18

hsa00280 Valine, leucine and isoleucine degradation 7.96E−16

hsa00062 Fatty acid elongation 1.56E−14

hsa00620 Pyruvate metabolism 6.07E−13

hsa04936 Alcoholic liver disease 3.84E−12

hsa00010 Glycolysis/gluconeogenesis 9.84E−10

hsa00982 Drug metabolism—cytochrome P450 2.19E−09
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the clear and visual characteristics of nomogram, so we visualized the risk signature using a clinicopathologic 
nomogram. A nomogram integrating age, gender, T stage, N stage, and risk score was analyzed to determine 
the relationship between these factors and prognosis (Fig. 7D). Further analysis indicated that the nomogram 
(AUC = 0.769) has a better predictive performance than a single prognostic indicator such age (AUC = 0.564), 
TNM stage (AUC = 0.622), or the prognostic risk scoring model (AUC = 0.725; Fig. 7E).

Functional characteristics among two risk groups
To further explore the potential molecular mechanism of the risk model, the transcript message in ESCC patients 
in the all cohorts were analyzed using GSEA. The GO analysis further revealed that glycoside metabolic process, 
reverse cholesterol transport, positive regulation of mitochondrial translation, mitochondrial ATP synthesis 
coupled proton transport, and antigen processing and presentation of endogenous peptide antigen were enriched 
in the high-risk group (Fig. 8A), and immune-related activities in low-risk group were shown in Fig. 8B. Interest-
ingly, the activity of metabolic pathways such as phenylamine metabolism, glutathione metabolism, and tyrosine 
metabolism, were fundamentally enriched in the high-risk group, according to KEGG analysis (Fig. 8C). Addi-
tionally, JAK STAT signaling pathway, FC gamma R mediated phagocytosis, T cell receptor signaling pathway, 
cytokine-cytokine receptor interactions were enriched in the low-risk group (Fig. 8D). Taken together, our results 
revealed that the FA metabolism reprogramming condition can act on the immune activity through internal 
regulatory mechanisms.

Figure 4.  Analysis of the correlation between the ESCC subtypes and immune infiltration, immune functions 
and immune-related score. (A) Comparison of the ssGSEA scores among the two clusters. (B) The variation 
in immune functions. (C–E) The results of the correlation analysis between the immune-related score and 
subtypes. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 5.  Construction of the prognostic risk model. The distribution plots of risk scores of ESCC patients 
in the (A) training, (B) validation, and (C) all cohorts. (D–F) Heatmap showing the expression profiles of the 
eight FMGs of ESCC patients in training, (B) validation, and (C) all cohorts. ESCC esophageal squamous cell 
carcinoma, FMGs fatty acid metabolism-related genes.

Figure 6.  The Kaplan–Meier survival curves and ROC curves of risk score based on eight FMGs signature. 
Differences in the OS and predictive ability of risk model for ESCC patients between the high-risk and low-risk 
groups in the (A) training, (B) test, and (C) all cohorts. ROC receiver operator characteristic, FMGs fatty acid 
metabolism-related genes, OS overall survival, ESCC esophageal squamous cell carcinoma.
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Risk score model to assess immune activity
To examine the ESCC tumor microenvironment among the two risk groups patients, we explored the distribution 
of 21 immune cell types in different risk groups in all cohorts using CIBERSORT. The proportions of immune 
cells in the high-risk and low-risk groups were shown in Fig. 9A. The results indicated that the high-risk group 
had lower levels of naïve B cell, activated mast cells, plasma cells, and CD4 T cell memory resting, compared to the 

Figure 7.  Independent prognostic validation of OS nomogram for ESCC patients. (A, B) Univariate and 
Multivariate analysis for all cohorts. (C, D) Nomogram and nomogram to predict 1-, 3-, and 5-year OS rates of 
ESCC patients. (E) ROC curves for clinical characteristics and nomogram. OS overall survival, ESCC esophageal 
squamous cell carcinoma, ROC receiver operator characteristic.

Figure 8.  GSEA of the functional characteristics in the high-risk and low-risk groups. (A, B) GO function 
annotation among two risk groups. (C, D) The significantly enriched KEGG (https:// www. kegg. jp/ kegg/ kegg1. 
html) pathways of different risk groups. GSEA gene set enrichment analysis, GO Gene Ontology, KEGG Kyoto 
Encyclopedia of Genes and Genomes, ESCC esophageal squamous cell carcinoma.

https://www.kegg.jp/kegg/kegg1.html
https://www.kegg.jp/kegg/kegg1.html
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low-risk group. The StromalScore, ImmuneScore, and ESTIMATEScore were computed using the “ESTIMATE” 
package, revealing that ImmuneScore, StromalScore, and ESTIMATEScore were significantly higher in high-
risk group than in low-risk group (p < 0:05) (Fig. 9B–D). Additionally, we evaluated the relationship between 
the tumor-infiltrating immune cells and prognosis, observing that increased plasma cells, monocytes, mast cells 
activated, and dendritic cells activated were closely related to good prognosis (Fig. 9E–H). High infiltration of T 
cells memory activated, M0 macrophages, M1 macrophages, and M2 macrophages showed unfavourable effects 
for survival (Fig. 9I–L).

The expression of 39 immune checkpoints in the high-risk and low-risk groups were also compared. The 
results revealed that most immune checkpoints were significantly expressed in different risk groups (Fig. 10A). 
Accordingly, the relationship between the immune checkpoints and risk score was performed, which suggested 
that the expression level of CD200, KDR, KIR2DL1, LAG3, NRP1, TGFBR1 and TNFSF15 were significantly 
associated with risk score (Fig. 10B–H).

Validation of the expression levels of eight‑FAMs signature in ESCC cells
The eight-FAMs risk model included the following genes: FZD10, TACSTD2, MUC4, PDLIM1, PRSS12, BAALC, 
DNAJA2 and ALOX12B. To further verify the expression level of the above mentioned FMGs, we detected the 
expression levels of these genes in HEEC, EAC109 and TE1 cells (Fig. 11A–H). The results of qRT-PCR revealed 
that the MUC4 and BAALC was upregulated, whereas the expression of TACSTD2, FZD10, PDLIM1, and 
ALOX12B was downregulated in ESCC cells than that in HEEC. However, we found no significant differences 
in expression levels of PRSS12 or DNAJA2 between HEEC and ESCC cell lines.

Figure 9.  The correlation between the risk model and immune activity in ESCC patients. (A) The expression 
levels of immune cell infiltration in high-risk and low-risk groups. (B–D) Analysis of the association between 
the risk model and immune-related score. (E–L) Kaplan–Meier curves of OS in ESCC patients based on 
immune cells. ESCC esophageal squamous cell carcinoma; *p < 0.05; **p < 0.01; ***p < 0.001.
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Knockdown of MUC4 inhibited ESCC cell proliferation, migration and invasion
To explore the oncogenic roles of MUC4 in ESCC, we selected ECA109 and TE1 cells with low MUC4 expression 
by using si-MUC4 transfection subsequent experiments. MUC4 expression was knocked down in ECA109 and 
TE1 cells, and was demonstrated by qRT-PCR analysis (Fig. 12A). To evaluate the role of MUC4 on the prolifera-
tion, CCK-8 assay was used to validate and results showed the viability of MUC4 groups with knockdown were 
obviously lower than that of NC groups at 24, 48 and 72 h, respectively (Fig. 12B,C). Moreover, wound-healing 
assay suggested that after culture for 24 h, the knockdown of MUC4 expression significantly reduced the migra-
tion ability of ECA109 and TE1 cell lines (Fig. 12D,E). In addition, knockdown of MUC4 markedly attenuated 

Figure 10.  The correlation between the risk model and immune checkpoints in ESCC patients. (A) Heatmap 
of immune checkpoints with different risk score. (B–H) Correlation between the risk model and immune 
checkpoints. ESCC esophageal squamous cell carcinoma; *p < 0.05; **p < 0.01; ***p < 0.001.

Figure 11.  The expression levels of eight signature FMGs in ESCC cells. qRT-PCR analysis results of the 
expression levels of ALOX12B (A), BAALC (B), DNAJA2 (C), FZD10 (D), MUC4 (E), PDLIM1 (F), PRSS12 
(G) and TACSTD2 (H) in HEEC, ECA109 and TE1. qRT-PCR quantitative real-time polymerase chain reaction, 
FMGs fatty acid metabolism-related genes, ESCC esophageal squamous cell carcinoma, ns not significant; 
*p < 0.05; **p < 0.01; ***p < 0.001.
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the invasion ability in ECA109 and TE1 cell lines via transwell assay (Fig. 12F,G). Our findings showed that 
knockdown of MUC4 can suppresses ESCC cells proliferation, migration and invasion.

Discussion
ESCC is a major public health problem in worldwide, which contributes to a poor prognosis because of the 
aggressiveness and treatment-resistant. Exploring corresponding biological mechanisms of ESCC progression 
can be beneficial for survival outcomes prediction. The rapid development of genomics and high-throughput 
sequencing could help to identify the prognostic-related genes, which has received great attention and is an 
urgent problem. Shi et al. built an epithelial-mesenchymal transition gene signature that could predict survival 
and immunotherapy  efficacy25. Dai et al. constructed a prognostic signature of colorectal cancer based on a 
senescence phenotype-related clinical-molecular analysis. The results suggested that senescence-related genes 
signature could better predict the prognosis and facilitate individualized  treatments26.

Li et al. found that DNA damage repair-related gene signature with cell cycle checkpoint function can predict 
the clinical outcomes and immune status of lung adenocarcinoma  patients27. Cellular metabolism is of pivotal 
contribution to cell proliferation, angiogenesis, proliferation, and invasion, and dysregulated metabolism in can-
cer cells occurs due to the imbalance of tumor suppressor and oncogenic  genes28–30. And dysregulated metabolism 
is widely observed in cancer cells and is used as target to improve cancer  therapeutics31–33. More and more evi-
dences indicated the increased levels of fatty acylcarnitines is one of the physiological features of cancer cells and 
supports energy production, which suggested that disturbances in fatty acid metabolism played an important role 
in tumor  progression34. Moreover, FA metabolism influences remarkably metabolic-related signaling pathways 

Figure 12.  The functional roles of MUC4 for ECA109 and TE1 cells. (A) The transfection with si-MUC4 
verified by qRT-PCR. (B, C) CCK-8 assay showed that knockdown of MUC4 resulted in growth retardation of 
ECA109 and TE1 cells. (D, E) Cell migration was evaluated with microscope (magnification, × 40). (F, G) The 
Transwell assay was used to detect the ability of cell invasion (magnification, × 100). *p < 0.05, **p < 0.01, and 
***p < 0.001.



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12476  | https://doi.org/10.1038/s41598-024-62917-z

www.nature.com/scientificreports/

for further altering the cancer cell biology by the synthesis of lipid building blocks for  membranes35. Studies have 
shown that the characteristics of FA metabolism of patients with lung  adenocarcinoma36,  glioma37 and colorectal 
 cancer38 may be used to guide clinical treatment. Previous studies have reported that FA metabolism-related 
signature associated with breast cancer patients’  prognosis39. Nevertheless, FA metabolism not only acts as a 
pivotal prognostic distinguishing index indicator, but also associates with cell morphology and cell function, 
which involves FA metabolism-related genes changes. To date, no FA metabolism-related gene signature and risk 
model have been constructed to predict long-term patient survival and immune activity by exploring FMGs in 
ESCC. Herein, a comprehensive study of characteristics of FA metabolism in ESCC is urgent.

In the present study, we analyzed publicly available databases transcriptome data for screening FMGs and 
identified prognostic-related genes, aiming to filter out genes associated with FA metabolism. Then, ESCC 
patients were divided into two cluster subtypes (cluster 1, cluster 2) based on these FMGs by consensus cluster-
ing analysis. We found that patients in cluster 2 had poorer survival outcomes that in cluster 1. Tumorigenic 
pathways (PPAR signaling pathway, glycolysis, drug metabolism-cytochrome P450, monocarboxylic acid bio-
synthetic process, etc.) were remarkably activated in cluster 2 subtype, which suggested unfavorable risk factors 
for patients in cluster 2. Cluster 1 and cluster 2 differed remarkably in tumor-infiltrating immune cells, including 
the activated dendritic cells, CD56 dim natural killer cells, gramma delta T cells, natural killer T cells, natural 
killer cells, and regulatory T cells. Cluster 1 had the higher stromal, immune score and ESTIMATE score than 
that in cluster 2. Therefore, we speculated that molecular subtypes of FMGs were associated with ESCC progres-
sion and immune response.

Additionally, we constructed a prognostic risk model based on eight FMGs for ESCC patients in the train-
ing cohort, validation cohort and all cohorts. The results indicated that the eight FMGs signature may have a 
cross-platform feature with favourable predictive accuracy for ESCC survival and generalizability in clinical 
practice. We divided the ESCC patients into high-risk and low-risk groups based on the cut-off values of the 
risk scores, and two risk groups suggested the different levels of FA metabolism. The Kaplan–Meier survival 
analysis indicated that low-risk group patients exhibited a better survival than that in high-risk group patients. 
This prognostic risk model exhibited a considerable accuracy in prognosis prediction than other features. The 
validation cohort and all cohorts yielded the consistent results, suggesting that the prognostic risk model may 
identify patients with different risk exposure. The Univariate and multivariate Cox regression analyses showed 
that the FA metabolism risk score was an independent prognostic factor for ESCC patients. Importantly, a 
nomogram consisting of age, gender, T stage, N stage and FA metabolism risk score was constructed and yielded 
a favorable predictive performance.

The prognostic risk model in present study was developed, which combined eight FMGs displayed a favorable 
survival prediction value in ESCC. Several studies have revealed that FZD10 is associated with the activation of 
Wnt signalling in colorectal  cancers40 and gastric  cancers41, and enhances their anchorage-independent growth 
and induces epithelial-mesenchymal transition (EMT) in breast cancer  cells42. TACSTD2 (Trophoblast Cell 
Surface Antigen 2) has been reported to be associated with malignant tumors. Shvartsur et al. reported that 
TACSTD2 promoted tumor cells EMT, adhesion and proliferation, and stimulate the formation of  tumors43. 
Ambrogi et al. analyzed the expression level of TACSTD2 using immunohistochemistry and observed that 
high TACSTD2 expression was a negative prognostic  factor44. The low expression of MUC4 was associated with 
favorable prognosis and  survival45. In addition, studies have shown that MUC4 can interact with key tumor-
related signaling pathways to promote tumor cells proliferation, invasion, metastasis, and chemoresistance in 
pancreatic  cancer46. PDLIM1 (PDZ and LIM domain protein 1) plays an important role in the invasion, EMT, 
metastasis, and progression of colorectal cancer, suggesting that PDLIM1 is a potential therapeutic target for 
diagnosis and treatment of tumors in the  clinic47. The knockdown of BAALC expression reduced the abilities of 
proliferation, invasion and migration for breast cancer  cells48. ALOX12B serves significant roles in the carcino-
genesis in cervical cancer by the PI3K/ERK1 signaling  pathway49, and ALOX12B can inhibit immune activity 
and increased risk of lung  cancer50. In study, the associations between ESCC and FZD10, TACSTD2, PDLIM1, 
PRSS12, DNAJA2, and ALOX12B were first to report. Nevertheless, whether these risk model-related FMGs 
influence metabolism and generate the prognostic values in patients with ESCC, remains ambiguous owing to 
the limited number of studies.

ESCC serving as an immunogenic tumor, we also actively explore the critical features of immune activity in 
ESCC. Numerous studies have reported that FA metabolism induces the changes in the proportion of infiltrating 
immune cells in tumor immune  microenvironment51–53. For this purpose, we analyzed the immune infiltration 
status of 21 immune cells among different risk groups, revealing that immune cells, including naïve B cell, acti-
vated mast cells, plasma cells, and CD4 T cell memory resting were increased in the low-risk group than that in 
high-risk group. Subsequently, we found that the expression of LAG3, NRP1, and TGFBR1 increased considerably 
with increasing risk scores. These findings suggested that patients with increasing risk score may benefit from pre-
cision immunotherapies that target LAG3, TNFSF15, KIR2DL1, KDR, CD200, NRP1, and TGFBR1. From this, 
we speculated that this prognostic risk model may provide valuable clues of ESCC patients for immunotherapy, 
further confirming that FA metabolism is indispensable in remodeling the tumor immune microenvironment.

Some limitations of present study must be considered. First, the molecular subtypes and risk model were 
constructed using TCGA and GEO databases. Larger and multicenter clinical samples are required to validate 
the performance of the molecular subtypes and risk model in ESCC patients. Second, the FMGs signature 
screened by ESCC samples have not been previously analyzed, further study into their underlying mechanisms 
for judging the prognosis is required. Third, although we have preliminarily investigated the effects of FMGs 
signature on immune activity, in vivo and vitro experiments should be conducted to further validate the prog-
nostic performance of our proposed FMGs signature for ESCC. Fourth, only MUC4 expression was knocked 
down in proliferation assay, wound-healing assay and cell invasion assay. We will conduct a series of in vivo and 
vitro assays on other risk model-related genes.
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Conclusion
Our study fills the gap of FMGs signature for in predicting prognosis and immune activity of ESCC. These find-
ings could provide a more detailed portrait of FMGs in the biology features of ESCC, which facilities individual-
ized immunotherapeutic options to improve prognoses.

Data availability
Data is provided within the manuscript or available from the corresponding author on reasonable request.
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