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Selecting EEG channels 
and features using multi‑objective 
optimization for accurate MCI 
detection: validation using 
leave‑one‑subject‑out strategy
Majid Aljalal 1*, Saeed A. Aldosari 1, Marta Molinas 2 & Fahd A. Alturki 1

Effective management of dementia requires the timely detection of mild cognitive impairment 
(MCI). This paper introduces a multi‑objective optimization approach for selecting EEG channels (and 
features) for the purpose of detecting MCI. Firstly, each EEG signal from each channel is decomposed 
into subbands using either variational mode decomposition (VMD) or discrete wavelet transform 
(DWT). A feature is then extracted from each subband using one of the following measures: standard 
deviation, interquartile range, band power, Teager energy, Katz’s and Higuchi’s fractal dimensions, 
Shannon entropy, sure entropy, or threshold entropy. Different machine learning techniques are 
used to classify the features of MCI cases from those of healthy controls. The classifier’s performance 
is validated using leave‑one‑subject‑out (LOSO) cross‑validation (CV). The non‑dominated sorting 
genetic algorithm (NSGA)‑II is designed with the aim of minimizing the number of EEG channels 
(or features) and maximizing classification accuracy. The performance is evaluated using a publicly 
available online dataset containing EEGs from 19 channels recorded from 24 participants. The results 
demonstrate a significant improvement in performance when utilizing the NSGA‑II algorithm. 
By selecting only a few appropriate EEG channels, the LOSO CV‑based results show a significant 
improvement compared to using all 19 channels. Additionally, the outcomes indicate that accuracy 
can be further improved by selecting suitable features from different channels. For instance, by 
combining VMD and Teager energy, the SVM accuracy obtained using all channels is 74.24%. 
Interestingly, when only five channels are selected using NSGA‑II, the accuracy increases to 91.56%. 
The accuracy is further improved to 95.28% when using only 8 features selected from 7 channels. This 
demonstrates that by choosing informative features or channels while excluding noisy or irrelevant 
information, the impact of noise is reduced, resulting in improved accuracy. These promising findings 
indicate that, with a limited number of channels and features, accurate diagnosis of MCI is achievable, 
which opens the door for its application in clinical practice.

Keywords MCI, EEG channel selection, Feature selection, Machine learning, Multi-objective optimization, 
NSGA

Dementia progressively impairs cognitive functions, including memory, speech, and thinking skills, significantly 
impacting daily  life1. This ailment is more frequently seen in those aged 60 and older. The challenge in remem-
bering recent events is the earliest and most distinct signs of  dementia2. Mild cognitive impairment (MCI) is 
considered the early phase of several types of dementia, including Alzheimer’s disease (AD). It, namely MCI, is 
marked by noticeable yet not overly disruptive cognitive changes for individuals and their  families3,4. MCI doesn’t 
fully align with the standard for diagnosing dementia, or AD, due to its milder effect on everyday activities. 
However, it places individuals at a considerable risk of developing dementia, for instance, with about 15–20% of 
MCI individuals advancing to AD  annually5. Despite the recent FDA approval of Lecanemab, a novel medication 
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for AD  treatment6, the early detection of AD during the MCI stage assumes significant importance in impeding 
disease progression and promoting the advancement of non-pharmacological therapies. Usually, diagnosing 
MCI or AD requires a lengthy and multi-step procedure involving a Mini-Mental State Examination (MMSE), 
blood tests, neurological exams, and spinal fluid analysis. Therefore, it is essential to develop safe, objective, and 
practical methods for early MCI detection to prompt timely intervention.

Numerous research efforts have been dedicated to exploring various techniques for diagnosing MCI, including 
approaches based on magnetic resonance imaging (MRI)7,8, positron emission tomography (PET)9, computed 
tomography (CT)10, and combined  methods11. Electroencephalography (EEG) has also gained prominence as 
a non-invasive modality for the automated diagnosis of brain disorders. This technique involves the placement 
of electrodes on the scalp to monitor the electrical activity generated by brain  neurons12. The detail with which 
the EEG can map brain activity is contingent upon the electrode number and arrangement. Offering advantages 
like high temporal resolution, portability, affordability, and operational efficiency, EEG stands out from other 
imaging methods such as MRI, CT, and  PET12. EEG, in combination with machine learning techniques, has been 
increasingly used to categorize a variety of neurological disorders. It has proven effective in diagnosing conditions 
like  AD13,14, autism spectrum disorder (ASD)15,16, major depressive  disorder17,  epilepsy16,18,  schizophrenia19, and 
Parkinson’s disease (PD)20,21, and it has also been applied in tasks such as emotion  recognition22. Recent studies 
have leveraged EEG signals and machine learning to automate the detection of MCI. These investigations have 
delved into distinct EEG paradigms for tasks and resting  states23–40. Task-state EEG requires individuals to engage 
in activities, such as responding to sequential speech sounds, during the  recording23. Conversely, resting-state 
EEG tracks brain activity in a more passive state, either with the eyes closed or open, without any task involve-
ment. This method of EEG data collection is especially advantageous for elderly subjects, as it is less demanding, 
more reflective of everyday conditions, and generally more comfortable.

A wide range of research (cited in  references24–35) has been conducted on the use of resting-state EEGs for 
detecting MCI. These studies have utilized various techniques to create biomarkers for MCI identification and 
employed different classifiers to distinguish between MCI patients and healthy controls (HC). For example, 
Kashefpoor et al.24 applied several spectral analyses to EEG data from 11 MCI patients and 16 HCs. They used 
a neuro-fuzzy method combined with a K-nearest neighbor (KNN) technique, achieving 88.89% accuracy in 
feature classification. This  group25 also developed a supervised dictionary learning method, named CLC-KSVD, 
for EEG analysis, attaining 88.9% accuracy in classification using the left-temporal area, which contains the chan-
nels F7, T3, and T5. Using the dataset  from24, Hadiyoso et al.26 employed KNN for classifying power spectral 
features, obtaining 81.5% accuracy. Yin et al.27 balanced the MCI and HC sample sizes from the same dataset, 
applying stationary wavelet transformation (SWT) for signal enhancement and using statistical measures for 
feature extraction. Their support vector machine (SVM) classifier reached 96.94% accuracy. Siuly et al.28 ana-
lyzed  the24 dataset with auto-regressive and permutation entropy methods, achieving 98.78% accuracy using 
an extreme learning machine classifier. Hsiao et al.29 introduced features that were all based on relative power 
and utilized Fisher’s method for feature selection. They attained 90.20% accuracy using a SVM classifier on a 
30-channel EEG dataset of 27 HC and 24 MCI participants. Alvi et al.30 explored deep learning approaches using 
several Long Short-Term Memory (LSTM) models, identifying the most effective model with 96.41% accuracy. 
Lee et al.31 retrieved a wide range of features, including power spectral density and complexity measures, from 
their dataset, achieving up to 86.85% accuracy with the SVM classifier. Movahed et al.32 extracted spectral and 
nonlinear biomarkers from EEG data that contains 16 HC and 18 MCI individuals, achieving 99.4% accuracy 
with a linear SVM classifier. Said and Göker33 applied the discrete wavelet transform (DWT) leader for feature 
extraction, attaining 93.50% accuracy with the AdaBoostM1 algorithm. Aljalal et al.34 used empirical mode 
decomposition (EMD) to decompose EEG data, achieving 97.60% accuracy with a KNN classifier. These stud-
ies collectively highlight the evolving and diverse approaches to EEG-based MCI detection. Lastly, Ahad et al.35 
employed  the24 dataset and explored the convolutional neural network (CNN) deep learning model, achieving 
an accuracy of 84.28% with the LOSO.

Several studies have focused on differentiating MCI, AD, and HC. For example, Fiscon et al.36 analyzed data 
from 109 subjects, including 37 with MCI, 49 with AD, and 23 HCs, assessing the utility of Fourier and wavelet 
transforms in this context. They discovered that the combining of DWT and a Decision Tree (DT) classifier 
achieves an 83.3% accuracy in differentiating MCI from HC using holdout validation and a 93.3% accuracy using 
tenfold cross-validation. In another study, Sharma et al.37 used the SVM classifier to analyze EEG data from 44 
subjects, comprising 16 with MCI, 15 with dementia, and 13 HCs, across various conditions such as eye-open 
and eye-close states, finger-tapping, and continuous performance tests. They employed eight different measures, 
including power spectral density (PSD) and various spectral and fractal features. For MCI versus HC, the accu-
racy reached 84.1%. in the resting state with eyes open. Oltu et al.38 worked with EEG data containing 11 MCI, 
8 AD, and 11 HC subjects, applying DWT, power spectral density, and interhemispheric coherence measures. 
A bagged tree classifier led to an accuracy of 96.50% in their classification tasks. More recently, Pirrone et al.39 
examined EEG signals from 105 individuals, including 37 with MCI, 48 with AD, and 20 HCs. They focused on 
the power intensity in both high and low frequency bands and used SVM, DT, and K-nearest neighbors (KNN) 
classifiers for various classification scenarios. In distinguishing MCI from HC, the KNN classifier achieved 95% 
accuracy.

With the exception of  studies27,29,31,32,37, contemporary research in MCI classification has largely concentrated 
on enhancing accuracy through feature extraction, often overlooking the significance of channel and feature 
selection. Efficiently selecting channels or specific features from channel subsets not only boosts classification 
precision but also aids in creating user-friendly and portable MCI detection systems. Regarding channel selec-
tion, the authors  of27 attempted to lower the number of channels using an incremental evaluation method but 
couldn’t identify a subset surpassing the accuracy achieved with the complete set of 19 channels. They found that 
accuracy improved with an increasing number of channels, yet the peak accuracy of 96.94% was only attained 
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when all channels were utilized. The researchers  in31 assessed classification accuracies with subsets of channels 
in symmetrical combinations (two, four, six, and eight electrodes). For example, in two-channel assessments, 
specific channel pairs like Fp1 with Fp2 and F7 with F8 were selected. This approach, however, did not consider 
numerous other two-channel combinations that might yield higher accuracies. The same limitation applied to 
larger channel combinations. The choice of symmetric channel pairs was driven by the challenge of manually 
exploring all possible combinations. Regarding selecting features belonging to a number of channels, in the 
 study29, Fisher’s class separability criterion was applied to identify the most effective channels and frequency 
subbands for extracting key features. This approach led to seven features from five different channels, resulting in 
the highest classification accuracy of 90.25%.  In32, 431 features were aggregated from all channels using various 
measures. For feature selection, a backward-elimination method was used to select 361 features, leading to an 
accuracy of 91.1%. The  study37 used an ANOVA test to select the best measures. For distinguishing MCI from 
HC, power spectral density, spectral entropy, spectral kurtosis, and fractional dimension measures were selected. 
Although these studies have made significant strides, there remains a need for more systematic, generalizable, 
and effective methods in channel and feature selection.

Besides, there is a noticeable gap in most of the previous  studies27,28,30,32–34,36–39, as the methods proposed in 
these studies were evaluated using intra-subject validation methods, such as k-fold cross-validation (CV). Intra-
subject methods have a drawback in that they can potentially introduce a classification bias due to data leakage. 
Data leakage occurs when information from a specific subject is inadvertently included in both the training and 
testing phases, which can lead to biased results. To mitigate this issue, employing inter-subject classification 
methods like leave-one-subject-out (LOSO) for validation becomes crucial. LOSO mimics real-world scenarios 
and helps prevent data leakage, ensuring more reliable and unbiased evaluations. Hold-out cross-validation 
(which is used  in24–26,36) has a similar advantage, but the difference is that the LOSO CV ensures that all subjects 
have been used for testing through a number of iterations equal to the number of subjects. Therefore, LOSO is 
considered to be more generalized than the holdout technique. Of all the previous studies,  only29,35 used LOSO 
for validation. The  study29 also explored selecting channels using Fisher’s class separability criterion, reporting an 
accuracy of 90.25% on a non-public dataset. The  study35 didn’t develop a feature extraction method but manually 
explored frequency band-based features using a CNN model.

Thus, there remains a necessity to introduce alternative and more effective approaches for selecting channels 
or features that have the potential to improve the classification accuracy. Additionally, it is crucial to evaluate 
the accuracy using an inter-subject classification-based method. In a previous  study40, we examined the poten-
tial of decreasing the quantity of EEG channels while simultaneously preserving the accuracy of classification. 
For this aim, various strategies, including optimization techniques and greedy algorithms, were employed. The 
results presented  in40 indicated that optimization techniques exhibited superior automatic channel selection 
capabilities compared to the greedy methods. However, like other  studies40, relied on the k-fold CV for valida-
tion. In this study, we aim to address these limitations by exploring EEG channel (and feature) selection using 
multi-objective optimization while evaluating classification accuracy using LOSO CV. Our goal is to develop a 
precise MCI detection system with a minimal number of electrodes. This study contributes in numerous ways, 
including the following:

• Conducting investigations on variational mode decomposition (VMD) and DWT methods for decomposing 
EEG signals, followed by the extraction of various non-linear, spectral, and functional connectivity features 
to develop appropriate biomarkers for detecting MCI.

• Utilization of the multi-objective optimization method, the non-dominated sorting genetic algorithm (NSGA-
II), for EEG channel selection aims to minimize the number of required EEG channels while simultaneously 
improving classification accuracy.

• Exploration of feature selection using NSGA-II to further enhance the accuracy of MCI identification. To 
the best of our knowledge, our group is the first to employ a heuristic optimization method for the purpose 
of selecting channels and features in MCI identification.

• Application of NSGA-II for selecting optimal parameters for classifiers and investigating different machine 
learning techniques.

• Validation of classification performance using LOSO CV, which involves inter-subject classification.
• Evaluation of the suggested approaches on a publicly available dataset previously used in related 

 studies24–28,30,35.

“Materials and methods” section describes the EEG data utilized in the study in detail, as well as the pro-
cedures used for EEG signal processing and channel/feature selection. “Results” section includes the study’s 
findings. “Discussion” section includes the discussion and the comparison with the studies in the literature. 
"Conclusion and future work" section wraps up the paper and makes suggestions for further study.

Materials and methods
Figure 1 presents a concise summary of the main stages involved in EEG data processing and channel (and 
feature) selection. The initial stage focuses on reading and preprocessing the raw EEG signals to remove arti-
facts and concentrate on the desired frequency band. Additionally, the cleaned signals are also segmented into 
non-overlapping multi-channel segments. In the feature extraction, each signal within a segment is decomposed 
using either DWT or VMD, resulting in sub-signals that exhibit distinct frequency bands (for more detailed 
information, refer to Fig. 4). From each sub-signal, a single feature value is extracted by applying one of the 
proposed measures (details in “Feature extraction (FE)” Section). The values obtained from all signals within 
a segment are aggregated to create a feature vector. This process is then repeated for the remaining segments, 
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resulting in the construction of other feature vectors. For selecting channels or features, the NSGA-II algorithm 
employs a dynamic approach to select channels or features based on predefined objectives, maximizing clas-
sification accuracy while simultaneously decreasing the quantity of channels or features. The algorithm returns 
the indices of the selected channels or features, as illustrated in Fig. 1. When it comes to channel selection, all 
features associated with the selected channels are utilized during classification. Conversely, in the feature selection 
stage, only the selected features are utilized. Each stage is further elaborated upon in the subsequent subsections, 
providing more comprehensive details.

Subjects and data pre‑processing
An open dataset, which can be found  in41, is utilized. The dataset consists of 11 patients with MCI and 16 healthy 
individual cases (HC). Every participant had at least completed their primary schooling. EEG recordings, partici-
pant recruitment, cognitive assessments, and other procedures were conducted in Isfahan, Iran, at Noor Hospital. 
Prospective participants with a history of dementia, significant physical ailments, substance abuse, brain injuries, 
or severe mental disorders were excluded from the study. When a subject’s MMSE score is between 21 and 26, 
he is regarded as having MCI, whereas scores above 27 are considered normal. For the HC and MCI groups, the 
mean and standard deviation of the subjects’ ages are 63.84.3 and 65.74.9, respectively. All subjects recorded 
their EEGs in the morning while lying down with their eyes closed in a quiet environment. For positioning 19 
EEG channels, the 10–20 International System was  adopted42. Figure 2 illustrates the specific locations of these 
19 channels. At a sampling frequency of 256 Hz, EEG data was recorded using a 32-channel digital EEG appa-
ratus for a period of 30 min. For more information on recording details, we refer the reader  to24,42. Due to the 
potential volunteer fatigue brought on by extended recording, this study only considered the first 10 min of data.

The EEG data underwent pre-processing using the EEGLAB  toolbox43. Initially, a band-pass filter was 
applied to the raw signals, with cut-off frequencies set at 0.5 Hz and 64 Hz. This filter effectively eliminated 
low-frequency drift and high-frequency noise. Subsequently, the data were re-referenced to the common aver-
age, further enhancing the quality of the signals. AC power line noise was then removed using Cleanline, an 
EEGLAB plugin. Independent component analysis (ICA) was used within EEGLAB to remove other artifacts, 

Figure 1.  A high-level overview of the EEG signal processing stages followed in this study.

Figure 2.  Placement of the 19 EEG channels used  from40.
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such as the electromyogram, electrocardiogram, and electrooculogram. Finally, the remaining artifacts were 
removed by visual inspection to ensure a clean dataset. Through visual inspection, we found the EEGs of three 
healthy subjects were still noisy, so they were excluded from our study, making the dataset almost balanced (11 
MCI and 13 HC). Figure 3 illustrates an instance of PSD for the 19-channel EEGs of a healthy control and an 
individual with MCI. The figure also includes electrode maps for six selected frequencies: 3 Hz, 6 Hz, 10 Hz, 
22 Hz, 48 Hz, and 96 Hz.

Next, the EEG signals are divided into equal segments, each containing multiple channels, with each segment 
having a size of ch× N . Here, ch represents the total number of channels, while N corresponds to the number 
of samples per channel. We experimented with different values of segment lengths (2 s, 5 s, and 10 s) and found 
no significant difference in the performance of MCI detection. The noticeable difference was only the speed of 
execution of the signal processing and optimization processes. Therefore, we selected a 10-s segment length to 
reduce the processing time.

Feature extraction (FE)
To extract features from a signal, we propose first to decompose it into sub-signals, each containing distinct 
subband frequencies. Subsequently, one feature is computed from each sub-signal (subband) by applying one 
measure. This approach enables the extraction of relevant information from different frequency components.

Signal decomposition
Typically, EEG signals are partitioned into five distinct subbands known as delta (less than 4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), beta (13–30 Hz), and gamma (greater than 30 Hz)33. Our previous  studies21,34,40 have demon-
strated that EEG signal decomposition contributes to producing effective features and significantly enhances 
classification accuracy. This is because the decomposition process can highlight information hidden in the data. 
Multiple decomposition methods are available for utilization. However, in this study, the focus is on selecting 
decomposition methods that offer a combination of simplicity and effectiveness. The objective is to develop 
feature extraction methods that are both efficient and highly effective. For this purpose, VMD and DWT are 
employed. The methodologies  in21,40 are also adopted in the present study by decomposing each signal segment 
into either variational mode functions (VMFs) using VMD or approximation and detail coefficients using DWT. 
Detailed descriptions of these algorithms can be found  in21,39,44,45. Figure 4 provides an illustrative instance 
of decomposing a segment by means of VMD and DWT. With VMD, the output comprises five VMFs and 
one residual signal. The central frequencies of the generated VMFs (VMF1 to VMF5) are 61.18 Hz, 41.27 Hz, 
24.74 Hz, 11.01 Hz, and 1.25 Hz, respectively. These frequencies correspond to distinct EEG subbands. On the 
other hand, DWT generates an approximate coefficient (A5) and five detail coefficients (D1 to D5). These coeffi-
cients correspond to the subbands of 64–128 Hz, 32–64 Hz, 16–32 Hz, 8–16 Hz, 4–8 Hz, and 0–4 Hz, respectively.

Feature computation
The subsequent step, as illustrated in Fig. 4, involves the computation (extraction) of features from the obtained 
sub-signals. In this study, several measures are investigated for computing features: standard deviation (STD), 
interquartile range (IQR), band power (LBP), Teager energy (TeEng), Shannon entropy (ShEn), transformation-
Shannon entropy (TShEn), sure entropy (SuEn), threshold entropy (ThEn), Katz’s fractal dimension (KFD), and 
Higuchi’s fractal dimension (HFD). These entropy, energy, and band power measures are defined in our previ-
ous  works21,40, whereas Katz’s and Higuchi’s fractal dimensions are defined  in18. It is worth noting that only one 
measure is used to compute the features. In other words, these measures are investigated individually.

When utilizing VMD, seven feature values are derived from each individual segment of a single channel, 
as illustrated in Fig. 4. These features include five from VMFs, one from the residual signal, and one from the 
original signal segment. If there are ch channels, a feature vector of dimensions 7× ch is extracted for each 
multi-channel segment. With DWT, six feature values are extracted: one from A5, four from details (D2–D5), 
and the sixth from the original signal. D1 is excluded because applying a 0.5–64 Hz band pass filter in the pre-
processing stage. The length of the resulting feature vector extracted for each segment is 6 × ch . The process in 

Figure 3.  EEG PSD for a health control participant (left) and a participant with MCI (right).
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Fig. 4 is repeated over all multi-channel segments of all subjects’ data (MCI and HC) to obtain all feature vectors 
(feature matrix). The subsequent step involves implementing classification using the obtained feature vectors.

Classification and performance assessment
In this study, the following techniques are investigated for the problem of classifying MCI versus HC: bagging-
based RF, L/QDA, SVM, and KNN. A detailed examination of these classification techniques can be found  in46–49. 
Classifiers’ parameters are optimized using NSGA-II to enhance the classification accuracy. RF is tested with 
various tree depths ranging from 1 to 35, while SVM is tested with three kernels: linear, polynomial, and radial 
basis function. For KNN, the number of neighbors is tested from 1 to 10. The hyperparameters of each classifier, 
along with the ones that are optimized, are summarized in Table 1.

In order to assess the ability of each model to differentiate between persons with MCI and normal, we employ 
the LOSO CV. LOSO involves dividing the feature matrix, which consists of all the feature vectors, into multiple 
subsets. Each subset contains feature vectors belonging to a single subject. Since there are 24 subjects in our 
study, 24 subsets are created. Hence, 24 iterations are needed to complete the performance evaluation process. 
For each iteration, the feature vectors of a single subject are left out and used as the test set, while the feature 

Variational Mode Decomposition DWT Recon. and Decomposition

Seven features vector from one segment

Resd Vmf5    Vmf4     Vmf3     Vmf2    Vmf1    Orig

Six features vector from one segment

Orig D2 D3 D4 D5              A5

Preprocessed
segment

Preprocessing

Figure 4.  An illustrative instance of extracting features from a 10-s segment.

Table 1.  Hyperparameters of the classification methods.

Method Hyperparameters

RF Type of learner = ‘decision tree’, ensemble = ‘bag’, tree depths = (optimized: 1 to 35)

SVM Type of kernel = (optimized: linear, polynomial, or radial basis function), method = ’least squares’, C = 2e-1

DA Type of discriminant = (optimized: linear, or quadratic)

KNN Number of neighbors = (optimized: 1 to 10), distance = ’optimized: ten types’, rule = ’nearest’
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vectors of the remaining subjects are used to train the model. This procedure is repeated 24 times to ensure that 
the data from each subject is utilized as a test set precisely once. This approach provides a realistic and reliable 
estimate of a model’s performance by systematically evaluating it across different subjects and ensuring that no 
subject’s data is used simultaneously in the training and test  sets50. At each iteration, the classification accuracy 
(CA) is calculated from a test set using the following equation:

where Ntotal is the total number of feature vectors in the test set, and Ncorrect represents the number of feature 
vectors that are correctly classified. To evaluate the model’s performance, a single classification accuracy score 
is obtained by averaging the obtained accuracy scores over the 24 iterations. Similarly, sensitivity, specificity, 
precision, and F-score can be computed using Eqs. (2) to (5) at each iteration, and the results are then averaged 
over the 24 iterations.

where TP stands for true positives, TN for true negatives, FN for false negatives, and FP for false positives. Sen-
sitivity measures the ability of a classifier to accurately identify individuals with the condition, while specificity 
measures the ability of the classifier to correctly identify individuals without the  condition51. The number of 
accurate positive predictions made is measured by the precision metric, which is defined as

Channel and feature selection
EEG channel and feature selection play a crucial role in mitigating the computational burden of signal process-
ing and enhancing classification accuracy by eliminating redundant or irrelevant information. In this study, the 
NSGA is applied to selecting channels and features with the aim of enhancing classification performance. In the 
following, NSGA is briefly discussed, along with an overview of the problems to be tackled.

NSGA algorithm
The genetic algorithm (GA) takes inspiration from Charles Darwin’s natural evolution theory as a basis for its 
functioning. A population in GA is made up of a group of potential solutions known as chromosomes, each of 
which represents a collection of parameters known as genes. GA incorporates a range of tactics aimed at gener-
ating optimal solutions, encompassing population initialization, computation of the fitness function, crossover, 
mutation, survivor selection, and criteria for  termination51.

In optimization problems, particularly ones with many objectives, the pareto-optimal solution—also called a 
non-dominated solution—performs better than all others. NSGA’s initial version uses a niche strategy to preserve 
stable sub-populations of high-quality solutions known as the Pareto front. By employing a non-dominated 
sorting and selection procedure, this method emphasizes potential  candidates52. NSGA-II, the NSGA’s second 
version, was released to solve various shortcomings of the initial version, including population variety, non-elitist 
methods, and computing  complications53. The specifics of NSGA methods are outside the scope of this study, 
and readers are referred  to52,53. In a previous  study40, we explored different EEG channel selection methods and 
concluded that NSGA-II offers a considerable performance improvement over other techniques. Therefore, we 
adopt the NSGA-II method for channel selection in this study.

Optimization problems and variable definition
NSGA-II is employed to tackle two problems, each of which has two objective functions. The first problem is 
to enhance classification accuracy while simultaneously lowering the quantity of EEG channels. On the other 
hand, the second problem centers around lowering the quantity of features while simultaneously enhancing 
classification accuracy. The problems are presented in generic form in Eqs. (6) and (7):

(1)CA =
Ncorrect

Ntotal
× 100%

(2)Sensitivity =
TP

TP + FN
× 100%

(3)Specificity =
TN

TN + FP
× 100%

(4)F − score = 2×
Precision× Sensitivity

Precision+ Sensitivity

(5)Precision =
TP

TP + FP
× 100

(6)The first problem :











Minimize No_ch
Maximize averag CA(channels, Params)
Subject to No_ch ≥ 1

averag CA ≤ 100



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12483  | https://doi.org/10.1038/s41598-024-63180-y

www.nature.com/scientificreports/

where No_ch is the number of EEG channels, while No_feat is the number of features. The average classification 
accuracy is denoted by averagCA , and Params represents parameters for the classifier.

The implementation of NSGA-II requires a proper representation of all variables involved in the above opti-
mization problems. For the first problem (channel selection), as shown in Fig. 5, a chromosome with 21 genes 
(21 variables) is required to represent all channels ch1 , ch2,…,ch19 , in addition to two classifier parameters. The 
channel variables are binary, having two possible values: 1 or 0. A value of 1 signifies that the channel is chosen 
for the classification, whereas a value of 0 signifies that the channel is not chosen. The final two variables store the 
optimized parameter values of the classifier. A similar variable representation is applied for the second problem 
(feature selection). In the case of DWT, a 6 × ch feature vector is represented by 114 genes (an example is shown 
in Fig. 5), while in the case of VMD, a 7 × ch feature vector is represented by 133 genes. One or two variables are 
appended to the chromosome to represent the classifier’s parameters that need to be optimized.

The number of variables required to represent parameters is different for each classifier. In the case of KNN, 
two variables are required, as shown in Figs. 5 and 6. The first variable is for the number of neighbors (K) and 
can take values of 1, 2,…, or 10, while the second is for distance type: 1 for ‘euclidean’, 2 for ‘seuclidean’, 3 for 
‘cityblock’, 4 for ’chebychev’, 5 for ’minkowski’, 6 for ’mahalanobis’, 7 for ’cosine’, 8 for ’correlation’, 9 for ’spearman’, 
and 10 for ‘hamming’. Regarding the SVM classifier, a single variable is employed to designate the kernel type, 
with the options being: 1 for linear, 2 for polynomial, and 3 for RBF. Similarly, when representing the type of 
DA, the value 1 corresponds to linear, and 2 corresponds to quadratic. Regarding the RF, Param denotes the tree 
depth, with permissible values spanning from 1 to 35.

Figure 7 illustrates the complete process, which consists of several phases. The process can be summarized in 
the following few lines. After reading the raw signals, they undergo the preprocessing stage and are then subjected 
to either DWT or VMD decomposition, as previously illustrated (see Fig. 4). Next, features are computed using 
one of the adopted measures, namely STD, IQR, LBP, TeEng, ShEn, TShEn, SuEn, ThEn, KFD, or HFD. The 
computed features are then organized into a feature matrix and stored for subsequent iterative process. The next 
phase is applying NSGA-II to extensively explore a minimum subset of channels (or features) and fine-tune the 
classifiers’ parameters to maximize classification accuracy. The NSGA-II algorithm commences by generating 
an initial population comprising a diverse range of solutions (chromosomes). When it comes to channel selec-
tion, the classification procedure exclusively considers the features associated with channels signified by "1", 
while rigorously excluding the features belonging to channels signified by “0”. In other words, when a channel 

(7)The second problem :











Minimize No_feat
Maximize averag CA

�

features, Params
�

Subject to No_feat ≥ 1
averag CA ≤ 100(%)

Figure 5.  An illustration of how channels and classifier parameters are represented within a chromosome.

Figure 6.  Illustrative instance of how DWT features and classifier parameters are represented within a 
chromosome.
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is represented by 1, all features belonging to that channel are included in the classification. On the other hand, 
when it comes to feature selection, each feature within a channel is represented by one value (0 or 1), and only 
the features that are represented by 1 are considered. In the classification stage, the average CA is computed using 
LOSO CV. During this phase, NSGA-II employs CA and No_ch (or No_feat ), to assess each solution present 
within the current population. NSGA-II proceeds by generating a new population and evaluating the solutions, 
leading to the gradual evolution of a population comprised of potential solutions. This iterative process persists 
until a maximum number of iterations (MaxIter) is reached. In the channel selection problem, the population 
size is set at 200 and MaxIter is 50. The population size of the feature selection problem is configured as 1000 
and MaxIter is 100. The implementation of all operations depicted in Fig. 7 is carried out using Matlab 2022.

Results
As described earlier, all EEG signals are first preprocessed and then split into 10-s multi-channel segments. Each 
participant contributes 60 segments, resulting in a total of 1440 segments from all participants. With VMD, each 
segment is converted into a feature vector consisting of 133 elements, whereas DWT yields a feature vector of 
length 114, gathered from 19 channels. Using the LOSO method, the resulting feature vectors are used for classi-
fier training and testing. The effectiveness of the adopted channel and feature selection method is demonstrated 
using three experiments:

Experiment I: classification using all channels and features,
Experiment II: classification after selecting a subset of EEG channels, and
Experiment III: classification after selecting a subset of features.

Full‑channels‑based results (experiment I)
In this experiment, we evaluate the MCI vs. HC classifier performance when all EEG channels are considered. 
That means all features in each feature vector are included in the classification. Table 2 shows the average LOSO 
classification accuracy of four classifiers using VMD or DWT combined with one of the ten non-linear measures 
mentioned in “Feature extraction (FE)” Section. In this experiment, it is observed that the DWT-based results 
generally outperform the VMD-based results in most cases. The highest accuracy achieved is 89.72% using the 
DWT-STD-LDA combination. For comparison, similar results but with tenfold cross-validation are presented in 
Table 3. The results in Table 2 are considerably worse. For example, the VMD-KFD-KNN combination achieved 
an accuracy of 53.26% with LOSO, but with tenfold, the estimated accuracy is 94.03%. This is anticipated as 
the LOSO ensures that data from one participant isn’t used simultaneously in the test and training groups. In 
contrast, the tenfold (or, in general, k-fold) approach divides the data so that the data of the same participant is 
included in both training and testing groups, causing the accuracy scores to be overestimated. Because LOSO 
avoids this form of data leakage, it is adopted in this study. However, it is worth noting that most of the LOSO 
accuracy scores reported in Table 2 are not deemed satisfactory, especially those obtained using RF and KNN 
classifiers. Therefore, in the following experiments, we aim to improve the classification accuracy by selecting 
subsets of EEG channels and features.

Figure 7.  The complete process of MCI detection with the use of NSGA for the EEG channel, feature selection, 
and the classifier’s parameter optimization.
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EEG channel selection‑based results (experiment II)
In this experiment, we adopt the NSGA-II algorithm to select a subset of EEG channels. In this case, the clas-
sification includes the features that belong to the channels that were chosen but leaves out the features that 
belong to the channels that weren’t chosen. The classifier parameters are also optimized using NSGA-II. In this 
subsection, KNN-based results are presented first, and the results based on other classifiers are discussed later. 
Tables 4 and 5 show the KNN classification accuracy using VMD and DWT, respectively, each combined with 
six selected measures. The tables show that the classification accuracy scores are improved when selecting a few 
suitable channels. For example, in Table 4, the VMD-KFD-KNN classification accuracy when using all chan-
nels is 53.26%. When NSGA-II is applied to select two or three channels, the accuracy improves to 77.36% and 
87.22%, respectively. Another example from Table 5: the DWT-ThEn-KNN combination with NSGA-II achieved 
accuracy scores of 83.75% and 87.86% with two and three selected channels, respectively, while the accuracy of 
using all channels is 53.75%. The dash ‘-’ in Tables 4 and 5 indicates that no subset of channels is returned by 

Table 2.  LOSO classification accuracy with the use of all channels.

Measures

VMD DWT

RFNT=30 LDA SVMLinear KNNK=3 RFNT=30 LDA SVMLinear KNNK=3

STD 63.19 85.21 80.83 68.06 64.86 89.72 88.96 65.56

IQR 63.47 82.22 80.07 67.15 67.36 88.26 81.67 66.81

LBP 64.51 79.51 76.88 63.61 64.68 79.79 86.39 63.40

TeEng 72.99 79.58 74.24 55.28 68.33 80.35 80.14 58.54

ThEn 65.35 70.42 73.19 55.28 68.54 75.42 70.62 53.75

SuEn 64.03 77.85 75.07 62.36 63.75 85.63 85.00 63.47

ShEn 61.25 70.49 72.85 69.24 66.60 85.62 77.15 68.47

TShEn 62.22 70.14 68.82 61.11 65.07 76.81 74.39 60.76

HFD 54.79 54.58 54.17 49.93 56.74 62.99 61.94 51.46

KFD 74.24 74.65 77.36 53.26 72.15 86.46 84.31 54.51

Table 3.  Tenfold classification accuracy with the use of all channels.

Measures

VMD DWT

RFNT=30 LDA SVMLinear KNNK=3 RFNT=30 LDA SVMLinear KNNK=3

STD 95.21 94.65 93.96 94.44 95.51 95.42 95.49 94.24

IQR 94.72 95.00 94.03 93.68 93.54 95.07 95.42 92.99

LBP 95.14 95.28 94.79 94.65 94.93 95.76 95.76 93.40

TeEng 94.51 95.56 95.42 94.44 94.79 95.56 95.76 93.75

ThEn 95.00 95.35 94.72 93.54 94.86 95.69 95.63 93.13

SuEn 95.00 95.28 94.58 94.93 94.03 95.14 95.69 93.33

ShEn 94.65 92.78 93.61 93.61 94.17 93.96 94.24 92.85

TShEn 95.35 95.14 94.03 94.58 94.72 95.56 95.28 93.54

HFD 91.94 90.07 89.58 86.39 92.99 92.08 91.67 93.13

KFD 94.10 94.65 94.24 94.03 94.72 95.07 95.35 93.06

Table 4.  The classification accuracy of the KNN with channel selection (VMD-based FE methods). Significant 
values are in [bold].

KNN Classification accuracy (selected value of k, distance type)

No. of channels VMD + IQR VMD + LBP VMD + TeEng VMD + SuEn VMD + ShEn VMD + KFD

1 68.54 (5,7) 65.63 (5,8) 58.26 (5,2) 61.11 (5,3) 61.81 (3,3) 57.43 (5,6)

2 78.89 (5,3) 79.17 (5,3) 81.32 (5,2) 78.06 (3,2) 79.31 (5,4) 77.36 (5,7)

3 82.99 (5,1) 84.24 (3,2) 86.32 (5,2) 82.99 (5,7) 85.56 (5,1) 87.22 (5,8)

4 85.07 (5,4) 85.90 (3,2) – 86.04 (3,7) 85.69 (5,3) –

5 – – – – 85.90 (3,1) –

All channels 67.15 (3,1) 63.61 (3,1) 55.28 (3,1) 62.36 (3,1) 69.24 (3,1) 53.26 (3,1)
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NSGA-II as it couldn’t find the optimal subset of channels that achieved higher accuracy than that achieved by 
the preceding smaller subset. Regarding the classifier parameters, NSGA-II optimizes the results by selecting 
the two parameters of the KNN classifier: number of neighbors (K) and distance type. In this experiment, the 
most selected value of K is 5, followed by 3. On the other hand, there was no particular distance type that was 
consistently chosen by NSGA-II in most solutions.

Although there is a significant improvement when a few appropriate channels are selected, the accuracy 
scores still need to be improved, as the highest accuracy obtained is 87.22%. Therefore, in the third experiment, 
we investigate the use of NSGA-II for feature selection.

Feature selection‑based results (experiment III)
This experiment is conducted independently from Experiment II. In other words, the feature selection process 
considers all of the 19 EEG channels and not the subset of channels obtained in Experiment II. As discussed in 
“Feature extraction (FE)” Section, each segment within a channel is decomposed into different subbands, and 
one feature is extracted from each subband. In this experiment, it is not a requirement for all features (subbands) 
within a specific channel to be selected. It is possible that only some of the features or even none of them are 
chosen for the classification. In addition, it is possible that features or subbands that are selected for a particular 
channel are different from those of another channel. Table 6 shows the classification results when VMD and 

Table 5.  The classification accuracy of the KNN with channel selection (DWT-based FE methods). Significant 
values are in [bold].

KNN Classification accuracy (selected value of k, distance type)

No. of channels DWT + STD DWT + TeEng DWT + ThEn DWT + SuEn DWT + TShEn DWT + KFD

1 68.96 (5,7) 62.50 (3,8) 57.64 (1,2) 60.21 (5,6) 61.18 (3,7) 59.17 (5,6)

2 81.88 (5,3) 85.35 (3,2) 83.75 (5,2) 79.58 (5,2) 79.10 (5,2) 80.21(5,7)

3 84.24 (5,1) – 87.36 (5,2) 85.00 (5,2) 82.85 (3,2) –

4 86.81 (5,1) – – 86.18 (5,1) 83.19 (3,2) 83.47 (5,2)

5 – – – – – –

6 – – – – – 83.89 (1,8)

All channels 65.56 (3,1) 58.54 (3,1) 53.75 (3,1) 63.47 (3,1) 60.76 (3,1) 54.51 (3,1)

Table 6.  The classification accuracy of the KNN with feature selection (VMD-based FE methods). Significant 
values are in [bold].

No. of Features

Classification accuracy % (no. of channels)

VMD + KFD VMD + TeEng VMD + SuEn VMD + LBP VMD + IQR VMD + ShEn

1 – 61.94 65.42 55.21 57.22 –

2 73.75 87.01 81.39 80.35 80.97 –

3 81.67 88.68 84.10 84.79 84.72 82.92

4 87.57 91.32 88.26 86.39 87.78 84.58

5 89.31 91.94 – 88.33 88.13 85.55

6 90.83 92.22 88.89 88.96 89.24 85.83

7 91.73 – 90.21 90.42 – 86.67

8 91.74 92.29 90.97 90.90 – 88.06

9 92.22 92.43 91.11 91.11 – 88.40

10 – – 91.53 (6) 91.25 89.51 88.47

11 – 92.57 – 91.39 – 88.68

12 – 92.71 (6) – 91.53 89.65 88.96

13 – – – 91.67 89.86 (9) -

14 – – – – – 89.10 (8)

15 – – – 91.74 – –

16 92.29 – – – – –

17 92.36 – – – – –

18 – – – 91.88 – –

19 92.57 (11) – – – – –

20 – – – 91.94 (11) – –

All (133) 53.26 (19) 55.28 (19) 62.36 (19) 63.61 (19) 67.15 (19) 69.24 (19)
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various measures are used. The first column in the table presents the number of features selected, while the other 
columns include the corresponding accuracy for each measure. For comparison purposes, the last row in the 
table contains the classification accuracy when all features collected from 19 channels are included in the clas-
sification. There is a significant improvement over all measures due to using NSGA-II for feature selection. For 
instance, with the VMD-KFD-KNN combination, the accuracy obtained with all 133 features collected from 
all channels is 53.26%, while with 19 features selected from 11 channels, the accuracy is improved to 92.57%. 
Another example is with VMD-SuEn-KNN, where the accuracy when only ten of the 133 features were selected 
is 91.53%, which is significantly better than the 62.36% accuracy obtained when all features are used.

For more investigation, the current experiment is repeated but using DWT, and the results are presented in 
Table 7. Similar to the VMD results, the DWT accuracy results in Table 7 demonstrate significant improvement 
when a few suitable features are selected. For example, in the case of the DWT-STD-KNN combination, the 
accuracy obtained with all 114 features collected from all 19 channels is 65.56%, while with 13 features selected 
from 8 channels, the accuracy increases to 91.04%.

Results using other classifiers
The previous results of experiments II and III were obtained using only the KNN classifier. In this subsection, we 
use different classifiers to demonstrate the efficiency of the suggested EEG channel and feature selection strategy. 
Tables 8 and 9 present the outcomes of EEG channel selection using RF, SVM, DA, and KNN classifiers. Table 8 
includes the results of 24 combinations based on VMD, while Table 9 shows similar results using DWT. The 
numbers enclosed in square and round brackets indicate the selected channels and the parameters, respectively. 
When comparing the results obtained using all channels (see Table 2) with the results presented in Tables 8 and 
9, a clear improvement in classification accuracy scores can be observed across all measures and classifiers. For 

Table 7.  The classification accuracy of the KNN with feature selection (DWT-based FE methods). Significant 
values are in [bold].

No. of Features

Classification accuracy % (no. of channels)

DWT + STD DWT + ThEn DWT + SuEn DWT + TShEn DWT + KFD DWT + TeEng

1 55.63 – 65.28 64.65 60.07 60.21

2 80.83 60.49 81.60 81.67 75.07 86.04

3 86.32 87.85 87.15 86.39 81.67 88.68

4 89.86 88.26 89.93 89.03 86.04 91.11

5 90.28 89.79 91.32 90.07 89.86 91.67

6 90.42 90.49 91.46 91.11 – 92.08

7 90.76 90.69 91.74 – 90.63 92.15

8 – – 91.88 – 91.32 92.36

9 – 91.39 (6) 92.22 – 91.67 92.64

10 – – – – – 93.13 (6)

11 90.90 – – 91.67 – –

12 90.97 – 92.29 - – –

13 91.04 (8) – – 91.74 92.01 –

14 – – 92.71 – – –

15 – – – – 92.15 –

16 – – 92.92 (9) – 92.29 –

17 – – – 91.81 (9) 92.50 (10) –

All (114) 65.56 (19) 53.75 (19) 63.47 (19) 60.76 (19) 54.51 (19) 58.54 (19)

Table 8.  The optimal classification accuracy due to channel selection (VMD-based FE methods).

FE method

Accuracy (selected parameter) [selected channels]

RF SVM DA KNN

VMD + KFD 85.49 (22) [Fp1, F8, Cz, T4, Pz] 90.49 (linear) [Fp1, F8, T3, Cz, C4, T4, P3] 88.68 (linear) [Fp1, C3, Cz, T4, P3, T6] 87.22 (5,8) [Fp1, Cz, Pz]

VMD + TeEng 86.32 (29) [F8, C3, Cz, T4] 91.56 (linear) [Fp1, F8, Cz, T4, Pz] 91.94 (linear) [F8, C3, Cz, T4, T6] 86.32 (5,2) [Fp1, F8, Cz]

VMD + SuEn 81.74 (33) [Fp1, F8, Cz] 89.72 (linear) [Fp2, F8, Cz, T4, P4] 89.58 (linear) [F7, F8, C3, Cz, T4, T5, T6] 86.04 (3,7) [Fp1, F8, Cz, T4]

VMD + LBP 80.56 (33) [Fp1, F8, Cz] 90.00 (linear) [Fp2, F8, Cz] 90.97 (linear) [C3, Cz, P3, Pz, T6] 85.69 (3,2) [Fp1, F8, Cz]

VMD + IQR 82.64 (31) [Fp2, F8, Cz] 90.76 (linear) [Fp1, F7, C3, Cz, T4, T5, P4, 
T6] 90.21 (linear) [F7, F4, F8, C3, Cz, C4, T4, T6] 85.07 (5,4) [Fp1, F8, Cz, T4]

VMD + ShEn 80.42 (29) [Fp2, Fz, F8, Cz] 85.28 (linear) [Fp1, Cz, T4, Pz, P4, O2] 80.97 (linear) [Fp1, F8, C3, Cz, T4, P3, T6, 
O2] 86.67 (5,1) [Fp1, F8, C3, Cz, C4]
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example, in the VMD-KFD-SVM combination, the classification accuracy obtained when all channels are used 
is 77.36%, while an accuracy of 90.49% is obtained when seven channels are selected by NSGA-II. Similarly, 
when using only six channels, the DWT-TeEng-LDA combination achieves an accuracy score of 92.78%, while 
the accuracy with all channels is 80.35%. Among the outcomes in Tables 8 and 9, the highest accuracy of 94.86% 
is obtained by the DWT-ThEn-LDA combination when seven channels are selected by NSGA-II.

In the feature extraction case (Experiment III), Table 10 (VMD-based methods) and Table 11 (DWT-based 
methods) show the optimal classification accuracy scores for the 48 combinations of methods. The tables also 
present how many features are chosen for each combination and how many channels those features belong to. 
The feature selection results in Tables 10 and 11 show an additional improvement in accuracy when compared to 
the channel selection results (Tables 8 and 9). For instance, in the VMD-KFD-SVM combination, an accuracy of 
77.36% is achieved when all channels are considered. A higher accuracy, 90.49%, is obtained once seven suitable 
channels are chosen with all of their features. A further improvement is observed when only 13 features belong-
ing to 11 channels are chosen, leading to an accuracy of 93.89%. Another example from Table 11: the DWT-
TeEng-LDA combination achieves an accuracy of 80.35% when all channels are included for the classification, 
an accuracy of 92.78% when six channels are selected, and an accuracy of 95.83% when 12 features belonging 
to 9 channels are selected. Within the results presented in Tables 10 and 11, four combinations based on DWT 
achieve the highest classification accuracy of 95.83% (highlighted in bold in Table 11).

Table 9.  The optimal classification accuracy due to channel selection (DWT-based FE methods).

FE method

Accuracy (selected parameter(s)) [selected channels]

RF SVM DA KNN

DWT + STD 88.05 (31) [F8, Cz, T4, Pz] 93.54 (1) [Fp1, Fp2, F7, Fz, Cz, T4, 
P4, T6] 92.64 (1) [Fp1, Fp2, C3, Cz, T4, T5, P3] 86.81 (5,1) [Fp1, F8, Cz, T4]

DWT + ThEn 87.64 (35) [F8, C3, Cz] 94.86 (1) [F3, F8, Cz, C4, T4, T5, T6] 94.65 (1) [Fz, F4, F8, Cz, C4, T4, T5, 
T6] 87.36 (5,2) [Fp2, F8, Cz]

DWT + SuEn 87.43 (31) [F8, C3, Cz] 92.85 (1) [Fp1, Fp2, F7, F8, Cz, T4, T6] 92.15 (1) [F8, C3, Cz, T4, T5, P3, T6, 
O1] 86.18 (5,1) [Fp1, F8, Cz, T4]

DWT + TShEn 86.18 (28) [F8, Cz] 91.81 (1) [Fp1, Cz, T4, T5, P4] 91.94 (1) [F8, C3, Cz, T4, T5, T6, O1] 83.19 (3,2) [Fp1, F8, Cz, P4]

DWT + KFD 88.61 (37) [F8, Cz, T4] 91.32 (1) [Fp1, Cz, T4, P3, P4] 90.42 (1) [Fp1, F3, Cz, T4, T5, P3, 
P4, T6]

83.19 (1,8) [Fp1, F3, F8, Cz, 
C4, T4]

DWT + TeEng 87.99 (34) [F8, Cz, C4, T4] 92.64 (1) [Fp1, F8, Cz, T4, T6] 92.78 (1) [F8, C3, Cz, T4, T6, O2] 85.35 (3,2) [F8, Cz]

Table 10.  The optimal classification accuracy due to feature selection (VMD-based FE methods).

FE method

Accuracy (no. of selected features, no. of channel)

RF SVM DA KNN

VMD + KFD 90.83 (14, 8) 93.89 (13, 11) 92.99 (17, 10) 92.57 (19, 11)

VMD + TeEng 88.82 (14, 9) 95.28 (8, 7) 95.63 (15, 10) 92.71 (12, 6)

VMD + SuEn 87.29 (10, 7) 94.51 (13, 9) 94.79 (19, 14) 91.53 (10, 6)

VMD + LBP 87.50 (6, 5) 95.00 (21, 13) 95.48 (19, 13) 91.94 (20, 11)

VMD + IQR 88.54 (6, 5) 94.38 (17, 11) 94.31 (17, 11) 89.86 (13, 9)

VMD + ShEn 88.19 (10, 9) 92.50 (23, 13) 90.14 (23, 14) 89.10 (14, 8)

Table 11.  The optimal classification accuracy due to feature selection (DWT-based FE methods).

FE method

Accuracy (no. of selected features, no. of channel)

RF SVM DA KNN

DWT + STD 91.18 (9, 5) 95.56 (14, 11) 95.42 (8, 8) 91.04 (13, 8)

DWT + ThEn 90.63 (9, 6) 95.83 (12, 8) 95.63 (13, 8) 91.39 (9, 6)

DWT + SuEn 90.28 (14, 10) 95.83 (10, 8) 95.76 (9, 8) 92.92 (16, 9)

DWT + TShEn 90.35 (12, 6) 95.35 (13, 9) 95.42 (14, 10) 91.81 (17, 9)

DWT + KFD 90.14 (18, 12) 95.69 (11, 10) 95.00 (12, 10) 92.50 (17, 10)

DWT + TeEng 90.14 (12, 8) 95.83 (9, 8) 95.83 (12, 9) 93.13 (10, 6)
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Discussion
The present study focuses on selecting EEG channels (and features) using a multi-objective optimization method 
and computing the accuracy results based on the LOSO CV. The goal is to progress toward building an accurate 
MCI detection system with a small number of electrodes and features. For the purpose of demonstrating the 
usefulness of using the multi-objective NSGA-II optimization method for selecting EEG channels and features, 
three experiments have been conducted. In the first experiment, all channels and features were used for clas-
sification. The second experiment uses NSGA-II to select a subset of EEG channels. The third experiment uses 
NSGA-II to select suitable features belonging to a number of channels. To make the investigation general, two 
decomposition methods (VMD and DWT) that each produce signals with different frequency bands, various 
measures, and four classifiers are employed, building a lot of combinations (48 models).

By comparing the results of Experiment I (Table 2) with those of Experiment II (Tables 4 and 5), the classifi-
cation accuracy scores are improved when selecting a few suitable channels. This pattern of improved accuracy 
with channel selection can be observed across other combinations listed in Tables 4 and 5. These outcomes are 
in line with the  studies54,55 that reviewed EEG channel selection for different tasks and concluded that selecting 
informative channels while excluding noisy or irrelevant ones reduces the impact of noise and results in improved 
accuracy. To illustrate the specific channels involved, Fig. 8 displays the channel topographies corresponding to 
the best solution (an optimal subset of channels) for each feature extraction method that yields the maximum 
classification accuracy. The figure shows that VMD + IQR, DWT + STD, DWT + SuEn, and VMD + SuEn fea-
ture extraction methods lead to identical solutions with channels Fp1, F8, Cz, and T4. Other feature extraction 
methods lead to different solutions, as each method may extract unique biomarkers. However, as shown in the 
figure, some channels, such as Fp1, F8, and Cz, appear in most solutions.

In addition, when looking at the results of Experiment III (Tables 6 and 7), the improvement in accuracy 
scores can also be observed across other combinations. According  to55,56, certain EEG channels or specific 
frequency bands may contain more discriminative information related to the task at hand. Therefore, feature 
selection can improve accuracy by selecting the most relevant features, reducing dimensionality, reducing noise, 

Figure 8.  The selected channels that produce the maximum classification accuracy with KNN and twelve FE 
methods.



15

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12483  | https://doi.org/10.1038/s41598-024-63180-y

www.nature.com/scientificreports/

simplifying the model, and considering task-specific requirements. Figure 9 shows the optimal subset of features 
for each combination in Table 6, along with the number of channels they are associated with. Several observations 
can be derived from this figure. First, all solutions are different because of the different measures adopted for 
feature extraction. It can also be observed that the features contributed by a particular channel could be differ-
ent from those of other channels. For example, in the VMD-KFD-KNN combination, channel Fp1 contributes 
three features (Rest, Vmf1, and Orig), channel F8 contributes only one feature (Vmf2), and channel Fp2 does 
not contribute any features. Furthermore, Fig. 9 highlights that channel Cz has the most significant contribu-
tion with the highest number of features, followed by F8. This observation may indicate the importance of these 
particular channels for MCI versus HC classification. The accuracy improvement can also be observed across the 
other combinations listed in Table 7. The DWT-TeEng-KNN combination with NSGA-II achieves the highest 
classification accuracy. With this combination, only ten features selected from six channels lead to an accuracy 
of 93.13%. Figure 10 shows the optimal subset of features for each combination in Table 7, along with their cor-
responding channels. The same observations derived from Fig. 9 can also be derived from Fig. 10.

By reviewing the results of the last two experiments (Experiment II and Experiment III), two additional 
significant observations can also be derived. First, we note that optimizing the features (or subbands) with each 
individual channel is more effective for improving accuracy than optimizing the channels. Since each channel’s 
signal is decomposed into sub-signals, each with a different subband, selecting only the useful sub-signals with 
their corresponding subbands is more effective in improving accuracy. The second observation, which can be 
noted from Figs. 9 or 10, is that the selected features in a specific channel differ from one measure to another 
because of the unique information extracted by each measure. Furthermore, in a certain measure, the selected 
features in Fig. 9 (VMD-based decomposition) differ from those in Fig. 10 (DWT-based decomposition). This is 
because, as discussed in “Signal decomposition” Section, the resulting subbands produced by VMD differ from 
those produced by DWT.

When applying other classifiers than KNN, the classification accuracy scores are also improved in both 
Experiments II and III. Regarding the results of Experiment II listed in Tables 8 and 9, a notable observation 
is that SVM and DA classifiers outperform RF and KNN across all scenarios. It is worth mentioning that when 
RF and KNN are employed, they tend to select fewer channels than SVM and DA. By comparing the results 
of Experiment II and Experiment III, the feature selection results in Tables 10 and 11 (results of Experiment 

Figure 9.  The optimal subsets of features and the channels they belong to when KNN and VMD are used.
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III) show an additional improvement in accuracy when compared to the channel selection results presented in 
Tables 8 and 9 (results of Experiment II).

Accordingly, the results demonstrate that selecting suitable features is more effective for improving accuracy 
than optimizing the channels. It is of interest to see which features are most important. To facilitate the discus-
sion, let us recall the feature extraction process described in “Signal decomposition” Section. As shown in Fig. 4, 
each signal segment within a particular channel is decomposed into sub-signals, each having a unique frequency 
band. One feature is extracted from each sub-signal or band. An additional feature is computed from the original 
signal that contains the complete frequency band. To determine the most relevant features, the number of times 
each feature (in other words, frequency band) is selected in each channel is computed across all the combinations. 
The results are presented in Fig. 11 for VMD-based combinations and Fig. 12 for DWT-based combinations. In 
Figs. 11 and 12, each cell has a value representing the number of times a certain feature is chosen from the optimal 
feature subsets. Several observations are worth discussing in Figs. 11 and 12. First, no specific frequency band 

Figure 10.  The optimal subsets of features and the channels they belong to when KNN and DWT are used.

Figure 11.  The frequency bands’ feature selection counts across the 24 VMD-based combination methods.
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is the most selected over all channels, demonstrating that no specific frequency band has absolute dominance 
across all channels. The figures also show that within a particular channel, some features are more selected than 
others. In other words, not all features or bands within a specific channel are equally important for extracting 
features. By focusing on channel columns, the features belonging to channel Cz are the most selected in both 
figures. This indicates that most of the frequency bands of channel Cz are useful for extracting features but 
have different levels of importance. Following Cz, channels F8 and T4 also have some bands that are frequently 
selected. This outcome aligns with the results in Fig. 8, showing that Cz, F8, T4, and Fp1 are the most chosen 
channels. By looking at the rows of Figs. 11 and 12 (signal bands), several observations can also be derived. The 
first observation is that features extracted from the original signal segment (Orig) are frequently selected, and 
in some channels, they are the most frequently selected features. This is primarily because the original segment 
contains the complete frequency band (0.5–65 Hz) and retains the original information within this band. In addi-
tion to the original segment feature, some features from other subbands are also frequently selected within the 
optimal solutions. This indicates that the information introduced by the complete frequency band is insufficient 
to achieve the highest accuracy and confirms that more information can be gained from the  subbands34,40. In 
other words, hidden patterns at those frequencies can be uncovered by decomposing a signal by VMD or DWT 
into sub-signals with smaller frequency bands. Since the subbands produced by VMD are different from those 
produced by DWT, the values in Figs. 11 and 12 differ. The values are also different within a figure from band 
to band. For example, by looking at Fig. 12, it can be noted that features extracted from the frequency subbands 
32–64 Hz (D2), 16–32 Hz (D3), and 4–8 Hz (D5) are frequently selected for channel Cz. In contrast, for channel 
F8, the features belonging to the original segment and A5 (0.5–4 Hz) are the most frequently selected. For the 
T4 channel, D5 and A5 features are the most selected.

Comparison with the literature
Of the 48 combinations (models) built in the present study, the results of eight are summarized in Tables 12 and 
13. Table 12 includes the combinations with the corresponding classification accuracy for the three experiments. 
Compared to the accuracy scores obtained using all channels (Experiment I), NSGA-II succeeded in selecting 
fewer channels (Experiment II), leading to higher accuracy scores. The accuracy was further improved when a 
few suitable features were selected (Experiment III). In addition to the classification accuracy obtained based on 
Experiment III, Table 13 also includes the corresponding sensitivity, specificity, precision, and F-score results. 
Table 13 shows that the ability of the models to identify healthy people is greater than the ability to identify 
people with MCI. To compare the current results with those in the literature, three aspects are considered: EEG 
channel selection, feature selection, and validation methods. Table 14 summarizes the results of methods in the 
literature that addressed the problem of MCI versus HC classification in the resting state.

Figure 12.  The frequency bands’ feature selection counts across the 24 DWT-based combination methods.

Table 12.  Accuracy improvement in eight combinations when NSGA-II is used for EEG channel and feature 
selection. No_ch: number of selected channels, and No_feat: number of selected features.

Combination

Classification Accuracy based on:

All channels (No_ch) Subset of channels (No_ch) Subset of features (No_feat, No_ch)

VMD-KFD-RF 74.24 (19) 85.49 (5) 90.83 (14,10)

VMD-TeEng-SVM 74.24 (19) 91.56 (5) 95.28 (8,7)

VMD-TeEng-DA 79.58 (19) 91.94 (5) 95.63 (15,10)

VMD-SuEn-KNN 62.36 (19) 86.04 (4) 91.53 (10,6)

DWT-ThEn-RF 68.54 (19) 87.64 (3) 90.63 (9,6)

DWT-TeEng-SVM 80.14 (19) 92.64 (5) 95.83 (9,8)

DWT-ThEn-DA 75.42 (19) 94.65 (8) 95.63 (13,8)

DWT-TeEng-KNN 58.54 (19) 85.35 (2) 93.13 (10,6)
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In the context of EEG channel or feature selection, only the  studies24,25,27,29,31,32,37 have explored various strate-
gies to achieve this goal. These strategies include area-based  division24,25, incremental  evaluation27, Fisher’s class 
separability  criterion29, manual symmetric  selection31, backward-elimination32, and the ANOVA  test37.

Regarding EEG channel selection, there have been attempts  in24,25,27,31 to decrease the number of channels. In 
the  studies24,25, the scalp area was partitioned into five subareas, and classification based on these subareas was 
performed.  In24, similar accuracies of 88.89% were obtained for each subarea, with the exception of the frontal 
subarea, which attained a lower score of accuracy.  In25, using the same dataset  as24, the best accuracy, 88.9%, was 
attained using the left-temporal subarea. In line  with27,31, the present study aimed to identify the most pertinent 
channels in various scalp areas. The  study27 examined channel reduction by employing the incremental evaluation 
methodology for identifying the optimal subset of channels. The maximum accuracy of 96.94% was attained only 
in the case of including all 19 channels for the classification. In other words, no channel subset is obtained that 
achieves higher accuracy than that attained using the entire set of 19 channels. Researchers  in31 evaluated the 
classification accuracy by manually selecting channel subsets that are restricted to being symmetric combinations 
of two, four, six, and eight channels. The highest accuracy of 86.85% was attained when a symmetric combination 
of eight channels was used. Considering only symmetric channel pairs ignores other channel combinations that 
may lead to better accuracy scores.

Table 13.  Average classification performance (%) in eight combinations with the features selected by 
NSGA-II.

Combination Accuracy Sensitivity Specificity Precision F-score

VMD-KFD-RF 91.83 89.02 92.56 90.47 87.84

VMD-TeEng-SVM 95.28 90.61 99.36 99.17 94.70

VMD-TeEng-DA 95.63 91.10 99.49 99.34 95.02

VMD-SuEn-KNN 91.53 88.94 93.72 92.30 90.59

DWT-ThEn-RF 90.63 88.27 92.30 90.64 89.32

DWT-TeEng-SVM 95.83 90.91 100.0 100.0 95.24

DWT-ThEn-DA 95.63 90.76 99.74 99.67 95.00

DWT-TeEng-KNN 93.13 90.91 95.00 93.90 92.38

Table 14.  Comparison of our results with those reported in the literature for the MCI versus HC classification.

References Feature extraction methods Classification methods Data used No. of channels CA (%)

24 Power, relative power, power 
ratio for different bands Neurofuzzy + KNN 11 MCI/16 HC 3 88.89% using hold-out validation

36 DWT Decision Tree (C4.5) Own data,37MCI/ 23 HC 19 93.3% using tenfold CV83.3% 
using hold out

25 
Supervised dictionary learning 
with spectral features, named 
CLC-KSVD

Same  in24 3 88.9% using hold-out validation

26 Power spectral features KNN Same  in24 19 81.5%

27 SWT + statistical features SVM Data  from24, 11 MCI/ 11 HC 19 96.94% based on intra-subject 
validation

28 Permutation entropy and auto-
regressive ELM Same  in24 19 98.78% using tenfold CV

29 kernel Eigen-relative-power SVM 24 MCI/ 27 HC 5 90.2% using LOSO CV
38 DWT + PSD + coherence Bagged Trees Same  in24 19 96.5% using fivefold CV

39 Power intensity for each high and 
low-frequency band KNN Same  in36 19 95.0% using tenfold CV

30 – LSTM Same  in24 19 96.41% using fivefold CV

31 Several features using 10 
measures SVM Private data,21 MCI/ 21 HC 8 86.85% using LPSO CV

32 Spectral, functional connectivity, 
and nonlinear features SVM 18 MCI/ 16 HC 19 99.4% using tenfold CV

33 DWT leader AdaBoostM1 Same  in32 19 93.50% using tenfold CV
34 EMD + Log energy entropy KNN Data  in24,32 29 MCI/ 32 HC 19 97.60% using tenfold CV
35 – CNN Same  in24 19 84.28% using LOSO CV

Present study VMD + TeEng SVM Data  from24, 11 MCI/ 13 HC 7 95.28% and 95.83%, respectively, 
using LOSO CV and NSGA-II

DWT + TeEng 8
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Regarding feature selection, only three  studies29,32,37 have addressed the problem of decreasing the number of 
features for MCI vs. HC classification.  In29, the authors employed Fisher’s criterion to identify the most suitable 
channels and subbands. As a result, the highest accuracy of 90.25% was achieved by seven features extracted 
from five different channels in various scalp areas (prefrontal, frontal, left, and right temporal).  In32, 431 feature 
values were aggregated from all channels using different measures, and a backward-elimination method was 
employed to select 361 feature values that belong to different channels in various scalp regions, achieving an 
accuracy of 99.4%.  In37, the ANOVA test was employed for selecting features, but based on different measures.

Selecting optimal channel or feature combinations is a complex task that necessitates the utilization of effective 
methods. In our previous  study40, several methods have also been investigated to select the channels leading to 
the highest MCI detection accuracy, such as incremental evaluation, backward-elimination, forward-elimination, 
and heuristic optimization methods. The results demonstrated that the heuristic optimization methods have a 
greater ability to select a few suitable channels. The limitation  of40 is that performance validation was performed 
using k-fold CV, similar to most previous studies in Table 14 27,28,30,32–34,36–38. As previously discussed, intra-subject 
validation methods, such as k-fold, do not mimic real-world scenarios and potentially introduce a classification 
bias. To avoid overestimation of accuracy caused by data leakage, inter-subject validation methods are required. 
Among the methods in Table 14, the  studies24,25,29,31,36 have validated their models using different inter-subject 
validation methods: hold-out24,25,36,  LPSO31, and  LOSO29. LOSO offers a more comprehensive approach com-
pared to holdout validation and LPSO because it guarantees that all subjects are used for testing in a number of 
iterations equal to the total number of subjects.

Of all the previous studies,  only29 used LOSO for  validation29 also explored selecting the best channels and 
frequency subbands for identifying MCI.  In29, EEG segments were partitioned into several subbands, from 
which features were extracted using four feature extraction methods, each depending on relative power. The 
outcomes  of29 demonstrated that for each feature extraction method, different subbands and channels were 
selected for optimal classification accuracy. For instance, with the first feature extraction method, the highest 
accuracy was obtained using a single channel (Fp2) with the subbands of beta and gamma, while with the second 
method, the highest accuracy was attained using five channels: Fp1 (theta and gamma), Fp2 (delta, theta, beta, 
and gamma), F3 (delta), Fz (beta), and Cp4 (delta). With the other two methods, the relative power features 
were extracted based on channel pairs (between-electrode relative power). For instance, with the third feature 
extraction method, the highest accuracy was obtained using the features extracted from Fp2-F7 (delta), Fp2-T3 
(gamma), Fp2-T5 (alpha), Fp2-Oz (alpha), Fp2-T6 (alpha), and F7-T6 (alpha). These outcomes demonstrate 
that no specific frequency band is the most selected over all channels, which we also demonstrated in Figs. 11 
and 12. Furthermore, in the present study, based on the 48 combination methods, the results also demonstrated 
that the selected subbands and channels are different from decomposition method to decomposition method, 
measure to measure. Figures 9 and 10 include the optimal feature subsets of twelve combination methods when 
the KNN classifier is used.

Accordingly, the main advantages of the present study can be summarized as follows: Firstly, a more effective 
EEG channel and feature selection approach is employed compared to the approaches utilized  in24,25,27,29,31,32,37. 
Specifically, the study utilizes a heuristic optimization method, NSGA-II, for selecting channels and features, as 
well as classifier parameters. Furthermore, the study implements the LOSO CV technique for validation purposes, 
which mimics real-world scenarios and ensures more reliable and unbiased evaluations. Additionally, the study 
introduces effective and efficient feature extraction methods to develop appropriate biomarkers for detecting 
MCI. As a result, accurate and practical models are developed with a reduced number of electrodes and features. 
Moreover, the developed models are evaluated on a publicly available dataset that has also been utilized  in24–28,30,35. 
When comparing the outcomes of the present study with those of studies that adopted inter-subject validation 
 methods24,25,29,31,35, it is evident that the outcomes of the present study, which employs systematic optimization 
for channel and feature selection, surpass the outcomes of those studies (refer to Table 14).

Finally, there are issues related to the dataset that need to be highlighted: dataset size, data availability, and 
unified evaluation. The present study employed a public dataset to evaluate the proposed methods; however, there 
is still a need to evaluate the methods with a larger dataset. There is a real challenge concerning the availability of 
MCI datasets. Most of the MCI datasets employed in the literature are either private or small in size. Furthermore, 
the use of different datasets is a common shortcoming of these types of studies, which renders the comparison of 
study results unfair. Therefore, it is recommended to establish a standard framework for assessing the researchers’ 
suggested methodologies, which may include the utilization of open-source and large-scale datasets.

Conclusion and future work
The study focuses on selecting EEG channels and features using a multi-objective optimization method for MCI 
detection and computing the accuracy using the LOSO CV. The goal is to progress toward building an accurate 
and practical MCI detection system with a low number of electrodes and features. The study introduces effective 
and efficient VMD and DWT-based methods for feature extraction. One of these methods is combined with one 
nonlinear measure. To ensure a comprehensive investigation, various measures and classifiers were employed, 
resulting in 48 diverse model combinations. Various experiments were conducted to showcase the efficacy of the 
multi-objective NSGA-II optimization method in the selection of EEG channels and features.

The results demonstrate the effectiveness of the NSGA-II approach in achieving improved classification 
performance. By using a low number of suitable EEG channels, the LOSO CV-based results showed significant 
enhancements compared to using all channels. Moreover, the results were further improved by selecting rel-
evant features from different channels. For instance, when using VMD, Teager energy, and SVM, the accuracy 
increased from 74.24% (using all channels) to 91.56% with only five selected channels. In addition, by selecting 
eight features from seven channels, the accuracy was further improved to 95.28%. Similarly, in the case of DWT 
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and Teager energy, the accuracy increased from 80.35% (using all channels) to 92.64% with five selected chan-
nels. With the selection of nine features from eight channels, the accuracy further improved to 95.83%. These 
promising results highlight the potential of accurately diagnosing MCI by employing heuristic optimization 
methods to select a minimal number of suitable electrodes and features.

In this study, only one type of FE measure was used in each model. It would be interesting to study the impact 
of mixing different types of measures. In this case, heuristic optimization methods can also be used to find the 
optimal set of features with the objective of improving detection accuracy. To better understand the features 
chosen by the best accuracy results, an EEG source reconstruction technique can be used after selecting the best 
channels and features.

Data availability
The datasets used are available online at https:// misp. mui. ac. ir/ en/ eeg- data-0.
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