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Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. 
In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lip-
id metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adi-
pose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fat-
ty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of met-
abolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for 
metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.
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The DEVELOPMENT AND USE OF 
GLUCAGON-LIKE PEPTIDE-1 

Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide 
hormone produced by intestinal L cells through differential pro-
cessing of the proglucagon (PG) gene [1]. Kimball and Murlin 
[2] discovered PG in 1923. GLP-1 was discovered in 1983 when 
Bell et al. [3] analyzed the genetic sequence of glucagon. PG 
gene sequence consists of six exons and five introns, and GLP-1 
(72–108) is one of the main domains. PG gene is expressed in 
pancreatic α-cells, intestinal L cells, and some nerve cells, and 
through tissue-specific translation modification, different end 
products are finally formed. While GLP-1 is mainly expressed 
and translated in intestinal L cells. In 1987, GLP-1 (7–36) was 
recognized as a physiological incretin in the studies of Krey-
mann et al. [4]. GLP-1 is derived from the PG precursor, which 
is a class of highly efficient incretins released by the body in re-

sponse to nutrient intake. Such as the release of GLP-1 can be 
directly stimulated by nutrients such as glucose and fat in the in-
testinal lumen [5]. In 2005, exenatide was approved as a kind of 
GLP-1 receptor agonists (GLP-1RAs) for the clinical treatment 
of type 2 diabetes mellitus (T2DM) as the first international in-
cretin drug [6]. Following the application of exenatide, other 
GLP-1 receptor (GLP-1R) activators were developed such as li-
raglutide (Lira). Meanwhile, the application of GLP-1RAs in 
non-diabetic diseases has also been launched.

STRUCTURE, DISTRIBUTION, AND 
PHYSIOLOGICAL FUNCTION OF GLP-1

GLP-1 is composed of 30 amino acid residues, which primary 
structure begins with histidine and ends with glycine. There are 
a variety of molecular forms in the body which main active 
forms are GLP-1 (7–36) NH2 and GLP-1 (7–37), of which about 
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80% exist in the form of GLP-1 (7–36) NH2, which is first de-
composed and inactivated in the blood circulation. Then it is 
eliminated by liver metabolism and renal excretion [7]. GLP-1 
has a variety of effects, originating from the presence of its re-
ceptors in specific nuclei of the lung, pancreas, gastrointestinal 
tract, kidney, heart, bone, central nervous system, etc. In recent 
years, studies have found that the expression of GLP-1R is also 
found in liver and adipose tissue (Fig. 1) [8]. In the lung, GLP-1 
binding to its receptors improves lung function and reduces 
mortality in patients with obstructive pulmonary disease [9]. 
In the pancreas, GLP-1 binding to its receptor stimulates the 
proliferation and regeneration of islet β-cells and inhibits their 
apoptosis [10]. In the gastrointestinal tract, GLP-1 binding to 
its receptors delays gastric emptying, reduce appetite, and in-
crease satiety [11]. In the kidney, GLP-1 binding to its receptor 
has extensive renal protective properties. This characteristic 
may improve renal function by increasing renal blood flow, 
urine flow rate, preventing elevated plasma creatinine, reduc-
ing tubular necrosis, increasing renal interstitial fluid and glo-

merular filtration rate, and cytoprotective and anti-inflamma-
tory effects [12,13], and may improve glomerular hyperosmo-
sis in patients with T2DM in some cases [14]. In bone, GLP-1 
binding to its receptor promotes bone marrow mesenchymal 
stem cell osteoblast differentiation and inhibits its differentia-
tion into fat cells, thereby promoting bone formation and im-
proving osteoporosis [15]. In the central nervous system, the 
action of GLP-1 and GLP-1RAs on its receptors can affect a va-
riety of brain functions including satiety, thermogenesis, influ-
ence blood pressure, neurogenesis, neurodegeneration, retinal 
repair, and change energy homeostasis [16-20]. And its neuro-
protective effect has become a research hotspot in recent years. 
In the heart, GLP-1 binding to its receptor enhances myocardi-
al performance and has important physiological effects on car-
diac function through direct receptor-mediated [21-24]. Sever-
al studies have shown that the clear link between glucose me-
tabolism and GLP-1 through the protein kinase A (PKA) path-
way [25-27]. In addition, GLP-1 has now been proved to be as-
sociated with nutrient intake and can be linked to lipid metab-

Fig. 1. Physiological function of glucagon-like peptide-1 (GLP-1). AMPK, AMP-activated protein kinase; mTOR, mammalian 
target of rapamycin; TFEB, transcription factor EB; ACSL1, acyl-CoA synthetase long chain family member 1; C/EBPα, CCAAT/
enhancer binding protein α; PPARγ, peroxisome proliferator-activated receptor-γ; SREBP-1c, sterol regulatory element binding 
protein-1c.
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olism [28-30]. This article will review the role of GLP-1 in lipid 
metabolism in detail.

In liver tissue, GLP-1 levels are considered to be highest in 
human organs [31]. The induction of GLP-1 or its analogs in 
the liver can regulate varieties of processes, including hepatic 
gluconeogenesis, glycogen synthesis, and glycolysis [32]. How-
ever, the expression of GLP-1R in liver tissue remains contro-
versial. To date, studies in animals and humans suggest that 
GLP-1 may improve hepatic lipid accumulation through signal 
transduction of the AMP-activated protein kinase (AMPK)/
mammalian target of rapamycin (mTOR) pathway [33]. Down-
regulating the expression of miR-23a and increasing the expres-
sion of the mitochondrial protective gene peroxisome prolifer-
ators-activated receptor-γ coactivator-1 (PGC-1α) can exert an 
anti-apoptotic effect on human hepatocytes [34]. Meanwhile, 
GLP-1R has been shown to exist in human liver cells. GLP-1 
analogs (exendin-4) can also improve hepatic steatosis [35] in 
ob/ob mice both in vivo and in vitro [36]. Lira (GLP-1R) can  
reduce the occurrence of hepatic steatosis in vivo and in vitro  
by enhancing autophagy and lipid degradation through the 
GLP-1R-transcription factor EB (TFEB)-mediated autophagy 
lysosomal pathway [37]. These evidences all suggest that the ac-
tion of GLP-1R in liver cells may be directly stimulated by li-
gand-receptor action. However, some scholars have proposed 
that the effect of GLP-1 in the liver is indirectly mediated by 
multiple mechanisms, such as reducing fat absorption or inhib-
iting fat cells through acyl-CoA synthetase long chain family 
member 1 (ACSL1), CCAAT/enhancer binding protein α (C/
EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), 
and sterol regulatory element binding protein-1c (SREBP-1c) 
pathways to achieve the purpose of reducing liver lipids [38]. 
Alternatively, hepatic steatosis can be alleviated by regulating 
insulin clearance in the liver [39]. Although the expression of 
GLP-1R in liver tissue is controversial, GLP-1RAs have been 
shown to act as regulatory pathways affecting metabolic disor-
ders.

GLP-1 has a direct effect on adipose tissue. GLP-1 may affect 
systemic energy metabolism by regulating adipocyte develop-
ment, accelerating plasma clearance of glucose and triacylglyc-
erol-derived fatty acids, improving insulin signaling, and stim-
ulating thermogenesis in brown adipose tissue (BAT) [40-45]. 
For example, GLP-1R in adipocytes can directly regulate apop-
tosis and preadipocyte proliferation by activating the adenylate 
cyclase/cyclic adenosine monophosphate (AC/cAMP) signal-
ing pathway and various cell signaling cascades, including ex-

tracellular signal-regulated kinase (ERK), protein kinase C 
(PKC), and protein kinase B (AKT) [41,46]. GLP-1 also regu-
lates lipid metabolism in BAT and white adipose tissue (WAT) 
through the brain-adipocyte axis [43,44]. In differentiated hu-
man adipocytes in vitro, GLP-1 can regulate the expression of 
adipogenesis and lipolytic genes [47]. The direct effect of GLP-
1 on adipose tissue has been demonstrated in many studies. 
However, the specific receptors that mediate and participate in 
it have not been determined, which are needed to be verified 
by establishing multiple experimental models.

GLP-1 MODULATES LIPID METABOLISM

GLP-1 modulates lipid metabolism in the liver
GLP-1 Modulates fat synthesis in the liver
The liver is the main site of fat synthesis. Hepatic fat synthesis 
is a process by which carbohydrates and amino acids are con-
verted into fatty acids and condensed with glycerol to form tri-
glycerides (TG) [48]. Hepatic fat transport is the transport of 
TG out of the liver in the form of very low-density lipoprotein 
(VLDL) to participate in the oxidative breakdown of tissues or 
storage in adipose tissue [49]. The synthesis and transport of 
liver fat is the key to maintaining the homeostasis of TG in the 
liver. And its anabolic-related genes include fibroblast growth 
factor-21 (FGF21), SREBP-1c, fatty acid synthase (FAS), acetyl-
CoA carboxylase (ACC-a), liver X receptor (LXR), suppressor 
of cytokine signaling-3 (SOCS-3), etc.

A recent study pointed out that GLP-1 can reduce liver fat 
synthesis. After giving long-term reared ovariectomy (OVX) 
mice with different gradient protein concentrations (standard, 
low protein, high protein) diet, it was concluded that a large 
number of lipid droplets were visible in the model group of he-
patocytes hematoxylin and eosin (HE) staining and oil red O 
staining compared with the control group mice. In contrast, the 
expression of GLP-1 mRNA in the colon tissues of mice in the 
model group decreased, and the content of GLP-1 in serum de-
creased. Interestingly, FGF21, SREBP-1c, and FAS mRNA in 
the liver tissues of the model group of mice and protein expres-
sion was increased compared with the control group, while liv-
er kinase B1 (LKB1) mRNA expression was reduced. The above 
conclusions all proved that a long-term high protein diet could 
reverse the above changes in OVX mice, while there was no 
significant difference between the low protein group and the 
model group. In this experiment, the high protein diet can pro-
mote intestinal secretion of GLP-1, improve FGF21 resistance, 
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upregulate LKB1 to activate the AMPK pathway, downregulate 
the expression of SERBP-1c mRNA and protein in the liver, and 
ultimately inhibit liver lipid synthesis [50].

More interestingly, male Sprague-Dawley rats were randomly 
divided into the normal control (NC) group, high-fat (HF) 
group, and HF+Lira (GLP-1RA) group. Cell experiments 
showed that the arrangement of liver cells in rats in the HF 
group was disordered, and some hepatocytes were degenerated. 
There were more lipid droplets and inflammatory cell infiltra-
tion in hepatocyte cells. However, the fatty alteration of hepato-
cytes in the HF+Lira group was significantly improved. There 
were a small number of fat droplets in liver cells, and the infil-
tration of inflammatory cells was improved. Compared with 
the NC group, animal experiments found that the serum aspar-
tate transaminase (AST), alanine transaminase (ALT), total 
cholesterol (TC), and TG were increased in the HF group, and 
the level of liver TG was also increased. Compared with the HF 
group, the HF+Lira group decreased serum AST, ALT, and TC, 
serum TG levels decreased significantly, the mRNA expression 
of SOCS-3 and SREBP-1c decreased significantly, and the liver 
TG level was also reduced. The above studies suggest that GLP-
1 can downregulate the expression of SOCS-3 and SREBP-1c in 
rats with nonalcoholic fatty liver disease (NAFLD), reduce he-
patic TG deposition. GLP-1 is also consistent with the conclu-
sion that GLP-1 can inhibit liver lipid synthesis [51]. Boland et 
al. [52] gave diet-induced obesity (DIO) mice daily GLP-1R/
Gcg receptor (GcgR) double agonist (cotadutide), Lira, Gcg ag-
onist (g1437), and Lira+g1437 respectively. They found that all 
groups receiving GcgR agonists showed lower liver lipid con-
tent than the control group. In the hyperglycemic clamping ex-
periment, cotadutide was also found to reduce the de novo fat 
production of the liver during clamping. It was concluded that 
cotadutide can inhibit the production of key fats in the liver of 
mice and reduce the lipid content of the liver. In animal studies 
by Burmeister et al. [53], GLP-1R knockout group in the hypo-
thalamus was also activated and the liver TG increased in rats 
compared with the control group. Besides, KKAy mice were 
selected and divided into the Lira group and the HF feeding 
group. The results were shown that the serum TC and TG con-
tents of mice in the model group and the Lira group were sig-
nificantly increased compared with the control group. Interest-
ingly, compared with the model group, the TC and TG contents 
of the Lira group had a decreasing trend but the difference was 
not statistically significant. The results of HE staining showed 
that compared with the control group, the model group had 

swollen hepatocytes and vacuolar changes (mainly steatosis). 
Compared with the model group, hepatocytes in the Lira group 
had less swelling, fewer vacuolar changes, more nuclei, and less 
inflammation. Compared with the model group, hepatocytes in 
the Lira group had less swelling, fewer vacuolar changes, more 
nuclei, and less inflammation. Phosphoinositide 3-kinase 
(PI3K) protein expression was significantly increased in the 
Lira group compared to the model group [54]. Similarly, animal 
experiments have shown that the expression of liver tissue FAS 
and ACC-a mRNA in rats in the Lira group was significantly 
higher than the control ratio [55]. At present, several studies 
have found that GLP-1 analog Lira may improve lipid metabo-
lism and fat deposition by downregulating the expression of 
lipid metabolism-related genes FAS, and ACC-a mRNA, or 
promoting the expression of PI3K protein in mouse liver. The 
above results suggest that GLP-1 is important for inhibiting liv-
er fat synthesis, and is likely to be related to AMPK, SERBP-1c, 
FAS, ACC-a, PI3K, and other signaling pathways.

In vitro studies, HepG2 cells treated with palmitic acid (PA) 
were found that dulaglutide significantly reduced liver lipid ac-
cumulation and gene expression related to lipid drop-binding 
proteins, de novo adipogenesis and TG synthesis. And dulaglu-
tide increased the expression of proteins associated with lipol-
ysis and fatty acid oxidation, as well as family with sequence 
similarity 3 member A (FAM3A) [56]. In the HepG2 fatty liver 
cell model, hypoxia-inducible factor-2alpha (HIF-2α)/PPARα 
pathway was found to be essential for Lira to inhibit liver lipid 
synthesis and reduce lipid-induced hepatic steatosis [57]. In 
addition, in the HepG2 cell experiment, some extrahepatic fac-
tors, such as erythroid-2-related factor 2 (NRF2) pathway [58], 
intestinal metabolite sodium butyrate (NaB) [59], Src homolo-
gy region 2 domain-containing phosphatase-1 (SHP1)/AMPK 
[60], sirtuin 1 (SIRT1)/heat shock factor 1/heat shock protein 
(HSP) [61], and other signaling pathways have also been found 
to be involved in the regulation of liver lipid synthesis. Lira was 
found in PA-induced Kupffer cells to reduce HF diet-induced 
hepatic steatosis by inhibiting NOD-like receptor thermal pro-
tein domain associated protein 3 (NLRP3) inflammasome ac-
tivation [62]. Gupta et al. [63] first reported the existence of G 
protein-coupled receptor (GPCR) GLP-1R in human hepato-
cytes in 2010, and provided evidence to prove the direct effects 
of GLP-1 protein on cells. GLP-1R binds to ligands to internal-
ize GLP-1R, and can independently reduce TG accumulation 
in hepatocytes by activating key signaling molecules down-
stream of insulin receptor substrate 2 (IRS2). Since then, a num-
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ber of studies have also been conducted in human primary he-
patocytes, providing evidence for the direct effect of GLP-1 bind-
ing with GLP-1R in hepatocytes on reducing liver lipids [64]. In 
the culture system of various isolated hepatocytes (mouse pri-
mary hepatocytes, HepG2 human hepatocytes, human prima-
ry hepatocytes, etc.), Liu et al. [65] found that Lira’s stimulation 
of liver FGF21 expression may require the expression of GLP-
1R in extrahepatic organs, and the increase of liver FGF21 is 
also necessary for Lira to improve hepatic lipid homeostasis. In 
cell experiments, GLP-1 was found to have more mechanisms 
that may inhibit liver fat synthesis, such as FAM3A, NRF2, NaB, 
SHP1/AMPK, NLRP3, FGF21, IRS2, and other signaling path-
ways, which also provided direct evidence for the role of GLP-
1R in the regulation of lipid metabolism in the liver.

GLP-1 modulates hepatic lipolysis
Lipolysis is the process of converting TG into glycerol and fatty 
acids under the action of hydrolase, such as adipose triacylg-
lyceride lipase (ATGL), hormone-sensitive lipase (HSL), and 
monacylglycerol lipase, in which fatty acids can provide energy 
for the body through β-oxidation or other oxidation pathways. 
And lipolysis is also affected by many lipid-associated proteins, 
such as SIRT1, α-subunit of PGC-1α, fatty acid-binding pro-
tein 4 (FABP4), etc. [66].

In a Lira-related study, healthy male C57BL/6 rats were 
evenly divided into three groups, namely NC group, model 
control group (OC group), and Lira group. Mice in the NC 
group were fed standard feed, while mice in the OC group and 
mice in the Lira group were fed HF feed. Compared with the 
NC group, the liver TG level, total liver TC level, and liver 
weight of the OC group were increased. And the mRNA ex-
pression levels of SIRT1, PGC-1α, and phosphoenolpyruvate 
carboxykinase (PEPCK) in the liver of the mice were signifi-
cantly reduced. Compared with the OC group, the liver TG 
level, total liver TC level and liver weight of the mice in the Lira 
intervention group were significantly reduced. And the mRNA 
expression levels of SIRT1, PGC-1α, and PEPCK in the liver of 
the mice were significantly increased. This indicates that Lira 
can improve liver fatty acid oxidation in obese mice, reduce 
liver fat accumulation, and promote hepatic lipolysis by acti-
vating the liver SIRT1/PGC-1α/PEPCK pathway [67]. Howev-
er, a small sample found that Lira did not significantly change 
levels of the hepatic fat oxidation marker β-hydroxybutyrate, 
although it reduced liver fat [68]. This conclusion should not 
be overlooked as a distraction factor with small sample size. 

Therefore, the effect of GLP-1 on liver lipolysis in clinical stud-
ies can be further developed.

GLP-1 modulates liver cholesterol metabolism
As the central organ of cholesterol metabolism, the liver di-
rectly affects the body’s cholesterol metabolism homeostasis. 
Hepatic cholesterol metabolism involves multiple parts, in-
cluding cholesterol uptake, synthesis, biotransformation, and 
efflux. And it is related to cholesterol metabolism genes such as 
LXRα, ATP-binding cassette transporter A1 (ABCA1), ATP-
binding cassette G1 (ABCG1), acyl-coenzyme A oxidase 1 
(ACOX1), apolipoprotein AI (apo AI) (Fig. 2) [69]. Ben-Shlo-
mo et al. [70] found in vivo and in vitro studies that GLP-1 and 
its analog exendin-4 were able to induce an increase in ABCA1 
mRNA, increase the expression of apo AI mRNA and promot-
er, thereby increasing apo AI secretion, indicating that GLP-1 
in hepatocytes may mediate the outflow of intracellular choles-
terol to apo AI through the ABCA1 pathway. Recent studies 
have also demonstrated that exendin-4 is mediated by Ca2+/
calmodulin (CaM)-dependent protein kinase kinase/CAM-
dependent protein kinase IV/prolactin regulatory element 
binding (CaMKK/CaMKIV/PREB) pathway increases liver 
ABCA1 expression and reduces cholesterol accumulation [71]. 
Similarly, studies such as Ben-Shlomo et al. [70] have found 
that GLP-1 directly acts on LXRα in liver cells to mediate cho-
lesterol outflow. These studies suggest that GLP-1 may mediate 
cholesterol outflow in hepatocytes through the LXRα-ABCA1 
pathway, consequently avoiding large amounts of cholesterol 
accumulation in cells.

Recent studies have pointed out that GLP-1 can increase the 
expression of ABCA1 and ABCG1 in ApoE-/- mice, thereby re-
ducing the area of aortic plaque in HF raised ApoE-/- mice and 
realizing the reverse transport of aortic plaque. At the cellular 
level, GLP-1 can significantly increase the expression levels of 
ABCA1 and ABCG1, and decrease the level of intracellular 
cholesterol, which inhibits the transformation of macrophages 
into foam cells [72]. Studies have also shown that GLP-1 can 
significantly increase the expression of GLP-1R through G 
protein-coupled receptor 119 (GPR119), enhance the activity 
of ABCA1, lead to the increase of apo AI, and thus promote 
intracellular cholesterol outflow [73]. The GLP-1 analog Lira 
has been shown to have similar effects on cholesterol metabo-
lism with GLP-1 [74]. 

Meanwhile, in the latest animal studies, some researchers 
found that exendin-4 can reduce levels of serum VLDL choles-
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terol and low-density lipoprotein cholesterol (LDL-C) by reduc-
ing liver sterol regulatory element binding protein 2 (SREBP2) 
level and cholesterol absorption [75]. The hepato-enteral circu-
lation theory of bile acids is well known; that is, cholesterol is 
converted to bile acids in the liver, 95% bile acids are absorbed 
by the distal ileum and returned to the liver, and 5% bile acids 
are excreted in the stool. In order to maintain the bile acid pool, 
therefore, the amount of bile acid excreted is almost equal to the 
amount newly synthesized by the liver. Therefore, a possible 

mechanism proposed by the authors is that the activation of 
the farnesoid X receptor (FXR) by exendin-4 stimulates the ex-
pression of FGF15 in the small intestine and inhibits the ex-
pression of cytochrome P450 family 7 subfamily A member 1 
(Cyp7a1) in the liver through fibroblast growth factor receptor 
4 (FGFR4), thereby reducing fecal bile acid excretion and liver 
bile acid synthesis [75]. Interestingly, Lira has also been shown 
to attenuate negative feedback inhibition of bile acids by inhib-
iting intestinal FXR activity and ultimately reduce bile acid syn-

Fig. 2. Possible mechanisms by which glucagon-like peptide-1 (GLP-1) modulates liver cholesterol metabolism. (Left) In liver cells, 
GLP-1 can mediate cholesterol efflux by acting directly on LXRα, or by inducing an increase in ATP-binding cassette transporter 
A1 (ABCA1) mRNA through Ca2+/calmodulin (CaM)-dependent protein kinase kinase/CAM-dependent protein kinase IV/Pro-
lactin regulatory element binding (CaMKK/CaMKIV/PREB), increasing apolipoprotein AI (apo AI) mRNA and promoter expres-
sion, and increasing apo AI secretion, thereby mediating intracellular cholesterol efflux. (Center) In macrophages, GLP-1 can sig-
nificantly increase the expression of GLP-1 receptor through G protein-coupled receptor 119 (GPR119), enhance the activity of 
ABCA1, lead to the increase of apo AI, and thus promote intracellular cholesterol outflow. The expression levels of ABCA1 and 
ATP-binding cassette G1 (ABCG1) can also be increased by GLP-1, which inhibits the transformation process of macrophages into 
foam cells and reduces the level of intracellular cholesterol. (Right) GLP-1 receptor agonist (GLP-1RA) reduces cholesterol accu-
mulation by affecting the expression of genes in the hepato-enteral circulation and cholesterol reverse transport pathway, such as 
farnesoid X receptor (FXR), fibroblast growth factor-15 (FGF15), fibroblast growth factor receptor 4 (FGFR4), cytochrome P450 
family 7 subfamily A member 1 (Cyp7a1), proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein recep-
tor (LDLR), etc. T/GDCA, T/glycodeoxycholic acid; T/GLCA, T/glucoronic acid; T/GUDCA, T/glycoursodexoycholic acid; T/
GCA, T/glycocholic acid; MCA, muricholic acid; CDCA, chenodeoxycholic acid; CA, cholic acid; DCA, deoxycholic acid; LCA, 
lithocholicacid; UDCA, ursodeoxycholic acid; HCA, hydroxy carboxylic acid; BSH, bile salt hydrolase; CETP, cholesteryl ester 
transfer protein; HDL, high density lipoprotein; VLDL, very low density lipoprotein.
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thesis in the liver [76]. It has also been reported that cholesteryl 
ester transfer protein (CETP) can transport cholesterol from 
high-density lipoprotein to lipoprotein containing apolipopro-
tein B (ApoB) and rich in TG, such as chylomicron remains 
(containing ApoB-48) and VLDL remains (containing ApoB-
100). These cholesterol can then be absorbed into the liver via 
low-density lipoprotein receptors (LDLRs) or LDLR-associated 
proteins [77]. In theory, if the LDLR is inhibited, the reverse 
transport of cholesterol is also inhibited, and less cholesterol is 
absorbed into the liver, thus reducing the accumulation of cho-
lesterol in the liver. There are varieties of studies that confirm 
this conclusion. For example, Yang et al. [78] found that Lira in-
hibited proprotein convertase subtilisin/kexin type 9 (PCSK9) 
expression in HepG2 cells and db/db mice through hepatocyte 
nuclear factor 1 (HNF1)-dependent mechanism, and may in-
hibit LDLR expression in db/db mice through PCSK9 indepen-
dent pathway, and ultimately reduce liver cholesterol accumula-
tion. Animal studies have also shown that portal vein GLP-1 
weakens intestinal fat absorption and chylomicron production 
through the vagal enteric-brain-liver axis, and reduces post-
prandish and fasting blood lipids [79].

These studies show that GLP-1 is closely related to cholester-
ol metabolism. GLP-1 can promote intracellular cholesterol 
outflow, reduce intracellular cholesterol content, and maintain 
intracellular cholesterol homeostasis through the ABCA1 
pathway. While GLP-1 has not been clearly studied and re-
ported through other ways to regulate intracellular cholesterol 
outflow. In addition, GLP-1 can reduce liver cholesterol accu-
mulation by inhibiting SREBP2 and PCSK9, and reduce liver 
bile acid synthesis by weakening the negative feedback inhibi-
tion of bile acid after inhibiting FXR.

GLP-1 modulates fat lipid metabolism
GLP-1 modulates adiposynthetic and differentiation
Fat synthesis includes three aspects: de novo synthesis of satu-
rated fatty acids, extension of fatty acid carbon chains, and 
synthesis of unsaturated fatty acids. The differentiation of adi-
pose precursor cells consists of two stages, the former stage is 
the differentiation of adipose precursor cells into immature 
adipocytes, and the latter stage is the transformation of imma-
ture adipocytes to mature adipocytes, which associated genes 
include PPARγ, C/EBPα, adipocyte fatty acid-binding protein 
(AP2), lipoprotein lipase (LPL), etc.

After treating 3T3-L1 cells with GLP-1, some scholars found 
that the number of small and medium-sized adipocytes in-

creased. And oil red O staining showed that GLP-1 had no sig-
nificant effect on lipid accumulation. Compared with the con-
trol group, the treated cells can enhance the phosphorylation 
of the Akt signal 24 hours before differentiation [80]. Overall, 
these results suggest that GLP-1 may regulate 3T3-L1 adipo-
genesis through the Akt signaling pathway.

GLP-1 has also been found to increase mRNA and protein 
expression levels of AP2 and PPARγ in a dose-dependent man-
ner during pre-3T3-L1 adipocyte differentiation. The real-time 
reverse transcription polymerase chain reaction (RT-PCR) re-
sults showed that GLP-1 promoted the expression of C/EBPα 
and LPL [80]. Recent studies have also found that the promo-
tion of GLP-1 on 3T3-L1 pre-adipocyte differentiation depends 
on the long non-coding RNA protein folding activity of the ri-
bosome (lncRNA PFAR), which can target miR-138, remove 
the inhibition of miR-138 on Yes-associated protein 1 (YAP1) 
mRNA, and then upregulate the expression of YAP1 [81]. These 
data suggest that GLP-1 can promote the differentiation of 
pre-3T3-L1 adipocytes by promoting the expression of the spe-
cific markers LPL and AP2, as well as the transcription factors 
PPARγ and C/EBPα. Activation and phosphorylation of signal-
ing pathways such as Akt, and yes-associated protein 1-TEA 
domain transcription factor (YAP1-TEADs) also play a key role 
in fat differentiation. 

GLP-1 modulates fat browning
Adipose tissue is produced by the aggregation of a large num-
ber of fat cells. Adipose tissue is divided into WAT with a small 
number of mitochondria in the cell and BAT with a large num-
ber of mitochondria in the cell. WAT mainly plays the role of 
storing energy, while the main role of BAT is to decompose lip-
id droplets for energy. WAT can also be further divided into 
visceral adipose tissue (VAT) and subcutaneous adipose tissue 
[82]. Fat browning refers to the high plasticity of white fat cells, 
which can be transformed into beige fat cells with many similar 
morphological and functional characteristics to brown fat cells 
under the stimulation of exercise, cold exposure, adrenergic re-
ceptor stimulation, and other factors [83]. Since BAT has the 
function of thermogenesis and heat generation, promoting TG 
clearance and glucose metabolism. White fat browning is a 
good way to promote white fat consumption and accelerate hu-
man metabolism, which is associated with uncoupling protein 
1 (UCP1), nitric oxide synthase (NOS), SIRT1, signal trans-
ducer and activator of transcription 3 (STAT3) (Fig. 3) [84].

The latest research pointed out that irisin is derived from its 
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precursor protein fibronectin type III domain-containing pro-
tein 5 (FNDC5), which can be released from various tissues 
such as skeletal muscle, fat, and pancreas, mainly involved in 
the transformation of WAT to BAT, thereby increasing the 
body’s energy expenditure. GLP-1 can induce the expression  
of FNDC5 in pancreatic β-cells through the interaction of its 
downstream transcription factor cAMP-response element 
binding protein (CREB) with binding elements in the FNDC5 
promoter, thereby promoting the conversion of WAT to BAT 
and enhancing energy metabolism [85]. In addition, GLP-1 ex-
pression was down-regulated in wild-type β Lox5 cells knocked 

out by FNDC5, and the induced expressions of lipolysis and 
autophagy-related genes and proteins were also inhibited, such 
as ATGL, HSL, and hepatic lipase deficiency gene (LIPC), sug-
gesting that GLP-1 expression is also regulated by FNDC5, and 
may also provide therapeutic targets for lipid metabolism-relat-
ed diseases. 

Animal studies have shown that GLP-1RAs activate fat cell 
browning and may regulate BAT through the central nervous 
system. Martins et al. [86] found that semaglutide, as a GLP-1 
analog, can directly act on fat cells, increase the expression of 
thermogenic genes for browning phenotype maintenance, im-

Fig. 3. Possible mechanisms by which glucagon-like peptide-1 (GLP-1) modulates the browning of white fat. (A) GLP-1 can in-
duce fibronectin type III domain-containing protein 5 (FNDC5) expression in pancreatic β-cells through the interaction of its 
downstream transcription factor cAMP-response element binding protein (CREB) with binding elements in the FNDC5 promot-
er, thereby promoting the conversion of white adipose tissue (WAT) to brown adipose tissue (BAT). GLP-1 expression was down-
regulated in wild-type β Lox5 cells knocked out by FNDC5, and the induced expression of lipolysis and autophagy-related genes 
and proteins were also inhibited, such as adipose triacylglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and hepatic li-
pase deficiency gene (LIPC). (B) Semaglutide, as a GLP-1 analog, can directly act on fat cells, increase the expression of thermo-
genic genes for browning phenotype maintenance, improve the expression of uncoupling protein 1 (UCP1), mitochondrial bio-
synthesis, and thermogenic marker, or promote fatty browning through nitric oxide synthase (NOS), neuropeptides (NPs), sirtuin 
1 (STRT1), signal transducer and activator of transcription 3 (STAT3), and bone morphogenetic protein 4 (BMP4) signaling.

Fat browning

A B
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prove the expression of UCP1, mitochondrial biosynthesis and 
thermogenic marker, thereby contributing to weight loss. So 
how does GLP-1 modulate BAT? Lockie et al. [44] observed 
the activity of BAT in the shoulder blade region of C57BL/6 
mice by injecting GLP-1 (7–36) amide into the lateral ventricle 
of C57BL/6 mice. And they found that the mice lost weight, 
increased sympathetic activity, increased BAT temperature in 
the scapular region, and increased thermogenesis. However, 
the same dose of the above drug intervention was given by in-
traperitoneal injection, and there was no significant change in 
the temperature of BAT in the scapular area. This study sug-
gests that GLP-1 can enhance the function of brown fat, in-
crease heat production in BAT, and reduce body weight in mice 
by modulating the activity of the sympathetic system through 
binding with GLP-1R in the center. In recent years, extensive 
literature has reported that a variety of signaling pathways and 
transcription factors are involved in the fat differentiation pro-
cess of WAT, such as the NOS pathway, neuropeptide S [87] 
pathway, SIRT1 [88] pathway, STAT3 [89], bone morphogenet-
ic protein 4 (BMP4) [90] pathway, etc. These pathways and sig-
naling pathways can promote BAT heat production. The above 
studies show that GLP-1 and GLP-1RAs can enhance BAT 
function or promote WAT browning through the center. How-
ever, the specific pathways or pathways involved are not clear 
enough and need further research and exploration. 

CLINICAL APPLICATION OF GLP-1 IN LIPID 
METABOLISM AND ADIPOSE-RELATED 
DISORDERS

Clinical application of GLP-1 in obesity
Obesity is a major health problem worldwide. Studies in hu-
man and animal models suggest that GLP-1 may play a role in 
lipid metabolism and obesity. Similar to rodents, GLP-1 also 
plays a key role in human lipid metabolism and obesity [91]. 
Most studies have found a decrease in GLP-1 secretion in obese 
individuals [92], and some studies have found no difference in 
GLP-1 levels between obese and normal-weight controls [93]. 
The mechanism of action of GLP-1RA to promote weight loss 
mainly includes the reduction of fat deposition through regula-
tion of adipose tissue (lipolysis, fatty acid oxidation, and adipo-
cyte differentiation) and the reduction of food intake through 
the central and peripheral nervous system.

In obese patients, acipimox can inhibit adipose tissue lipoly-
sis by activating protein upregulated in macrophage by INF-γ 

(PUMA-G) (also known as the hydroxycarboxylic acid recep-
tor 2 [HCA2] and GPR109a) receptors. In addition, an inverse 
correlation between circulating free fatty acids and GLP-1 con-
centrations have been found in vivo and in vitro experiments, 
and systemic GLP-1 levels can be increased in obese patients 
after treatment with acipimox [94]. Studies demonstrated that 
the fat-damaging effects of GLP-1 are effective for weight loss 
and may also improve insulin resistance in obese patients [95]. 
There is also evidence that GLP-1RA (such as Lira, etc.) can 
significantly reduce food intake and promote fatty acid oxida-
tion, thus promoting weight loss and fat mass reduction [16,96]. 
In addition, in vitro models of primary human adipose stem 
cells, researchers detected intracellular fat content and quantita-
tive expression of early and mature adipocyte markers (PPARγ, 
FABP4, and HSL), demonstrating that glucagon can signifi-
cantly reduce adipocyte differentiation, inhibit adipocyte prolif-
eration and adipogenesis. Moreover, this effect can be reversed 
by specific GLP-1R (exendin-9) antagonists, which means that 
GLP-1RA may inhibit the proliferation and differentiation of 
human adipocyte precursors [97,98]. These studies suggest 
that GLP-1RA can achieve weight loss by interfering with the 
proliferation and differentiation of human fat precursors.

 Besides, Baggio and Drucker [99] and Allegretti et al. [100] 
investigated the relationship between intestinal flora and obesi-
ty. They found that intestinal flora may mediate the release of 
the intestinal hormone GLP-1 through the short-chain fatty 
acid (SCFA)-GPCR pathway, thereby increasing satiety and 
slowing gastric emptying, ultimately reducing obesity. There is 
also evidence that GLP-1RA has positive effect on metabolic 
syndrome and abdominal obesity. In a recent randomized, 
double-blind, placebo-controlled trial, obese adults without di-
abetes were assigned to the exercise group, the GLP-1RA (Lira) 
group, and the exercise+Lira group. The results showed that ab-
dominal fat percentage decreased by 2.6, 2.8, and 6.1 percent-
age points in the exercise, Lira, and combination groups com-
pared to placebo. The combination of adherent exercise and 
Lira treatment reduced abdominal obesity and may therefore 
reduce obesity risk more than the individual treatments [101]. 
The difference between elevated or unchanged GLP-1 levels in 
obese patients may be related to differences in metabolic status 
and detection methods, but the significant correlation between 
GLP-1 and lipid metabolism suggests that it can control weight 
and regulate lipid metabolism in HF diet groups, and GLP-1 
has the potential to treat obesity caused by HF diet [102]. 
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Clinical application of GLP-1 in fatty liver
NAFLD is one of the most common metabolic syndromes in 
today’s society and has become the common chronic liver dis-
ease that seriously affects the health of adults and even children 
worldwide. There are currently no specific agents for NAFLD 
[103]. Previous studies have shown that GLP-1 can inhibit the 
formation and progression of NAFLD by enhancing lipid me-
tabolism through oxidation and reducing the influx of fatty ac-
ids into hepatocytes [104]. The mechanisms of GLP-1 to im-
prove NAFLD include improving lipid metabolism by regulat-
ing metabolism-related signaling pathways such as AMPK 
pathway [33] and JNK pathway [105]. And GLP-1 can inhibite 
hepatocyte apoptosis which induced by NLRP3 through au-
tophagy in mitochondria, weakening the intrahepatic inflam-
matory response, thereby inhibiting the transition from simple 
fatty liver to nonalcoholic steatohepatitis (NASH). Finally, 
GLP-1 can achieve the purpose of preventing the deterioration 
of NAFLD [106,107]. Recent research data has shown that the 
expression of lipid metabolism genes adiponectin (APN), Adi-
po R, AMPK, PPARα mRNA and protein is significantly in-
creased after 48 hours of treatment with different concentra-
tions of GLP-1 compared with the model group of adipose he-
patocytes [108]. GLP-1 alleviates hepatocyte steatosis and re-
duces intracellular lipid droplets by activating the expression of 
the above lipid metabolism genes. This also shows that GLP-1 
can significantly improve clinical indexes, reduce inflammato-
ry indicators, improve liver fat deposition, and be effective in 
the treatment of fatty liver. 

In addition, Sharma et al. [64] studied GLP-1 and receptors 
on hepatocytes and found that the combination of them can 
reduce the lipid stress response in hepatocytes, reduce the lipid 
load of hepatocytes, delay steatosis, and ultimately prevent 
NAFLD. Several other studies have also provided evidence that 
GLP-1RA can reduce hepatic fat accumulation and reduce ste-
atosis in liver tissue by regulating the expression of genes and 
proteins related to the fat synthesis pathway [109,110]. Howev-
er, there are no targeted drugs specifically designed to treat 
NAFLD. According to this characteristic, GLP-1RA gradually 
entered the clinic. Hopkins et al. [111] treated T2DM patients 
with exenatide and found that the liver fat content (LFC) of pa-
tients decreased from 21.3%±19.3% to 12.7%±10.6%, a trend 
that suggested that GLP-1RA drugs could improve liver lipid 
metabolism. Similarly, Gastaldelli et al. [112] found a decrease 
in LFC in patients with moderate to severe NAFLD with T2DM 
using exenatide in combination with dapagliflozin. Additional-

ly, a further follow-up study was conducted in patients with 
poor T2DM control and found a significant 31% reduction in 
LFC in patients treated with Lira. Recent studies suggest that 
treatment with semaglutide (GLP-1RA) in combination with 
firsocostat (ACC-a inhibitor) and/or cilofexor (nonsteroidal 
FXR agonist) can further improve hepatic steatosis and thus 
NAFLD compared with semaglutide alone in exploratory effi-
cacy analyses [113]. Flint et al. [114] randomized subjects to 
semaglutide or placebo to observe the change of liver fat from 
baseline to week 48, and found that semaglutide significantly 
reduced hepatic steatosis, improved liver enzymes and meta-
bolic parameters, and had a positive effect on the diagnosis and 
treatment of NAFLD compared with placebo. The above stud-
ies suggest that GLP-1 can significantly reduce LFC and inflam-
matory response in patients with T2DM and NAFLD, and even 
slow down the process of liver fibrosis [115]. And the emer-
gence of GLP-1RA, such as semaglutide, exenatide, and efin-
opegdutide [116], and so on, can accelerate the drug develop-
ment of NAFLD which has great therapeutic potential for the 
treatment of NAFLD [117]. 

Interestingly, there are studies on the safety and effectiveness 
of Lira in the treatment of NAFLD. It is found that in the clinical 
follow-up studies of NAFLD patients, compared with the con-
trol group, hepatic fat content and ALT levels were not signifi-
cantly reduced in Lira group and were associated with an in-
creased incidence of gastrointestinal adverse events [118]. These 
studies suggest that despite the potential benefits of Lira, cur-
rent evidence does not advocate the use of Lira in patients with 
NAFLD.

In addition to NAFLD, NASH is also of concern, with limited 
treatment options. If NASH is left untreated, the liver can dete-
riorate over time. In a recent study, Newsome et al. [119] con-
ducted a phase II clinical trial in patients with NASH, that is, a 
placebo-controlled trial of subcutaneous sommarutide in the 
treatment of NASH, and found that sommarutide treatment 
resulted in a significantly higher proportion of patients in re-
mission of NASH compared with placebo. A number of studies 
have also validated the therapeutic potential of sommarutide in 
NASH [113,120,121]. While sommarutide is undoubtedly an 
exciting potential treatment option, there is still a lack of clear 
clinical data on the mechanism of action of GLP-1 agonists in 
NASH, such as whether GLP-1 agonists have a direct, indepen-
dent role in improving NASH, or simply by improving body 
weight, insulin resistance, and so on.
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Clinical application of GLP-1 in atherosclerosis
There is substantial evidence that GLP-1 is involved in the 
function of the cardiovascular system [9]. GLP-1 has multiple 
beneficial effects in cardiovascular diseases such as hyperten-
sion, myocardial ischemia, atherosclerosis, and heart failure. 
And it may prevent the occurrence of cardiovascular disease. 
This article mainly reviews the anti-atherosclerotic effect of 
GLP-1 in clinical applications. A clinical trial of sitagliptin in a 
small sample of patients with impaired glucose tolerance and 
mild T2DM found significant reductions in carotid intimal 
thickness in sitagliptin compared with diet control alone [122]. 
In addition, a multicenter, randomized controlled trial in pa-
tients with T2DM without cardiovascular disease also found 
that the mean carotid intimal thickness and left carotid intimal 
thickness after sitagliptin treatment were significantly reduced 
from baseline, with no significant difference on the right side. 
The results suggested that sitagliptin has a delayed effect on the 
progression of carotid atherosclerosis (CAS). This is consistent 
with the results of GLP-1 in animal experiments conducted by 
Burgmaier et al. [123] to reduce intraplaque inflammation and 
increase plaque stability. Also, data analysis showed that the 
serum GLP-1 level of patients with newly diagnosed T2DM 
combined with CAS was significantly reduced compared with 
the control group. And it was related to the severity of CAS. 
GLP-1 levels can predict CAS in patients with newly diagnosed 
T2DM to some extent, and the optimal GLP-1 level of it is 6.59 
pmol/L. However, Koska et al. [124] conducted a double-blind, 
practical trial in which participants were randomly assigned to 
receive exenatide or placebo to measure changes in carotid 
plaque volume and composition at 9 and 18 months of treat-
ment, and found no difference in mean change in plaque vol-
ume in the exenatide group compared with placebo. This sug-
gests that the antiatherosclerotic effects of short-term GLP-1 
may not play a central role in atherosclerosis. Therefore, stud-
ies that extend the follow-up time and increase the sample size 
to observe the role of GLP-1 in atherosclerosis can be further 
developed. It can also provide new ideas for the prevention and 
treatment of cardiovascular diseases.

GLP-1 AND DUAL AGONISTS

Effects of glp-/glucose-dependent insulinotropic peptide 
dual agonists on lipid metabolism
GLP-/glucose-dependent insulinotropic peptide (GIP) dual 
agonists are a new type of oral hypoglycemic drug, which can 

activate both GLP-1 and GIP incretin at the same time, thereby 
exerting a more comprehensive blood glucose control effect 
[125]. Recent studies have shown that GLP-/GIP dual agonists 
also have significant lipid-regulating effects. Frias et al. [126] 
demonstrated in a drug clinical study in 2018 that GLP-/GIP 
dual agonists could significantly reduce TG and TC levels in 
patients compared with placebo. In mouse models of NASH, 
GLP-/GIP dual agonists have also been found to significantly 
reduce TG and LDL-C and increase high-density lipoprotein 
cholesterol (HDL-C) [127]. Specifically, tezepatide can reduce 
TC, LDL-C and TG levels by 12.9%, 15.5%, and 24.9%, respec-
tively, and increase HDL-C levels by 0.9% [128]. In addition, 
more and more studies have proved that such drugs can reduce 
TC, LDL-C and TG, and increase HDL-C, so as to effectively 
correct lipid metabolism disorders [129].

In rodent models, a number of studies have found that 
GLP-/GIP dual agonists group mice have reduced fat mass, de-
creased circulating cholesterol, and lost weight, which has ex-
cellent weight loss effect. Furthermore, the weight loss effect of 
GLP-/GIP dual agonists is achieved by combining an increase 
in energy expenditure with a decrease in food intake [130], 
and its potential in the treatment of obesity has been validated 
in clinical trials. In addition, a large number of clinical studies 
have shown that GLP-/GIP dual agonists can reduce LFC, VAT, 
and body weight, and have an improvement effect on both 
NAFLD and NASH [131,132]. These studies all showed that 
GLP-/GIP dual agonists had similar effects on lipid metabo-
lism to GLP-1, and even had better effects on lipid reduction 
and weight loss.

Comparison of GLP-/GIP dual agonists and GLP-1
GLP-1 and GIP, both major members of the incretin family, 
play a physiological role by binding and activating correspond-
ing receptors to promote postprandial insulin secretion [125]. 
GIP consists of 42 amino acids and is synthesized and secreted 
by endocrine K cells located mainly in the proximal duode-
num and jejunum. GIP receptor (GIPR) is also a type B G-pro-
tein-coupled receptor, which exists in various tissues such as 
pancreas, adipose tissue, gastric mucosa, heart, adrenal cortex, 
bone and brain. Binding of GIP to its receptor also stimulates 
glucose-dependent insulin secretion and produces a greater 
proportion of the incretin effect than GLP-1 (about 45% for 
GIP and 29% for GLP-1) [133]. It is worth mentioning that, 
GLP-1 inhibits glucagon secretion in α-cells during hypergly-
cemia and normal glycemia states, but does not have this effect 
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at low glycemia levels. Unlike GLP-1, GIP can promote gluca-
gon secretion in normal and hypoglycemic states, and inhibit 
it in hyperglycemia, thus acting as a bifunctional hormone to 
maintain blood glucose homeostasis. In addition, GIP enhanc-
es the lipid buffering capacity of WAT in lipid metabolism and 
promotes suitable lipid allocation, thereby reducing ectopic fat 
deposition [134]. However, GLP-1 regulates lipid metabolism 
by enhancing the function of BAT or promoting WAT brown-
ing. GLP-/GIP dual agonist innovatively integrates the effects 
of two incretin into one molecule, which can simultaneously 
activate GLP-1R and GIPR. The main representative drug of it 
is tirzepatide [135], which is a representative dual agonist com-
monly studied. There are also many multi-target dual agonists 
under development, such as GLP-1R/GCGR, GLP-1R/fibro-
blast growth factor 21 receptor (FGF21R), etc. Compared with 
GLP-1, dual agonists can avoid the degradation of dipeptidyl 
peptidase-4, thereby prolongating drug administration. A 
number of studies have shown that GLP-/GIPR dual agonists 
can achieve better blood glucose control, insulin sensitivity, 
lipid metabolism and weight loss compared with GLP-1 alone 
[136,137]. GLP-/GIPR dual agonists have fewer side effects 
and greater safety, which means that the combination therapy 
has greater metabolic benefits than single use. Moreover, al-
though GLP-1 has a significant effect on blood glucose control, 
its effect on lipid metabolism is relatively weak. In contrast, 
GLP-/GIP dual agonists, while controlling blood sugar, can 
more comprehensively regulate lipid metabolism and reduce 
the risk of cardiovascular diseases [138,139]. In addition, all 
currently available GLP-1R therapies are peptide agonists, most 
of which require subcutaneous administration [140]. However, 
GLP-/GIP dual agonists have been proved to be orally effective 
in animal experiments, and its state in plasma is more stable 
than GLP-1RA [141], and this oral administration method has 
gradually been applied to the clinic [142]. Therefore, GLP-/GIP 
dual agonists have advantages in terms of administration mode, 
and their oral administration mode is more convenient than 
GLP-1 injection administration. The development of double 
agonists and even multiple agonists has also improved the limi-
tations of GLP-1R in the treatment of metabolic diseases and 
provided better treatment options.

In summary, GLP-/GIP dual agonists have shown superior 
potential over GLP-1 in improving lipid metabolism. With the 
deepening of clinical research, we expect that this kind of new 
drug can bring more comprehensive treatment benefits to the 
majority of diabetes patients. At the same time, GLP-/GIP dual 

agonists may also be an effective treatment option for non-dia-
betic patients with abnormal lipid metabolism.

CONCLUSIONS

In summary, the research progress of GLP-1 in lipid metabo-
lism shows its potential in the treatment of metabolic disorders 
such as NAFLD, especially combined with its significant weight 
loss effect, making the application of GLP-1 in obese patients 
with NAFLD more worthy of in-depth exploration. However, 
the use time and effect of GLP-1RAs, and the adverse reactions 
after long-term use must also be fully paid attention to and 
studied before clinical application. In addition, attention should 
also be paid to the effect of GLP-1 at different sites of adminis-
tration and blood concentrations. Therefore, basic and clinical 
trials further reveal the mechanism of GLP-1 on lipid metabo-
lism, which is helpful to improve our understanding of GLP-1 
function and is essential for advancing its clinical application. 
The development of GLP-/GIP dual agonists provides a more 
complete scheme for the treatment of metabolic diseases, but 
the safety of more dual agonists or multiple agonists in clinical 
trials is also worthy of attention.
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