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Pediatric low-grade gliomas (pLGGs) are the most com-
mon pediatric brain tumors, comprising up to 40% of 

tumors in this population (1). These tumors exhibit diverse 
clinical outcomes and molecular characteristics, often driven 
by an activating BRAF mutation, either the BRAF V600E 
point mutation or fusion events. Molecular classification and 
segregation of BRAF wild type tumors from BRAF subtypes 
is vital for accurate treatment selection and risk stratification 
in pLGG, particularly given the emergence of novel BRAF-
directed therapies (2). The presence of the BRAF V600E 
mutation, found in 15%–20% of cases, was historically 

associated with poor survival, particularly when combined 
with CDKN2A deletion (3), though with targeted BRAF 
pathway-directed therapies, this may be changing. BRAF 
V600E–mutated pLGG also exhibits an increased risk of 
malignant transformation, although patients with BRAF fu-
sion and neurofibromatosis type 1 have favorable outcomes 
(4). An accurate distinction between BRAF wild type, BRAF 
fusion, and BRAF V600E tumors plays a crucial role in de-
termining prognosis and optimal treatment strategy.

Surgical resection for pLGGs allows for assessment of 
mutational status. However, in more than one-third of 
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Purpose: To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based BRAF mutational status 
classification for pediatric low-grade glioma.

Materials and Methods: This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-
weighted MRI data of patients: Dana-Farber/Boston Children’s Hospital (development dataset, n = 214 [113 (52.8%) male; 104 (48.6%) 
BRAF wild type, 60 (28.0%) BRAF fusion, and 50 (23.4%) BRAF V600E]) and the Children’s Brain Tumor Network (external testing, n = 
112 [55 (49.1%) male; 35 (31.2%) BRAF wild type, 60 (53.6%) BRAF fusion, and 17 (15.2%) BRAF V600E]). A deep learning pipeline 
was developed to classify BRAF mutational status (BRAF wild type vs BRAF fusion vs BRAF V600E) via a two-stage process: (a) three-di-
mensional tumor segmentation and extraction of axial tumor images and (b) section-wise, deep learning–based classification of mutational 
status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the 
area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was 
developed to quantify the model attention around the tumor.

Results: A combination of transfer learning from a pretrained medical imaging–specific network and self-supervised label cross-training 
(TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 
(95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively, on internal testing. 
On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) 
for BRAF wild type, BRAF fusion, and BRAF V600E, respectively.

Conclusion: Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive 
pediatric low-grade glioma mutational status prediction in a limited data scenario.

Supplemental material is available for this article. 
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novel combination of in-domain transfer learning and self-su-
pervision approach, called TransferX, to maximize performance 
and generalizability in a limited data scenario. Additionally, to 
improve interpretability of our pipeline, we introduce a way to 
quantify the model attention via spatial maps, called center of 
mass distance (COMDist) analysis.

Materials and Methods

Study Design and Datasets
This study was conducted in accordance with the Declaration 
of Helsinki guidelines and was approved by the Dana-Farber/
Boston Children’s Hospital (DF/BCH) and Children’s Brain 
Tumor Network (CBTN) institutional review boards. Waiver 
of the requirement for informed consent was obtained from 
the institutional review boards before research initiation due to 
the use of public datasets and retrospective nature of the study. 
This study involved two patient datasets. A development data-
set from one high-volume academic institution, DF/BCH (n 
= 214), was used for training, internal testing, and hypothesis 
testing. This dataset included all children age 1–25 years, seen 
at the institution from 1994 to 2022, with a tissue-confirmed 
diagnosis of World Health Organization grade I–II glioma with 
BRAF mutational status information and available pretreatment 
T2-weighted brain MRI. A second dataset from the CBTN (n 
= 112) was used for external testing. This dataset included all 
patients from the publicly available CBTN pLGG cohort who 
had available T2-weighted brain MRI and confirmed World 
Health Organization grade I–II glioma tissue diagnosis and mu-
tational status, as above. MRI acquisition details for both data-
sets are provided in Appendix S1. BRAF status was determined 
by OncoPanel, which performs targeted exome sequencing of 
227–477 cancer-causing genes. BRAF mutational status may 
also have been captured by genomic sequencing via in-house 
polymerase chain reaction on tissue specimens. In cases in which 
neither could be performed, immunohistochemistry was used to 
determine V600E status. BRAF fusion status was determined by 
a gene fusion sequencing panel. DNA copy-number profiling via 
whole-genome microarray analysis was also performed in some 
patients. We reported our results in accordance with the Check-
list for Artificial Intelligence in Medical Imaging guidelines (18). 
A portion of patients from the CBTN dataset (n = 140) and an 
additional subset of the DF/BCH dataset (n = 100) had been 
used in two previous studies (10,19). It is worth highlighting 
that these prior investigations were centered around tumor seg-
mentation, whereas the present study was primarily dedicated to 
identifying BRAF mutational subtypes.

DL Pipeline
The proposed pipeline for mutation class prediction operates 
in two stages (Fig 1A). The initial stage involves T2-weighted 
MRI preprocessing (Appendix S2 and S3) and input to a nnU-
Net–based three-dimensional tumor autosegmentation model 
previously developed, externally tested, and clinically bench-
marked by our group (pipeline available at https://github.com/
AIM-KannLab/pLGG_Segmentation) (10). This first stage out-

cases, resection, or even biopsy, may not be feasible or recom-
mended (5). In these situations, children may require alterna-
tive therapies to control a symptomatic tumor or undergo pe-
riodic MRI surveillance. Therefore, noninvasive imaging-based 
tumor molecular subtyping, if accurate and reliable, could en-
able proper selection of patients for BRAF-targeted therapies and 
clinical trials. In recent years, deep learning (DL) has emerged as 
the forefront technology for analyzing medical images (6,7) and 
has demonstrated numerous successful applications, encompass-
ing tumor segmentation (8–10), outcome prediction (11,12), 
and tumor and molecular classification (13,14). However, DL 
performance degrades considerably in limited data scenarios due 
to instability, overfitting, and shortcut learning (15), and a key 
barrier to applying DL to pLGG imaging is the lack of training 
data available for these rare tumor cases. For these reasons, using 
DL for pLGG mutational classification has had limited success. 
Another barrier to clinical usability is that most algorithms re-
quire manual tumor segmentation as input, which is resource 
intensive and requires specialized expertise. A few studies have 
been published investigating pLGG BRAF mutation classifica-
tion using DL (16) and a combination of DL and radiomics 
(17), but all present a single institution and lack external testing.

Here, we address these gaps by developing and externally 
testing, to our knowledge, the first imaging-based automated, 
scan-to-prediction DL pipeline capable of noninvasive BRAF 
mutational status prediction for pLGGs. The pipeline comprises 
built-in pLGG segmentation, BRAF mutation classifiers, and a 
consensus decision block to predict BRAF mutation status. We 
leverage the pLGG dataset as our developmental dataset and a 

Abbreviations
AUC = area under the receiver operating characteristic curve, 
CBTN = Children’s Brain Tumor Network, COMDist = center of 
mass distance, DF/BCH = Dana-Farber/Boston Children’s Hos-
pital, DL = deep learning, Grad-CAM = gradient-weighted class 
activation maps, pLGG = pediatric low-grade glioma

Summary
The authors developed and externally tested an automated, scan-
to-prediction deep learning pipeline that accurately classifies BRAF 
mutational status in pediatric low-grade gliomas from T2-weighted 
MRI scans with high area under the receiver operating characteristic 
curve.

Key Points
 ■ A deep learning approach combining self-supervision and transfer 

learning (TransferX) enabled the development of a scan-to-predic-
tion pipeline for subtype classification of pediatric low-grade glio-
ma mutations (BRAF wild type, BRAF fusion, or BRAF V600E). 
Center of mass distance was introduced as an evaluation metric to 
quantify the model’s attention around the tumor.

 ■ TransferX enabled scan-to-prediction pipeline-classified BRAF 
molecular subtypes with an area under the receiver operating char-
acteristic curve of 0.82 or more for the internal test and 0.72 or 
more for the external test.

Keywords
Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detec-
tion, Diagnosis, Supervised Learning, Transfer Learning, Convolu-
tional Neural Network (CNN)
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from RadImageNet (23) for the ResNet-50 model. This prior 
initialization was intended to yield superior feature embeddings 
compared with random weight initialization and training from 
scratch or out-of-domain transfer learning (24). The third ap-
proach, is called TransferX.

The TransferX approach starts with pretrained weights from 
RadImageNet but then adds two sequential stages of fine-tuning 
on separate but related classification tasks, which act as pretext 
tasks for self-supervision, followed by a final fine-tuning on the 
target class (Fig 1C). As an illustrative example, the training of 
a BRAF fusion classifier began with initialization via pretrained 
RadImageNet weights and sequential fine-tuning for BRAF 
V600E prediction, followed by BRAF wild type prediction and 
finally fine-tuning for BRAF fusion prediction. We hypothesized 
that combining transfer learning and self-supervised cross-train-
ing would enable the model to learn stronger, more generalizable 
features for mutational status prediction by exposure to different, 
though similar, classification problems. The models were trained 
to minimize loss at the axial section level on the development da-
taset and were tested on an internal test set (25% of data randomly 
selected; Appendix S3, Figs S3, S4) and external test set.

Performance Evaluation and Statistical Analysis
Because each MRI scan of each patient was factored into mul-
tiple tumor section images to generate aggregated patient-level 

puts a preprocessed, skull-stripped image along with a corre-
sponding segmentation tumor mask (Fig 1B, Appendix S4).

The second stage of the pipeline encompasses three binary 
subtype classifiers (BRAF wild type vs rest, BRAF fusion vs rest, 
and BRAF V600E vs rest), each specifically trained to identify 
one of the following classes: BRAF wild type, BRAF fusion, and 
BRAF V600E (Appendix S4 and S5). For each subtype classifier, 
a ResNet-50 model (20) was chosen as the fundamental encoder 
for extracting feature embeddings from two-dimensional im-
ages, given its high performance on medical imaging classifica-
tion problems (21,22) and the availability of pretrained network 
weights (23). The fully connected layers succeeding the average 
pooling layer of the ResNet-50 were replaced by a layer of 1024 
neurons and a final layer of single neurons for binary classifica-
tion (Fig 1D, Appendix S5). After binary classification from each 
binary subtype classifier, a consensus decision block collates the 
predictions from the classifiers, yielding the overall mutational 
status (Appendix S6) (Fig 1E). The final output of the consensus 
decision block and the pipeline consequently is a classification 
decision and its corresponding probability.

Three different strategies were investigated for training in-
dividual binary classifiers. The initial approach, training from 
scratch, involved initializing the binary classifier model with ran-
dom weights. For the second approach, called RadImageNet Fi-
netune, the classifier model was initiated with pretrained weights 

Figure 1: (A) Schematic of the scan-to-prediction pipeline for molecular subtype classification. The pipeline inputs the raw T2-weighted (T2W) MRI scan and outputs 
the mutation class prediction. (B) Input and output depiction of the segmentation model from the first stage of the pipeline. The segmentation block also involves registra-
tion and preprocessing of the input scan. The output consists of the preprocessed input MRI scan along with the coregistered segmentation mask. (C) Flow diagram of the 
TransferX training block and approach. The TransferX algorithm is employed to train three individual subtype classifiers (BRAF wild type, BRAF fusion, and BRAF V600E). (D) 
The model architecture of the individual binary molecular subtype classifier. (E) Schematic of the consensus decision block. The block inputs the classification outputs and 
corresponding scores from the three individual subtype classifiers, fits them into a consensus logic, and outputs the final predictions. The mutational class predictions are out-
put sequentially where the input is first checked for BRAF wild type or non-BRAF class first. If the input does not belong to a BRAF wild type or non-BRAF class, then the logic 
progresses to check the BRAF mutation class, with BRAF fusion checked first, followed by BRAF V600E.
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agnosed grade I–II low-grade glioma, with a mixture of his-
tologic subtypes and intracranial locations. The development 
dataset contained 104 (48.6%), 60 (28.0%), and 50 (23.4%) 
patients with BRAF wild type, BRAF fusion, and BRAF V600E 
mutation classes, respectively, and the external test dataset con-
tained 35 (31.2%), 60 (53.6%), and 17 (15.2%) patients with 
BRAF wild type, BRAF fusion, and BRAF V600E mutation 
classes, respectively (Table 1). Age and sex were not associated 
with BRAF mutational status (Table S4, Fig S5). Categorical 
variables of tumor locations were one-hot encoded, and a lo-
gistic regression model was trained for each molecular subtype 
with an accuracy of 63%, 52%, and 59% for BRAF wild type, 
BRAF fusion, and BRAF V600E mutation classes, respectively, 
showing that tumor location cannot be employed as the only 
variable to perform molecular subtype classification.

TransferX-enabled Pipeline Performance and 
Generalizability
The pipeline with TransferX outperformed the pipeline with 
classifiers trained by RadImageNet FineTune and training from 
scratch for BRAF mutational status subtype prediction, with a 
classification AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% 
CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) compared with 
a classification AUC of 0.79 (95% CI: 0.67, 0.82), 0.73 (95% 
CI: 0.67, 0.89), and 0.75 (95% CI: 0.61, 0.83) when trained 
from scratch (all P < .05) for BRAF wild type, BRAF fusion, 
and BRAF V600E mutation classes, respectively (Figs 2, 3; Ta-
bles 2, S2). All training approaches, including TransferX, were 
most accurate at identifying BRAF fusion, followed by BRAF 
wild type and BRAF V600E. However, TransferX was the only 
approach to maintain an AUC of more than 0.80 for all indi-
vidual subtype classifications (Figs 2, 3).

On external testing, there was a mild degradation in perfor-
mance across all approaches, with TransferX still demonstrating 
the highest performance, with a classification AUC of 0.72 (95% 
CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 
0.64, 0.88) compared with a classification AUC of 0.63 (95% 
CI: 0.54, 0.83), 0.68 (95% CI: 0.58, 0.81), and 0.60 (95% CI: 
0.50, 0.70) when trained from scratch (all P < .01) for BRAF 
wild type, BRAF fusion, and BRAF V600E mutation classes, re-
spectively (Figs 2, 3; Tables 2, S2). TransferX also demonstrated 
the best performance for classification of BRAF wild type ver-
sus any BRAF mutational class, with an AUC of 0.82 (95% CI: 
0.75, 0.91) (Table 2, Fig 3). TransferX showed adequate calibra-
tion on the external test set, which was further improved after 
calibrating the model on the internal test set (Fig S8). TransferX 
also resulted in superior performance compared with the other 
training approaches when subtype classifiers (without consensus 
logic) were tested on the internal and external test sets for each 
subtype class (Fig S7, Table S3). Representative cases and model 
predictions are found in Figure 5.

TransferX Yields Better COMDist Values
Grad-CAMs were generated for the three training approaches on 
the entire dataset (Fig 4), and corresponding COMDist scores 
were calculated for each molecular subtype with each training 

predictions, the output probability scores of the individual 
two-dimensional axial images were averaged to calculate the 
patient level probability score. The patient-level classification 
was then done by applying a threshold on the patient level 
probability score.

The primary performance end point was the area under the 
receiver operating characteristic curve (AUC) at the patient level 
for each mutational subtype (BRAF wild type, BRAF fusion, and 
BRAF V600E). The three DL approaches were initially evalu-
ated on the internal test set, and the highest performing model 
was locked for external testing. Secondary end points included 
sensitivity and specificity, precision, and accuracy, which were 
calculated using the model output, thresholded to optimize the 
Youden index (25) on the internal test set. Post hoc calibration 
was applied on the internal test set, and model calibration was 
assessed graphically before and after calibration (Appendix S7; 
Fig S8). We compared AUCs for different models and calculated 
95% CIs using the DeLong method (26). The standard error of 
the AUC was calculated considering the numbers of positive and 
negative cases in the sample and the derived variance of AUC. A 
two-sided P < .05 was considered statistically significant. Statisti-
cal metrics and curves were calculated using scikit-learn packages 
(27) in Python, version 3.8 (Python Software Foundation).

To enable the use of gradient-weighted class activation maps 
(Grad-CAM) (28) as a quantitative performance evaluation tool, 
we developed COMDist, a quantifiable metric for comparing 
Grad-CAM images across different methods. COMDist calcu-
lates and averages the distance (in millimeters) between the tu-
mor’s center of mass (from the segmentation mask) and the cen-
ter of mass of the Grad-CAM heatmap over the entire dataset, 
with smaller values indicating that the model is more accurately 
focusing on the tumor region.

Code Availability
The code of the DL system, as well as the trained model and 
statistical analysis, are publicly available at https://github.com/
AIM-KannLab/BRAF_Classification.

Results

Patient Characteristics
The total cohort of patients with pLGGs consisted of 326 pa-
tients from two cohorts: 214 patients in the development set 
from the DF/BCH cohort and 112 patients in the external test 
set from the CBTN cohort (Table 1). The median age was 5 
years (range, 1–20) in the DF/BCH cohort and 6 years (range, 
1–21) in the CBTN cohort. There were 113 (52.8%) male and 
95 (44.4%) female patients (with six [2.8%] of unknown sex) 
in the DF/BCH cohort and 55 (49.1%) male and 51 (45.5%) 
female patients (with four [3.6%] of unknown sex) in the 
CBTN cohort. All patients had pathologically or clinically di-

http://radiology-ai.rsna.org
https://github.com/AIM-KannLab/BRAF_Classification
https://github.com/AIM-KannLab/BRAF_Classification
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Discussion
pLGGs can arise in locations that make resection, and even 
biopsy, morbid and infeasible. In these situations, the ability to 

approach. TransferX consistently yielded the best average COM-
Dist scores across all classification tasks, indicating improved 
model focus on intra- and peritumoral regions (Table 3, Fig 4C).

Table 1: Patient Characteristics

Characteristic
Development Dataset 
(DF/BCH, n = 214)

External Test Set 
(CBTN, n = 112) P Value

Median age (range) (y) 5 (1–20) 6 (1–21) .19*
Sex .82†

  Female 95 (44.4) 52 (46.4)
  Male 113 (52.8) 55 (49.1)
  Unknown 6 (2.8) 5 (4.5)
Race/Ethnicity <.001†

  African American or Black 6 (2.8) 14 (12.5)
  American Indian or Alaska Native 0 1 (0.9)
  Asian American or Asian 9 (4.2) 3 (2.7)
  Hispanic or Latinx 3 (1.4) 10 (8.9)
  Non-Hispanic White 145 (67.8) 72 (64.3)
  More than once race 0 1 (0.9)
  Unknown 51 (23.8) 11 (9.8)
Histologic diagnosis <.001†

  Pilocytic astrocytoma 65 (30.4) 68 (60.7)  
  Fibrillary astrocytoma 0 8 (7.1)
  Pilomyxoid astrocytoma 8 (3.7) 17 (15.2)
  Ganglioglioma 28 (13.1) 0
  Dysembryoplastic neuroepithelial tumor 19 (8.9) 0
  Diffuse glioma 7 (3.3) 7 (6.2)
  Angiocentric glioma 1 (0.5) 1 (0.9)
  Optic pathway glioma 5 (2.3) 0
  Pleomorphic xanthoastrocytoma 3 (1.4) 0
  Oligodendroglioma or oligoastrocytoma 5 (2.3) 0
  Glioneuronal neoplasm or tumor 7 (3.3) 0
  Dysembryoplastic neuroepithelial tumor 2 (0.9) 0
  Unspecified low-grade glioma 64 (30.0) 11 (9.8)
BRAF mutation status <.001†

  Wild type 104 (48.6) 35 (31.2)
  Fusion 60 (28.0) 60 (53.6)
  V600E 50 (23.4) 17 (15.2)
Tumor location <.001†

  Cerebellum or posterior fossa 40 (18.7) 33 (29.5)
  Temporal lobe 43 (20.1) 12 (10.7)
  Frontal lobe 21 (9.8) 4 (3.6)
  Suprasellar 6 (2.8) 32 (28.6)
  Optic pathway 7 (3.3) 17 (15.2)
  Brainstem 7 (3.3) 9 (8.0)
  Thalamus 11 (5.1) 2 (1.8)
  Ventricles 13 (6.1) 2 (1.8)
  Other 66 (30.8) 1 (0.9)

Note.—Unless otherwise indicated, data are numbers with percentages in parentheses. DF/BCH = Dana-Farber/
Boston Children’s Hospital, CBTN = Children’s Brain Tumor Network.
* The Kruskal-Wallis rank sum test was performed for numerical data age to test the statistical significance be-
tween age medians.
† The Fisher exact test was performed for categorical data to test the statistically significant (P < .05) differences 
between the DF/BCH and CBTN datasets.
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Table 2: Pipeline Performance for Classification of BRAF Status on Test Sets

Test Set AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Internal test (n = 59)
  BRAF wild type 0.82 (0.75, 0.91) 73 80 77 76 77 77
  BRAF fusion 0.87 (0.61, 0.97) 87 70 81 81 80 80
  BRAF V600E 0.85 (0.66, 0.95) 75 80 76 82 77 77
External test (n = 112)
  BRAF wild type 0.72 (0.64, 0.86) 72 71 72 75 72 73
  BRAF fusion 0.78 (0.61, 0.89) 60 90 75 77 74 74
  BRAF V600E 0.72 (0.64, 0.88) 78 60 75 82 74 77

Note.—AUC = area under the receiver operating characteristic curve.

Figure 2: Graphs of receiver operating characteristic curves of the scan-to-prediction pipeline’s predictions for all three molecular subtype classes on internal testing (n 
= 59) and external testing (n = 112). The models, trained with TransferX, form the individual subtype classifiers. The outputs of the subtype classifiers are pooled using con-
sensus logic, resulting in the pipeline predictions for each mutation class. AUC = area under the receiver operating characteristic curve.

Figure 3: Graph of the area under the receiver operating characteristic curve (AUC) is plotted and compared for the pipeline results with 
individual subtype classifiers trained using different training approaches (Scratch, RadImageNet FineTune, TransferX) for respective mutation class 
(BRAF wild type, BRAF fusion, and BRAF V600E). w.r.t. = with respect to.

http://radiology-ai.rsna.org
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noninvasively detect BRAF mutational status via diagnostic im-
aging would be helpful to determine which patients may ben-
efit from targeted therapies that act on the BRAF pathway and 
enrollment in clinical trials of novel targeted therapies. In this 
study, we developed and externally tested a scan-to-prediction 
algorithm to noninvasively predict BRAF mutational status of 
pLGGs that could be used in settings in which tissue diagnosis 
is infeasible (Fig 5). The limited quantity of data available for 
analysis has limited the translational potential of artificial in-
telligence in pediatric brain tumor analysis as compared with 
other malignancies. Our study overcomes this obstacle by 
combining elements of transfer learning and self-supervision 
to develop a high-performing model with a subtype classifica-

tion AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 
0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, 
BRAF fusion, and BRAF V600E mutation classes, respectively, 
and maintains good performance on external testing with an 
AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89)
and 0.72 (95% CI: 0.64, 0.88) for BRAF wild type, BRAF fu-
sion, and BRAF V600E mutation classes, respectively, despite 
heterogeneous tumor and scanner characteristics. Additionally, 
we introduced COMDist, an interpretable metric to evaluate 
model attention with anatomic correlation that will help make 
medical imaging algorithms more trustworthy to clinical us-
ers. Our study findings contribute to bridging the gap between 
artificial intelligence development and clinical translation in a 

Table 3: COMDist Value Comparison by Mutational Subtype Classifier Using 
Three Training Approaches

Test Set

Median COMDist Value (mm)

TransferX Scratch RadImageNet

Internal test (n = 59)
 BRAF wild type 38.02 41.54 (P = .09) 39.48 (P = .46)
 BRAF fusion 25.8 27.14 (P = .49) 26.13 (P = .86)
 BRAF V600E 33.02 36.86 (P = .09) 34.40 (P = .52)
External test (n = 112)
 BRAF wild type 27.8 28.11 (P = .90) 34.2 (P = .009)
 BRAF fusion 28.0 29.7 (P = .47) 28.7 (P = .76)
 BRAF V600E 23.03 25.24 (P = .40) 25.21 (P = .40)

Note.—P values are with respect to TransferX. COMDist = center of mass distance.

Figure 4: (A) Gradient-weighted class activation map image overlay for each mutational class for internal and external test sets. (B) Center of mass distance (COM-
Dist) representation for the three training approaches. (C) COMDist value comparison of the scan-to-prediction pipeline for each molecular subtype class, with correspond-
ing individual subtype classifiers trained with the three different training approaches.
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limited data scenario. To this end, we have published the code 
and pretrained models to provide usable tools for the scientific 
community and to encourage clinical testing.

With the emergence of novel BRAF pathway-directed thera-
pies, the segregation of BRAF wild type tumor cases from BRAF 
subtypes in pLGGs has become critical. With an accuracy of 
77% or more (internal) and 72% or more (external) for clas-
sifying BRAF wild type tumor cases versus BRAF cases (Table 
2), the pipeline can be used as an assistive tool by clinicians to 
provide key information in settings in which tissue biopsy is 
infeasible or low-resource settings that preclude genomic analy-
sis. Beyond BRAF classification, the pipeline’s ability to identify 
BRAF V600E, specifically, enables it to select patients for spe-
cific V600E inhibitors such as dabrafenib and trametinib, which 
have shown better progression-free survival than chemotherapy 
(29–31). The mild performance degradation observed on exter-
nal testing may have been driven by notable differences in MRI 
parameters across institutions (Figs S1, S2). The model may per-
form better in scenarios in which MRI parameters are similar 
to training data. Importantly, the scan-to-prediction pipeline 
is practical and not reliant on manual segmentation, which is 
resource intensive and requires specialized expertise, nor hand-
crafted radiomics features, which are notoriously difficult to 
generalize externally (32–34). Notably, the pipeline also exhibits 

robust performance in classifying tumors originating from chal-
lenging regions for biopsy (optic pathway, thalamus, and brain-
stem), which may enable more confidence for empirical treat-
ment with targeted therapies if tissue diagnosis is infeasible.

pLGG mutational classification has been previously at-
tempted in a few studies, most with manual segmentation-
derived and/or pre-engineered radiomics (35–38), which are 
known to fail when applied to the external dataset. Radiomics 
features have been extracted from MR images and fitted to clas-
sifier models like XGBoost and SVM (17,35,36). One preprint 
study used neural networks to classify BRAF-mutational status 
in a single institution, though the algorithm required manual 
segmentation (16). The sensitivity of the dataset size on BRAF 
mutation classification performance was studied by Wagner et 
al (39) in a radiomics-based study. They showed that neural net-
works outperformed XGBoost for classification AUC and that 
the performance was affected by the size of the data used in train-
ing. In contrast, our study demonstrates that an end-to-end DL 
pipeline is feasible, even in a low-data setting, by using interclass 
cross-training combined with transfer learning. This idea has 
been explored more generally by Raouf et al (40) by relaxing 
the assumption of independence between multiple categories. 
TransferX expands on this work by dropping the assumptions of 
independence between different categories of a multiclass dataset 

Figure 5: Representative prediction cases of the scan-to-prediction pipeline on the external dataset. The final scan-to-prediction pipeline consists 
of three subtype classifiers, trained using TransferX, further pooled together in consensus logic by the consensus decision block. Tumor lesions in the 
T2-weighted MRI scans are highlighted with arrows.

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 6: Number 3—2024 ■ radiology-ai.rsna.org 9

Tak and Ye et al

with stepwise interclass training as a pretext task to learn robust 
feature representations. Furthermore, incorporating consensus 
decision logic to combine multiple binary classifiers also helped 
mitigate overfitting from the limited dataset.

Interpretability is a well-recognized, important factor for clini-
cal translation of DL models. A variety of metrics, including Grad-
CAM, saliency maps, and guided backpropagation, have been de-
veloped to depict the pixels that are contributing to maximum 
activation in the network and hence being more significant for 
classification (41,42). The GradCAM approach, although adding 
a degree of qualitative interpretability, has allowed for only case-
by-case visualizations for the end user, which are not useful when 
trying to establish trust in a model overall. We expand the utility of 
GradCAM in this work with COMDist. By incorporating spatial 
knowledge of the tumor from autosegmentation, COMDist can 
quantify, in terms of distance, the model’s attention with respect 
to the correct, biologically rational region of interest in the im-
age. COMDist provides the clinical user with a metric to gauge 
whether the model is basing its prediction on intratumoral infor-
mation (as one would expect) or extemporaneous information far 
from the tumor (indicating an implausible model shortcut that 
should not be trusted). The metric can be reported case by case or 
in aggregate over a dataset to compare attention of different mod-
els. We expect this method will be valuable for the artificial intel-
ligence research community as well as clinical end users evaluating 
and implementing medical imaging artificial intelligence applica-
tions in the clinic. COMDist should be considered exploratory 
at this time. We encourage further research and validation of this 
method to place it as a tool to gauge a model’s attention toward re-
gion of interest and also as a metric for comparing different train-
ing approaches.

This study had limitations. First, this work was retrospective 
and subject to the biases of our patient samples. We attempted 
to mitigate this effect of bias by using a blinded, external test set. 
Thus, we would encourage further independent validation of our 
results, including prospective testing. Additionally, the pipeline 
is exclusively based on T2-weighted MRI scans. Although T2-
weighted images are the most common and available diagnos-
tic sequence for pLGGs, contrast-enhanced T1-weighted, T1-
weighted, T2-weighted fluid attenuated inversion recovery, and 
diffusion-weighted MRI may contain complementary informa-
tion that enhances performance. Along with this, the properties 
of different imaging sequences and their correlation with dif-
ferent molecular subgroups warrant further investigation, which 
we aim to explore in future work. In this work, we decided to 
leverage a two-dimensional approach with section averaging to 
minimize overfitting on our limited dataset. It is possible that 
with further data collection, a three-dimensional approach 
may work better; however, this would substantially increase the 
model parameter size and thus make the model even more prone 
to overfitting. COMDist, in this work, was applied to model 
Grad-CAMs, which, while widely used, have been known to 
have limitations in expressing model interpretability (43). Of 
note, COMDist is agnostic to the saliency map method and can 
be used to evaluate various spatial attention maps. For instance, 
newer techniques like SmoothGrad IG (44) or XRAI (45) could 
be used to calculate COMDist estimates as well.

In summary, we developed and externally tested an imaging-
based scan-to-prediction pipeline to analyze T2-weighted MRI 
as input and output BRAF-mutational subtype for pLGGs. We 
leveraged a novel combination of transfer learning and self-su-
pervision to mitigate overfitting and develop a high-performing 
and generalizable model. We also proposed a novel evaluation 
metric, COMDist, that can be used to further assess perfor-
mance and interpretability of artificial intelligence imaging 
models. Our resulting pipeline warrants prospective validation 
to determine if it could be clinically used in settings in which 
tissue and/or genomic testing is unavailable.

Author contributions: Guarantors of integrity of entire study, D.T., D.A.H.K., 
B.H.K.; study concepts/study design or data acquisition or data analysis/interpre-
tation, all authors; manuscript drafting or manuscript revision for important in-
tellectual content, all authors; approval of final version of submitted manuscript, 
all authors; agrees to ensure any questions related to the work are appropriately 
resolved, all authors; literature research, D.T., Z.Y., A.C.R., D.A.H.K., B.H.K.; 
clinical studies, D.T., Z.Y., A.B., S.V., A.C.R., D.A.H.K., B.H.K.; experimental 
studies, D.T., Z.Y., A.B., H.H., S.P.P., A.C.R., H.J.W.L.A.; statistical analysis, 
D.T., Z.Y., Y.Z., R.C., H.J.W.L.A.; and manuscript editing, D.T., Z.Y., A.Z., A.B., 
S.V., R.C., H.H., S.P.P., K.X.L., H.E., A.N., A.F., A.C.R., S.M., H.J.W.L.A., P.B., 
K.L.L., D.A.H.K., B.H.K.

Disclosures of conflicts of interest: D.T. No relevant relationships. Z.Y. No rel-
evant relationships. A.Z. No relevant relationships. Y.Z. No relevant relationships. 
A.B. No relevant relationships. S.V. Brigham and Women’s Hospital (10% salary 
support paid to Boston Children’s Hospital). R.C. No relevant relationships. H.H. 
No relevant relationships. S.P.P. Payment for expert testimony from various attor-
ney firms across the United States (unrelated to topic of this manuscript). K.X.L. 
NIH Loan Repayment Program L40 CA264321. H.E. Associate editor of Radiol-
ogy: Artificial Intelligence. A.N. No relevant relationships. A.F. No relevant relation-
ships. A.C.R. No relevant relationships. S.M. No relevant relationships. H.J.W.L.A. 
Support from NIH and EU to institution. P.B. Laboratory receives grant funding 
from Novartis for unrelated work, and has received grant funding from Deerfield, 
also for unrelated work; paid advisory board for QED Therapeutics, unrelated to 
this work. K.L.L. Support from the Pediatric Brain Tumor Foundation David An-
drysiak Award, the DFCI Pediatric Low Grade Astrocytoma Foundation, and NCI 
5P50CA165962. D.A.H.K. Work partially supported by NIH U54 CA274516 
(Haas-Kogan and Kann). T.Y.P. NIH-funded PBTC Neuroimaging Center; royalties 
from Springer; ASNR Board of Directors (not paid). B.H.K. National Institutes of 
Health (NIH) (U24CA194354, U01CA190234, U01CA209414, R35CA22052, 
U54CA274516, and K08DE030216), the National Cancer Institute (NCI) Spore 
grant (2P50CA165962), the European Union – European Research Council 
(866504), the Radiological Society of North America (RSCH2017), the Pediatric 
Low-Grade Astrocytoma Program at Pediatric Brain Tumor Foundation, the Wil-
liam M. Wood Foundation, and the Botha-Chan Low Grade Glioma Consortium.

References
 1. Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: Primary 

Brain and Other Central Nervous System Tumors Diagnosed in the United 
States in 2015–2019. Neuro Oncol 2022;24(Suppl 5):v1–v95.

 2. Talloa D, Triarico S, Agresti P, et al. BRAF and MEK Targeted Therapies in 
Pediatric Central Nervous System Tumors. Cancers (Basel) 2022;14(17):4264.

 3. Becker AP, Scapulatempo-Neto C, Carloni AC, et al. KIAA1549: BRAF 
Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in 
Pilocytic Astrocytomas. J Neuropathol Exp Neurol 2015;74(7):743–754.

 4. Marker DF, Pearce TM. Homozygous deletion of CDKN2A by fluorescence 
in situ hybridization is prognostic in grade 4, but not grade 2 or 3, IDH-
mutant astrocytomas. Acta Neuropathol Commun 2020;8(1):169.

 5. Sievert AJ, Fisher MJ. Pediatric low-grade gliomas. J Child Neurol 
2009;24(11):1397–1408.

 6. Razzak MI, Naz S, Zaib A. Deep Learning for Medical Image Processing: 
Overview, Challenges and the Future. In: Dey N, Ashour A, Borra S, eds. 
Classification in BioApps. Lecture Notes in Computational Vision and 
Biomechanics, vol 26. Springer, 2018; 323–350.

 7. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical 
image analysis. Med Image Anal 2017;42:60–88.

 8. Hosny A, Bitterman DS, Guthier CV, et al. Clinical validation of deep 
learning algorithms for radiotherapy targeting of non-small-cell lung cancer: 
an observational study. Lancet Digit Health 2022;4(9):e657–e666.



10 radiology-ai.rsna.org ■ Radiology: Artificial Intelligence Volume 6: Number 3—2024

Noninvasive Molecular Subtyping of pLGG with Self-Supervised Transfer Learning

 9. Jain A, Huang J, Ravipati Y, et al. Head and Neck Primary Tumor and Lymph 
Node Auto-segmentation for PET/CT Scans. In: Andrearczyk V, Oreiller 
V, Hatt M, Depeursinge A, eds. Head and Neck Tumor Segmentation and 
Outcome Prediction. HECKTOR 2022. Lecture Notes in Computer Sci-
ence, vol 13626. Springer, 2023; 61–69.

 10. Boyd A, Ye Z, Prabhu S, et al. Expert-level pediatric brain tumor segmen-
tation in a limited data scenario with stepwise transfer learning. medRxiv 
2023.06.29.23292048 [preprint] https://doi.org/10.1101/2023.06.29.232
92048. Posted September 18, 2023. Accessed September 2023.

 11. Kazmierski M, Welch M, Kim S, et al. Multi-institutional Prognostic Modeling 
in Head and Neck Cancer: Evaluating Impact and Generalizability of Deep 
Learning and Radiomics. Cancer Res Commun 2023;3(6):1140–1151.

 12. Ye Z, Saraf A, Ravipati Y, et al. Development and Validation of an Automated 
Image-Based Deep Learning Platform for Sarcopenia Assessment in Head 
and Neck Cancer. JAMA Netw Open 2023;6(8):e2328280.

 13. Hollon T, Jiang C, Chowdury A, et al. Artificial-intelligence-based molecular 
classification of diffuse gliomas using rapid, label-free optical imaging. Nat 
Med 2023;29(4):828–832.

 14. Kann BH, Likitlersuang J, Bontempi D, et al. Screening for extranodal exten-
sion in HPV-associated oropharyngeal carcinoma: evaluation of a CT-based 
deep learning algorithm in patient data from a multicentre, randomised 
de-escalation trial. Lancet Digit Health 2023;5(6):e360–e369.

 15. Brigato L, Iocchi L. A Close Look at Deep Learning with Small Data. arXiv 
2003.12843 [preprint] https://arxiv.org/abs/2003.12843. Posted March 28, 
2020. Accessed June 2023.

 16. Namdar K, Wagner MW, Kudus K, et al. Improving Deep Learning Models 
for Pediatric Low-Grade Glioma Tumors Molecular Subtype Identification 
Using 3D Probability Distributions of Tumor Location. arXiv 2210.07287 
[preprint] https://arxiv.org/abs/2210.07287. Posted October 13, 2022. Ac-
cessed June 2023.

 17. Vafaeikia P, Wagner MW, Hawkins C, Tabori U, Ertl-Wagner BB, Khalvati 
F. MRI-Based End-To-End Pediatric Low-Grade Glioma Segmentation and 
Classification. Can Assoc Radiol J 2024;75(1):153–160.

 18.  Mongan J, Moy L, Kahn CE Jr. Checklist for Artificial Intelligence in Medical 
Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol Artif Intell 
2020;2(2):e200029.

 19. Fathi Kazerooni A, Arif S, Madhogarhia R, et al. Automated tumor segmenta-
tion and brain tissue extraction from multiparametric MRI of pediatric brain 
tumors: A multi-institutional study. Neurooncol Adv 2023;5(1):vdad027.

 20. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR). IEEE, 2016; 770–778.

 21. Wang W, Liang D, Chen Q, et al. Medical Image Classification Using Deep 
Learning. In: Chen YW, Jain L, eds. Deep Learning in Healthcare. Intelligent 
Systems Reference Library, vol 171. Springer, 2020; 33–51.

 22. Sarwinda D, Paradisa RH, Bustamam A, Anggia P. Deep Learning in Image 
Classification using Residual Network (ResNet) Variants for Detection of 
Colorectal Cancer. Procedia Comput Sci 2021;179:423–431.

 23. Mei X, Liu Z, Robson PM, et al. RadImageNet: An Open Radiologic Deep 
Learning Research Dataset for Effective Transfer Learning. Radiol Artif Intell 
2022;4(5):e210315.

 24. Ravishankar H, Sudhakar P, Venkataramani R, et al. Understanding the 
Mechanisms of Deep Transfer Learning for Medical Images. In: Carneiro G, 
Mateus D, Peter L, et al, eds. Deep Learning and Data Labeling for Medical 
Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer 
Science, vol 10008. Springer, 2016; 188–196.

 25. Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. Youden Index 
and optimal cut-point estimated from observations affected by a lower limit 
of detection. Biom J 2008;50(3):419–430.

 26. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a nonparametric 
approach. Biometrics 1988;44(3):837–845.

 27. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning 
in Python. J Mach Learn Res 2011;12:2825–2830. 

 28. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. 
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based 
Localization. In: 2017 IEEE International Conference on Computer Vision 
(ICCV). IEEE, 2017; 618–626.

 29. Nobre L, Zapotocky M, Ramaswamy V, et al. Outcomes of BRAF V600E 
Pediatric Gliomas Treated With Targeted BRAF Inhibition. JCO Precis 
Oncol 2020;4(4):PO.19.00298.

 30. Geoerger B, Bouffet E, Whitlock JA, et al. Dabrafenib + trametinib com-
bination therapy in pediatric patients with BRAF V600-mutant low-grade 
glioma: Safety and efficacy results. J Clin Oncol 2020;38(15_suppl):10506.

 31. Bouffet E, Hansford J, Garré ML, et al. Primary analysis of a phase II trial 
of dabrafenib plus trametinib (dab + tram) in BRAF V600–mutant pediatric 
low-grade glioma (pLGG). J Clin Oncol 2022;40(17_suppl):LBA2002.

 32. Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. 
Magn Reson Imaging 2012;30(9):1234–1248.

 33. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, 
they are data. Radiology 2016;278(2):563–577.

 34. Yip SSF, Aerts HJWL. Applications and limitations of radiomics. Phys Med 
Biol 2016;61(13):R150–R166.

 35. Wagner MW, Hainc N, Khalvati F, et al. Radiomics of pediatric low-grade 
gliomas: Toward a pretherapeutic differentiation of BRAF-mutated and 
BRAF-fused tumors. AJNR Am J Neuroradiol 2021;42(4):759–765.

 36. Xu J, Lai M, Li S, et al. Radiomics features based on MRI predict BRAF 
V600E mutation in pediatric low-grade gliomas: A non-invasive method for 
molecular diagnosis. Clin Neurol Neurosurg 2022;222:107478.

 37. Madhogarhia R, Haldar D, Bagheri S, et al. Radiomics and radiogenomics 
in pediatric neuro-oncology: A review. Neurooncol Adv 2022;4(1):vdac083.

 38. Haldar D, Kazerooni AF, Arif S, et al. Unsupervised machine learning using 
K-means identifies radiomic subgroups of pediatric low-grade gliomas that 
correlate with key molecular markers. Neoplasia 2023;36:100869.

 39. Wagner M, Namdar K, Alqabbani A, et al. Dataset Size Sensitivity Analysis 
of Machine Learning Classifiers to Differentiate Molecular Markers of 
Pediatric Low-Grade Gliomas Based on MRI. Research Square 10.21203/
rs.3.rs-883606/v1 [preprint] https://doi.org/10.21203/rs.3.rs-883606/v1. 
Posted September 17, 2021. Accessed June 2023.

 40.  Raouf M, Amir B, Ayelet AB. Learning Interclass Relations for Image Clas-
sification. arXiv 2006.13491 [preprint] https://arxiv.org/abs/2006.13491. 
Posted June 24, 2020. Accessed June 2023.

 41. Simonyan K, Vedaldi A, Zisserman A. Deep Inside Convolutional Networks: 
Visualising Image Classification Models and Saliency Maps. arXiv 1312.6034 
[preprint] https://arxiv.org/abs/1312.6034. Posted December 20, 2013. 
Accessed June 2023.

 42. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for Simplic-
ity: The All Convolutional Net. arXiv 1412.6806 [preprint] https://arxiv.
org/abs/1412.6806. Posted December 21, 2014. Accessed June 2023.

 43. Thumbavanam Arun N, Gaw N, Singh P, et al. Assessing the validity of saliency 
maps for abnormality localization in medical imaging. arXiv 2006.00063 
[preprint] https://arxiv.org/abs/2006.00063. Posted May 29, 2020. Accessed 
June 2023.

 44. Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M. SmoothGrad: 
removing noise by adding noise. arXiv 1706.03825 [preprint] https://arxiv.
org/abs/1706.03825. Posted June 12, 2017. Accessed June 2023.

 45. Kapishnikov A, Bolukbasi T, Viégas F, Terry M. XRAI: Better Attribu-
tions Through Regions. arXiv 1906.02825 [preprint] https://arxiv.org/
abs/1906.02825. Posted June 6, 2019. Accessed June 2023.

http://radiology-ai.rsna.org
https://doi.org/10.1101/2023.06.29.23292048
https://doi.org/10.1101/2023.06.29.23292048
https://arxiv.org/abs/2003.12843
https://arxiv.org/abs/2210.07287
https://doi.org/10.21203/rs.3.rs-883606/v1
https://arxiv.org/abs/2006.13491
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/2006.00063
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1906.02825
https://arxiv.org/abs/1906.02825

