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Estimation of patient‑reported 
outcome measures based 
on features of knee joint muscle 
co‑activation in advanced knee 
osteoarthritis
Iqram Hussain 1,2,10, Sung Eun Kim 3,10, Chiheon Kwon 4, Seo Kyung Hoon 5, Hee Chan Kim 1,6,7, 
Yunseo Ku 4,5* & Du Hyun Ro 3,8,9*

Electromyography (EMG) is considered a potential predictive tool for the severity of knee 
osteoarthritis (OA) symptoms and functional outcomes. Patient‑reported outcome measures 
(PROMs), such as the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and 
visual analog scale (VAS), are used to determine the severity of knee OA. We aim to investigate muscle 
activation and co‑contraction patterns through EMG from the lower extremity muscles of patients 
with advanced knee OA patients and evaluate the effectiveness of an interpretable machine‑learning 
model to estimate the severity of knee OA according to the WOMAC (pain, stiffness, and physical 
function) and VAS using EMG gait features. To explore neuromuscular gait patterns with knee OA 
severity, EMG from rectus femoris, medial hamstring, tibialis anterior, and gastrocnemius muscles 
were recorded from 84 patients diagnosed with advanced knee OA during ground walking. Muscle 
activation patterns and co‑activation indices were calculated over the gait cycle for pairs of medial and 
lateral muscles. We utilized machine‑learning regression models to estimate the severity of knee OA 
symptoms according to the PROMs using muscle activity and co‑contraction features. Additionally, 
we utilized the Shapley Additive Explanations (SHAP) to interpret the contribution of the EMG 
features to the regression model for estimation of knee OA severity according to WOMAC and VAS. 
Muscle activity and co‑contraction patterns varied according to the functional limitations associated 
with knee OA severity according to VAS and WOMAC. The coefficient of determination of the cross‑
validated regression model is 0.85 for estimating WOMAC, 0.82 for pain, 0.85 for stiffness, and 0.85 
for physical function, as well as VAS scores, utilizing the gait features. SHAP explanation revealed 
that greater co‑contraction of lower extremity muscles during the weight acceptance and swing 
phases indicated more severe knee OA. The identified muscle co‑activation patterns may be utilized as 
objective candidate outcomes to better understand the severity of knee OA.
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Knee osteoarthritis (OA) is a leading cause of discomfort and disability among elderly people. Moreover, sar-
copenia results in reduced mobility, function, and quality of life and positively correlates with the severity of 
 osteoarthritis1. Patient-reported outcome measures (PROMs) are assessment tools consisting of standardized 
questionnaires that allow patients to rate their level of pain, stiffness, difficulty with various activities of everyday 
living, and overall quality of life. Knee OA is characterized by progressive pain, stiffness, and functional impair-
ment. The Western Ontario and McMaster University Osteoarthritis (WOMAC) index has been the gold standard 
for determining knee OA severity assessing pain, stiffness, and physical  function2. The visual analog scale (VAS) 
is a 10-point scale used to assess pain  intensity3,4. The results of PROMs are utilized to design treatment plans, 
evaluate treatment effectiveness, and understand disease prognosis.

Understanding the intrinsic mechanisms of knee OA-impaired biomechanics has led to the importance of 
understanding neuromuscular control given its apparent role in reinforcing knee  OA5,6. Surface electromyo-
graphy (EMG) revealed slight changes in muscle activation in mild to moderate knee OA patients compared to 
healthy controls during  gait7,8, with larger differences between patients with more severe OA and asymptomatic 
 individuals9,10. Changes in muscle activation patterns and increases in co-activation of muscle pairs are thought 
to occur in order to reduce medial compartment loading or improve joint stability. Studies investigating muscle 
activation patterns across groups with knee OA reported that higher muscle co-contractions were linked to the 
severity of knee  OA10–14 and higher muscle  forces10,15 to adjust for symptoms and joint instability. Information 
regarding the relationship between PROM-reported knee OA symptoms, functional outcomes, and neuromus-
cular and gait features is limited. Hence, investigating these measures can potentially contribute to objective 
biomarkers of knee OA symptoms and provide an understanding of the relationship between disease symptoms 
and gait.

Gait assessment is an effective method to identify functional limitations associated with knee OA and under-
stand the relationship between disease symptoms and gait quality. Gait assessment utilizes 3D motion camera, 
force plates, pressure mats, and wearable inertial measurement  sensors16,17. Although radiography is extensively 
utilized for diagnostics, a poor association was found between the radiographic grades utilized to diagnose knee 
OA progression and  symptoms18. Previous studies have investigated the relationship between gait muscle activa-
tion and knee OA severity based on the Kellgren–Lawerence (KL)  grades5,19 and classification of the KL grades 
using machine-learning approach based on key gait  features20.

Machine learning (ML) and deep learning (DL) techniques have found extensive application across vari-
ous domains, gait disorder, disease diagnosis, drug discovery, personalized treatment planning, and predictive 
 analytics21–24. However, most ML models are considered “black boxes”, lacking easy interpretability by healthcare 
 professionals25. To address this issue, explainable artificial intelligence (XAI) has emerged as an approach to 
enhance the interpretability and trustworthiness of ML  models22,23,25,26, utilizing most popularly, local feature 
 attributions27 and the Shapley  value28,29.

We hypothesized that gait features on EMG would vary according to the severity of knee OA symptoms as 
indicated by the WOMAC and VAS scores. Although there are previous studies on the gait features of patients 
with knee OA, there was a subjective limitation in the degree of pain and discomfort in each  patient5,13. There-
fore, we characterized the key muscle activation and co-contraction features associated with the degree of knee 
OA severity according to the WOMAC and VAS scores. Moreover, we estimated the severity of knee OA using 
machine-learning methods and identified the neuromuscular features that contributed the most to estimating 
the self-reported symptoms (WOMAC pain and stiffness and VAS) and functional outcomes (WOMAC physical 
function) through XAI approaches based on Shapley value. The key contributions of this study are summarized 
as follows:

• We explored the EMG gait features of patients with knee OA who were scheduled to undergo total knee 
arthroplasty (TKA) and investigated features of muscle activation in mild, moderate, and severe knee OA 
according to the WOMAC and VAS.

• By leveraging machine learning and explainable AI techniques, our proposed interpretable knee osteoarthritis 
severity estimation model offers clinicians insights into the contribution of electromyography (EMG) gait 
features in knee OA severity estimation, enhancing clinical decision-making.

Experiment and methodology
The methodology for estimating knee OA severity according to PROMs through EMG using a machine-learning 
regression approach is shown in Fig. 1. The experimental scenario and data acquisition process are detailed to 
provide context. Subsequently, the methodology involves the extraction of features from EMG and temporospa-
tial variables. A specific feature selection method is applied to enhance the model’s precision. The estimation of 
WOMAC and VAS is accomplished through a machine-learning model. Furthermore, the methodology incor-
porates SHAP to elucidate the contribution of EMG features, offering interpretability to the regression model’s 
outcomes. Details are presented in the following subsections.

Demographics of patients
The Institutional Review Board of Seoul National University Hospital (SNUH) has approved this study (IRB num-
ber: 1810-004-974). The procedures were in accordance with the ethical standards of the responsible committee 
on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008. All partici-
pants provided the written informed consents. Overall, 84 patients with knee OA (mean age: 69.81 ± 6.07 years, 
87% women) were recruited for this study in the Laboratory of Human Motion Analysis, SNUH between Janu-
ary 2010 and December 2015. Nine Subjects were excluded due to a lack of PROMs; data from 75 subjects were 
investigated in this study. The participants were patients with advanced knee OA (Kellgren–Lawrence grade 3 
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or 4) and scheduled to undergo TKA. Patients were confirmed to have knee OA based on magnetic resonance 
imaging or computed tomography scans. Patients with any prior bone surgery in the lower extremities, spine 
disease, hip, or ankle arthritis detected on radiography, knee inflammatory or traumatic arthritis, cognitive 
impairment, or depression were excluded.

Data acquisition
Raw EMG data were acquired using Telemyo 2400R G2 (Noraxon Inc., Scottsdale, AZ, USA) with Noraxon 
MyoResearch XP Master Edition 1.08.17 (Noraxon Inc., Scottsdale, AZ, USA) at a sampling rate of 1500 Hz. 
The system consists of a Telemyo 2400R G2 receiver, Telemyo 2400 T G2 transmitter with eight channels, pre-
amplified lead wires, and disposable electrodes. The acquisition of motion data was done using a 3D optical 
motion capture system (Motion Analysis Corp., Santa Rosa, CA, USA) at 120 Hz sampling rate. Gait phase 
information was obtained using two force plates embedded in the floor over the 9-m walkway. An operator 
placed reflective markers and EMG electrodes on the subjects based on the Helen Hayes set. The subjects walked 
for a few minutes to familiarize themselves with the setting. EMG data was recorded from four major lower 
extremity muscles of both lower limbs: rectus femoris (RF), medial hamstring (MH), tibialis anterior (TA), and 
gastrocnemius (G). EMG data were coupled and recorded by the motion capture program Cortex 8.1.0 (Motion 
Analysis Co., Santa Rosa CA). These muscle selections were made due to their primary roles in supportive and 

Figure 1.  A methodological overview of electromyography (EMG)-based estimation of knee osteoarthritis 
(OA) severity using a machine-learning regression approach. (a) Description of patient-reported outcome 
measures (Western Ontario and McMaster Universities Osteoarthritis [WOMAC] and visual analog scale 
[VAS]). (b) Experimental scenario and data acquisition. (c) Feature extraction of EMG and temporospatial 
variables. (d) Feature selection method. (e) Estimation of WOMAC and VAS using machine-learning model. (f) 
Explanation of EMG feature contribution in ML prediction model using Shapley additive explanations (SHAP).
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propelling forces during the gait  process30. The motion and EMG data for each joint were averaged after five or 
six trials of the entire  walk31.

Pre‑processing
Post-processing of EMG raw data was performed using Orthotrak 6.6.4 (Motion Analysis Co., Santa Rosa, CA, 
USA). EMG raw signals were initially filtered with a bandpass filter (20–450 Hz). Then, we applied a band-stop 
filter to remove 60 Hz AC noise from the EMG signal. Moreover, we calculated the signal-to-noise ratio (SNR) for 
each signal to remove motion artifacts by comparing raw EMG signals with undisturbed EMG signals obtained 
immediately after muscle contraction. EMG epochs with an SNR below 18 dB, indicating inadequate signal 
quality, were excluded from the  dataset32,33. Then, all kinematic and EMG signals were full-wave bi-directional 
rectified and filtered using a second-order low-pass Butterworth filter at a cutoff frequency of 6 Hz to remove 
 noise34,35. The resulting waveform was then dilated using a linear interpolation scheme to match the sample rate 
of the video and to create a linear gait envelope for each muscle. The EMG envelope was obtained by normal-
izing EMG to 100% of the gait cycle based on temporal markers (heel strikes and toe-offs) and subdivided into 
the stance phase and swing  phase36.

Categorization of knee OA severity using PROMs
Categorization of PROMs-based knee osteoarthritis severity has adapted to the investigation of the correlation 
between feature trends and the severity of knee OA  symptoms17,37,38. The WOMAC index is a self-administered 
PROM tool that includes 24 items containing pain, stiffness, and physical function, with each question scored 
from 0 to 4 representing the severity of  symptoms2. The VAS is a PROM tool with a 10-point horizontal line for 
measurement of the severity of pain and discomfort faced by patients with knee  osteoarthritis3. All participants 
answered the WOMAC Questionnaires with three  subscales39. The possible score ranges from 0 to 20, 0 to 8, 
0 to 68, and 0 to 96 for pain, stiffness, physical function, and WOMAC total score, respectively. The WOMAC 
score categorizes the severity of knee osteoarthritis (OA) into different levels (none, mild, moderate, severe, 
and extreme) based on the PROM obtained in pain, stiffness, and physical function  dimensions2. We classified 
the severity of knee OA based on the WOMAC score into three severity groups: mild, moderate, and severe to 
investigate the correlation between feature trends and the severity of knee OA symptoms as proposed in our 
previous  study17. To establish these categories, we determined cut-off points by selecting the midpoints of the 
4-point WOMAC score between mild to moderate and moderate to severe, and then multiplication by 24, the 
number of WOMAC questionaries. The cut-off points are 1.5, the midpoint between mild and moderate, and 
2.5, the midpoint between moderate and severe. Subsequently, WOMAC scores below 36, between 36 and 60, 
and above 60 were categorized as mild, moderate, and severe,  respectively17. We applied a similar methodology 
to categorize WOMAC pain, WOMAC stiffness, WOMAC physical function, and VAS scores into three distinct 
classes, as illustrated in Table 1 and Table 2.

Gait feature extraction
Statistical features were extracted from the EMG-derived normalized gait cycle waveform. The features included 
mostly fiducial features of the EMG gait envelope not limited to the average, maximum, and minimum amplitude 
of the EMG waveform, maximum and minimum peak latency, and the co-contraction index (CCI) of muscle 
pairs over the full gait cycle, stance, and swing phase. Additionally, CCI was calculated over the gait cycle by 
using Eq. (1), developed by Rudolph et al.40,41, for the following muscle sets: TA-G, RF-MH, TA-MH, and RF-G.

(1)CCI(t) = EMGL(t)
EMGH (t)

(EMGL(t)+ EMGH (t))

Table 1.  Characteristics of the severity of knee osteoarthritis (OA) according to WOMAC and VAS, and its 
categorization in the corresponding lower extremities. WOMAC: Western Ontario and McMaster Universities 
Osteoarthritis index; VAS: visual analog scale. n refers to individual lower extremities.

Features Mild (n = 36) Moderate (n = 83) Severe (n = 31) p-value

WOMAC total 24.81 (7.84) 48.05 (6.16) 72.10 (9.83) < 0.001

WOMAC physical function 17.69 (6.34) 35.27 (4.79) 52.35 (6.55) < 0.001

WOMAC pain 5.08 (2.55) 9.39 (2.66) 13.55 (3.78) < 0.001

WOMAC Stiffness 2.03 (1.42) 3.40 (1.87) 6.19 (1.30) < 0.001

VAS 1.76 (1.1) 5.95 (1.14) 8.76 (0.82) < 0.001

Table 2.  Patient demographic of the severity of knee osteoarthritis (OA) according to WOMAC and VAS.

Features Mild (n = 18) Moderate (n = 42) Severe (n = 15) p-value

Age 70.08 (7.12) 69.43 (6.39) 70.52 (3.40) –
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This equation allows for the quantification of co-contraction between two muscles during a given time frame. 
“EMGL” and “EMGH” denote the antagonist and agonist EMG data, respectively, resampled to 101 normalized 
time (t) points (0–100% of gait cycle at 1% increments).  t1 and  t2 are the starting and ending nodes, respectively, 
of the full cycle, stance phase, and swing phase. Moreover, all temporospatial variables, not limited to speed, step 
length, stride length, and cadence, were extracted over the gait cycle using motion camera and force plate data.

Statistical analysis
Statistical analysis was performed using SPSS 26 software (IBM, Armonk, NY, USA). One-way analysis of vari-
ance (ANOVA) was performed to identify the significant differences (significance level of 0.001) of features. 
Student’s t-test was utilized to analyze class differences between each severity group based on each subscale of 
the WOMAC and VAS.

Machine‑learning approach
Machine learning regression models have been utilized to estimate the severity of knee OA symptoms accord-
ing to the PROMs using EMG gait features. Scikit-learn ver. 1.3.1 was used for machine learning analysis using 
Python 3.1142. ML analysis was conducted in Google Colab, leveraging its 16 GB RAM and 2-core Intel Xeon 
Processor. Our developed ML model included a range of functionalities such as feature selection, ML regression 
model, and model explainability. To enhance model interpretability, we utilized the SHAP library, assigning 
weights to features for better regression  insights25.

Feature selection and dimensionality reduction
SelectKBest is a univariate feature selection that works by selecting the best features based on univariate statisti-
cal tests for reducting feature set. We utilized SelectKBest, available in Scikit-learn42, to select higher correlated 
EMG features according to the k highest scores.

ML regression model for knee OA severity prediction
Various machine learning models, including multiple linear regression, random forest (RForest), ridge regression, 
lasso regression, and support vector regression, have been employed in the development of regression models. 
RForest is an ensemble learning method, constructing multiple decision trees through different data subsets, 
and voting on the results of multiple decision trees to get the output of the random  forest43. RForest regression 
analysis was performed to estimate the WOMAC index, examine its relationship with WOMAC key features, 
and observe the feasibility of the prediction model. A training dataset and a testing dataset have been created by 
allocating 80% and 20% of the dataset, respectively. The testing dataset is intended for evaluating the performance 
of the developed model on previously unseen data. We validated the trained models using k-fold cross-validation 
(CV). The model was analyzed by observing the root mean square error (RMSE) and correlation between actual 
and estimated WOMAC score and its sub-scores.

ML model interpretation using explainable artificial intelligence (XAI)
Shapley Additive Explanations (SHAP) is an explainable AI (XAI) method based on game theory that can make 
explanations for local and global ML  models25. To produce an interpretable model, SHAP uses an Shapley values 
based additive feature attribution method, defining an output model as a linear addition of input variables. SHAP 
can identify the contribution of each input feature and can help interpret the model globally as well as locally. 
SHAP values can be approximated by various methods, such as Kernel SHAP, Deep SHAP, and Tree SHAP. 
Among these methods, a Tree SHAP for tree-based RForest machine learning models was used in this study to 
make an explanation of EMG and TS features for estimating WOMAC and VAS. The mathematical expression 
of the Shapley value, ϕi(x) of feature i in predicting the output:

where N is the set of all features; S is a subset of features excluding i; xS represents the instance x with only features 
in subset S; f(xS) is the model’s prediction for instance xS; f(xS ∪ {i}) is the model’s prediction for instance x with 
features in subset S plus feature i.  SHAP44, a feature attribution approach using Shapley value, was employed 
for interpreting the contributions of EMG features in the knee OA severity prediction model. Interventional 
 TreeSHAP45 is ideal for explaining Shapley values in tree-based ML models like decision trees, random forests, 
and gradient-boosting models. TreeSHAP stands out for being non-trivial, bias-free, and free from variance 
 issues25.

Ethics declarations
The Institutional Review Board of Seoul National University Hospital (SNUH) has approved this study (IRB 
number: 1810-004-974). The study was conducted in accordance with the ethical standards of the Helsinki 
Declaration. All participants provided written informed consent.

(2)CCI =
t=t2
∑

t=t1

[CCI(t)]
/

(t2 − t1)

(3)φi(x) =
∑

S⊆N/{i}

|S|!(|N |−|S|−1)!
|N |!

(

f (xs ∪ {i})− f (xs)
)



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12428  | https://doi.org/10.1038/s41598-024-63266-7

www.nature.com/scientificreports/

Consent to participate/consent to publish
All participants provided written informed consent for participation and publication.

Results
Muscle activation patterns
Normalized EMG patterns of the RF, MH, TA, and G muscles based on knee OA severity according to the 
WOMAC scores are shown in Fig. 2. Moreover, normalized EMG patterns of these muscles for the WOMAC 
subcategories and VAS are displayed in Figs. S1, S2, S3 and S4. Group ensemble-averaged waveforms for the RF, 
MH, TA, and G muscles qualitatively illustrated the gait cycle with functional outcomes associated with knee 
OA severity based on the WOMAC.

Gastrocnemii activity increased with an increase in the WOMAC total especially in the weight acceptance and 
swing phases, similar to those for the WOMAC subcategories. Higher G activity was observed with an increase 
in patient-reported pain during the heel-strike phase according to the WOMAC pain score. Moreover, greater 
G activity was observed with worsening WOMAC physical function during the heel-strike and swing phases. 
Additionally, G activity was dominant throughout the gait cycle with higher knee stiffness. No variation in G 
activity was observed when based on the VAS score.

Higher MH activity was observed with worse symptoms according to the WOMAC scores. Progressive MH 
activity was observed from midstance to toe-off in knees with higher stiffness. No discriminative trend was 
observed in the MH activity with changes in knee OA symptom severity according to the WOMAC pain and 
function scores. Moreover, patients with higher VAS scores showed increased MH activity from midstance to 
toe-off during the stance phase. The RF activity pattern did not show any discriminative trend with WOMAC 
and its subcategories. Patients with higher VAS scores showed higher RF activity during midstance to toe-off 
during the stance phase. No discriminative trend was found between TA activity and symptoms and functional 
outcomes as reported in the VAS and WOMAC.

Muscle co‑contraction index
The muscle co-contraction index between antagonist and agonist muscles on functional outcomes associated with 
knee OA severity according to WOMAC and VAS scores are reported in Figs. 3a, 4a, 5a, 6a and S5a, respectively. 
Additionally, the muscle co-contraction patterns of muscle pairs according to the WOMAC and VAS reported 
functional outcomes are shown in Figs. 3, 4, 5, 6 and S5, respectively.

The CCI of TA–G and TA–MH progressively increased with increasing severity of symptoms according to the 
WOMAC scores. Additionally, the CCI of the RF–G increased from mild to severe based on the PROMs. This 
suggests that the severity of knee OA alters muscle co-activation. A higher CCI for TA–G and RF–G indicated 
higher WOMAC pain scores. The CCI of all muscle pairs (TA–G, RF–MH, TA–MH, and RF–G) showed an 
increasing trend with higher WOMAC stiffness scores. A higher CCI for TA–G indicates higher WOMAC physi-
cal function scores. The VAS score showed mixed results with respect to the CCI. Notably, muscle co-activation 
peaked in the pre-swing phase (approximately 50–60% of the gait cycle). In the pre-swing phase, patients with 

Figure 2.  Muscle activation pattern of the (a) rectus femoris, (b) medial hamstring, (c) tibialis anterior, and (d) 
gastrocnemius muscles in mild, moderate and severe knee osteoarthritis according to the Western Ontario and 
McMaster Universities Osteoarthritis (WOMAC) score. The error bar shows 95% confidence interval.
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severe knee OA showed greater muscle activation. Higher co-contraction of antagonist and agonist muscle pairs 
indicated more severe knee OA according to the WOMAC and VAS scores.

Temporospatial features
The gait temporospatial features according to the functional outcomes, reported on WOMAC and VAS, are 
illustrated in Figs. 3b, 4b, 5b, 6b, and S5b, respectively. Speed, stride, and step length tended to decrease with 
an increase in the WOMAC and VAS scores. Cadence (number of steps per unit time) was not associated with 
changes in knee OA severity.

Estimation of knee OA severity using ML regression approach
Feature selection and hyperparameter optimization
The feature selection method was utilized to reduce the number of input features followed by training of the 
regression models with hyperparameter tuning and cross-validation. We utilized  SelectKBest42 to select the 15 
EMG features with the k-highest scores in the ML regression modeling. We optimized hyperparameter tuning 
through max_depth criteria to achieve the best value for co-efficient of determination (R2). The maximum tree 
depths of the RForest model were 9, 9, 8, 9, and 9 for WOMAC total, pain, stiffness, and physical function, and 
VAS, respectively.

Performance of knee OA severity estimation model
The regression model based on RForest algorithms demonstrated superior performance in accurately estimat-
ing WOMAC and VAS scores. The prediction performance of k-fold (k = 5) CV RForest regression modeling 
using EMG variables for WOMAC and its subcategories, and VAS are shown in Fig. 7. The R2 of this CV regres-
sion model was 0.85, 0.85, 0.85, 0.86, and 0.84 for WOMAC total, pain, stiffness, physical function, and VAS, 

Figure 3.  (a) Statistical distribution of the co-contraction index of the TA–G, RF–MH, TA–MH, and RF–G 
muscle pairs. (b) Temporospatial features in mild, moderate, and severe knee osteoarthritis. Severity based on 
the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) total score. Muscle co-activation 
pattern of (c) TA–G, (d) RF–MH, (e) TA–MH, and (f) RF–G muscle pairs in mild, moderate, and severe knee 
osteoarthritis. Severity based on the WOMAC total score. *p < 0.05 indicates significant difference. The error bar 
shows 95% confidence interval.
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respectively. Regression results for estimating WOMAC Total score using a RForest algorithm based on EMG 
features with testing dataset are shown in Fig. S6. Figure S8 illustrates the predictive performance of knee OA 
using RForest regression modeling, incorporating both EMG and temporospatial variables, across WOMAC 
and its subcategories, as well as VAS.

Interpreting EMG‑based ML model for predicting knee OA severity
Figures S7 and S8 display the SHAP feature importance and summary plots by showing the 10 most important 
EMG features as evaluated by SHAP and its effects on estimating the WOMAC and VAS scores. Figure S9 presents 
the feature attribution summary plot, highlighting the most impactful EMG and temporospatial features and 
their roles determined by the Shapley value.

EMG feature contribution in knee OA severity prediction model
The SHAP feature importance plot reports the mean SHAP value, which describes the relative importance of each 
EMG feature for estimating functional limitations according to WOMAC and VAS (Fig. S7). Nomenclatures of 
features are given in the supplementary section.

Figure S7a shows the SHAP importance plots for the estimation of the WOMAC total. Single normalized 
EMG features of G and MH along with the co-contraction of TA–G and RF–G are among the most important 
gait features to estimate the WOMAC total score. In Fig. S7b, a single normalized MH EMG feature along with 
co-contraction of TA–MH and TA–G are among the most important gait features to estimate the WOMAC pain 
score. In Fig. S7c, a single normalized G EMG feature along with co-contraction features of RF–G and TA–H are 
the most important gait features to estimate the WOMAC stiffness score. In Fig. S7d, a single normalized G EMG 
feature along with co-contraction features are the most important gait features to estimate the WOMAC physical 
function score. In Fig. S7e, single normalized EMG features of RF and MH muscle along with co-contraction 

Figure 4.  (a) Statistical distribution of the co-contraction index of the TA–G, RF–MH, TA–MH, and RF–G 
muscle pairs. (b) Temporospatial features in mild, moderate, and severe knee osteoarthritis. Severity based on 
the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) pain subscore. Muscle co-activation 
pattern of (c) TA–G, (d) RF–MH, (e) TA–MH, and (f) RF–G pairs in mild, moderate, and severe knee 
osteoarthritis. Severity based on the WOMAC pain subscore. *p < 0.05 indicates significant difference. The error 
bar shows 95% confidence interval.
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features of TA–G and TA–MH are the most important gait features to estimate the limitations of functional 
outcomes according to VAS score.

EMG feature trends in knee OA severity prediction model
The range and distribution of the impacts of the EMG variables on the WOMAC and VAS scores were revealed 
through summary plots (Fig. 8). Each point on the summary plot is a SHAP value representing the input vari-
ables and an instance. Features with higher SHAP values indicate higher contributions to predicting functional 
limitations associated with knee OA severity in an ML model.

Higher values for G_SW_A, CCI_TA-G_SW_A, MH_ST_MIN, and CCI_TA-MH_ST_MIN, which have 
higher positive SHAP values, led to a higher WOMAC total score (Fig. 8a). This is compatible with previ-
ous results indicating that patients with higher WOMAC scores have increased co-contraction of the tibialis 
anterior with the gastrocnemius and medial hamstrings due to discomfort when walking. Higher values for 
MH_ST_MIN, CCI_TA-G_MIN, and G_ST_MIN indicated higher WOMAC pain scores. Similarly, lower val-
ues of CCI_TA-MH_SW_MIN and MH_SW_A indicated worse pain (Fig. 8b). Likewise, patients with higher 
WOMAC pain scores had a higher value at the troughs of MH and G in the stance phase (Fig. S1). Moreover, 
patients with higher WOMAC pain scores had higher co-contraction of TA–G due to pain when walking. Higher 
values for CCI_RF-G_ST_MIN, CCI_TA-MH_ST_MIN, and CCI_TA-G_SW_A, which represent higher posi-
tive SHAP values, indicated higher WOMAC stiffness scores (Fig. 8c). Similarly, patients with higher WOMAC 
stiffness scores had a higher co-contraction of the TA–G and RF–G in the swing phase and the TA–MH in the 
stance phase to counteract knee stiffness (Figs. 5 and S2). Higher co-contraction of TA–G in swing phase and 
lower TA_SW_MIN led to higher WOMAC physical function scores (Fig. 8d). Patients with higher WOMAC 
stiffness scores had a higher G amplitude in the weight acceptance and swing phases and a higher co-contraction 
of TA–G when walking due to impairment in physical function (Figs. 6 and S3). Higher co-contraction of TA–G 
and TA–MH, and lower values for MH_A tended to be higher pain outcomes (Fig. 8e). Likewise, patients with 

Figure 5.  (a) Statistical distribution of the co-contraction index of the TA–G, RF–MH, TA–MH, and RF–G 
muscle pairs. (b) Temporospatial features in mild, moderate, and severe knee osteoarthritis. Severity based 
on the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) stiffness subscore. Muscle 
co-activation pattern of (c) TA–G, (d) RF–MH, (e) TA–MH, and (f) RF–G pairs in mild, moderate, and severe 
knee osteoarthritis. Severity based on the WOMAC stiffness subscore. *p < 0.05 indicates significant difference. 
The error bar shows 95% confidence interval.
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higher VAS scores had higher co-contraction of the tibialis anterior with the gastrocnemius and medial ham-
strings due to pain during walking and stabilization (Fig. S5).

Discussion
In this study, PROMs (WOMAC and VAS) were investigated in patients with severe knee OR who were scheduled 
to undergo TKA. Additionally, we explored the EMG features of the knee according to the PROMs. Although 
there have been studies on the EMG patterns of knees with and without OA, few studies have evaluated EMG 
studies while considering the degree of pain, stiffness, and physical function of patients with knee OA pre-TKA. 
Hence, we investigated changes in neuromuscular features according to the degree of pain, stiffness, and physical 
function and developed a regression model to estimate the severity of knee OA using EMG features.

According to this study, patients with higher WOMAC and VAS scores had relatively greater G and MH activ-
ity. An increase in knee OA severity led to increased muscle amplitude of the G, MH, and RF muscles, similar 
to our  findings5. Patients with knee OA had greater muscle activation during the load acceptance phase, which 
may represent an attempt to induce muscle activation later in the gait  cycle11. It may be logical that patients 
with worse knee OA had greater muscle action in the late swing phase to improve muscle function as the body 
weight is received.

All gastrocnemius waveform features changed progressively with increasing OA severity. Gastrocnemius mus-
cle activity increased with an increase in the WOMAC total score especially in the swing and weight acceptance 
phases, suggesting an attempt to reduce the impact of heel strikes. These changes are consistent with responses 
to increased OA severity and are aimed at reducing the joint contact force and increasing the active stiffness in 
the early  stance5. No significant changes were observed in the TA regardless of OA severity.

Less prominent changes in the medial hamstrings were observed with higher knee OA severity, mainly 
during midstance phase. With the worsening of OA, active stiffness was necessary in the lateral and medial 

Figure 6.  (a) Statistical distribution of the co-contraction index of the TA–G, RF–MH, TA–MH, and RF–G 
muscle pairs. (b) Temporospatial features in mild, moderate, and severe knee osteoarthritis. Severity based on 
the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) physical function subscore. Muscle 
co-activation pattern of (c) TA–G, (d) RF–MH, (e) TA–MH, and (f) RF–G pairs in mild, moderate, and severe 
knee osteoarthritis. Severity based on the WOMAC physical function subscore. *p < 0.05 indicates significant 
difference. The error bar shows 95% confidence interval.
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compartments of the knee. The hamstring muscle responds to higher tensile strain on the tibiofemoral joint 
structures, delivering the adduction  moment46. The stability of the medial compartment due to the interaction 
between joint gap shrinking and osteophytosis, contributes to the reduction of medial compartment  loads8,47. 
The activity of the MH and RF muscles increases during the midstance/toe-off (push-off) phase, suggesting that 
patients used these muscles in the push-off phase to increase gait  stability48.

CCI gives a measure of the comparative activation pattern of muscle pairs during phases of the gait cycle. 
Based on self-reported measures, CCIs increase progressively with worsening knee OA. CCIs for severe knee OA 
were higher than those for mild and moderate knee OA based on the WOMAC and VAS scores. The increased 
CCI for TA–G in the severe OA group was based on increased G activity whereas no clear differences were 
observed in TA activation among groups during the early stance and swing phases. A higher CCI for the G 

Figure 7.  Performance outcomes of a machine-learning regression model in estimating the severity of 
functional limitations based on Patient-Reported Outcome Measures (PROMs) using an RForest regression 
algorithm with EMG features. The figure depicts the regression line (red) and scatter plot (blue) showcasing 
the machine learning predictions versus actual PROMs score for (a) WOMAC total, (b) WOMAC pain, (c) 
WOMAC stiffness, (d) WOMAC physical function, and (e) VAS scores. CCI: co-contraction index, RF: rectus 
femoris, MH: medial hamstring, TA: tibialis anterior, G: gastrocnemius, A: Average, MAX: maximum, MIN: 
minimum, ST: stance phase, SW: swing phase, T: time latency, AUC: area under the curve; VAS, visual analog 
scale; WOMAC, Western Ontario and McMaster Universities Osteoarthritis index; EMG, electromyography.
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was observed during the early stance phase in individuals with knee  OA49. In this study, the CCI for TA–G and 
RF–G gradually increased in knees with severe OA compared to those with mild or moderate OA. Increased 
MH coactivation improves knee joint  stability50. In this study, knee joint stiffness best correlated with the CCI, 
which is in agreement with previous literature indicating that muscle co-contraction produces joint stiffness to 
enhance stability and precision during limb movement at the cost of higher  energy51. Knee OA results in knee 
stiffness during weight acceptance, resulting in greater co-contraction of the knee flexors and  extensors11. The 
greater muscle co-contraction in the pre-swing phase in patients with severe knee OA may stabilize the knee 
during propulsion. Our SHAP analysis also revealed that higher G activity and co-contraction of the TA–G in 
the swing phase are the most important EMG features for predicting WOMAC scores.

As knee OA severity progresses, several changes in temporospatial patterns may occur due to pain, impaired 
neuromuscular control, and altered biomechanics. As the G muscle flexes the knee, an increase in its activity 
decreases step and stride  length19. Additionally, the step and stride lengths decreased, and cadence increased as 
OA severity increased. A higher cadence is associated with lower knee weight loading per step in patients with 
 OA52.The present findings offer a framework to evaluate disease severity and devise knee OA treatment plans. 
Higher muscle co-activation serves as an objective measure to assess the knee OA severity. The differences in 
co-activation according to OA severity can be utilized to guide strategies for conservative treatment, such as 
unloader braces to reduce co-contraction53.

Figure 8.  Interpreting the contributions of EMG features to estimate the knee OA severity, as demonstrated 
in the SHAP Summary plot, with a focus on (a) WOMAC total, (b) WOMAC pain, (c) WOMAC stiffness, 
(d) WOMAC physical function, and (e) VAS scores, ranked by importance. CCI: CCI: co-contraction 
index, RF: rectus femoris, MH: medial hamstring, TA: tibialis anterior, G: gastrocnemius, A: Average, MAX: 
maximum, MIN: minimum, ST: stance phase, SW: swing phase, T: time latency, AUC: area under the curve; 
VAS: visual analog scale; WOMAC: Western Ontario and McMaster Universities Osteoarthritis index; EMG: 
electromyography.
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As a limitation, we did not enroll healthy patients as a control group. Moreover, various methods have been 
employed for PROMs-based categorization of knee OA severity, with no singular approach standardized in 
this  field37,38. This variability in categorization could potentially influence study outcomes, suggesting a need 
for further investigation in future studies. Moreover, future studies are expected to be conducted with a large 
sample size of patients with knee OA. Furthermore, the paretic muscle location may vary among patients with 
knee OA. Since we didn’t have maximum voluntary contraction (MVC) data available, we opted to normalize 
the EMG gait cycle by utilizing the maximum amplitude of each  muscle54–57. However, it’s important to note that 
results may differ depending on the normalization method, such as utilizing MVC, which warrants exploration 
in future prospectively collected datasets. The CCI measurements may vary depending on the antagonist and 
agonist muscle pairs and the normalization method of the muscle activity waveform. Furthermore, we plan to 
utilize a deep learning approach to estimate PROMs based on knee OA severity using muscle activity waveforms 
without performing feature extraction.

Conclusion
We identified distinct neuromuscular features associated with knee OA, reflecting the functional limitations 
associated with knee osteoarthritis reported in WOMAC and VAS assessments. We also evaluated the effective-
ness of a regression model to estimate PROMs of patients with advanced knee OA using normalized muscle 
activity and co-contraction features in the gait cycle. The identified muscle co-activation patterns and regression 
models may be utilized as objective candidate outcomes enhancing understanding the severity of knee OA and 
associated functional outcomes.

Data availability
The datasets are available from the corresponding author upon reasonable request.
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