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Abstract 
Innovation in medical imaging artificial intelligence (AI)/machine learning (ML) demands extensive data collection, algorithmic advancements, 
and rigorous performance assessments encompassing aspects such as generalizability, uncertainty, bias, fairness, trustworthiness, and inter-
pretability. Achieving widespread integration of AI/ML algorithms into diverse clinical tasks will demand a steadfast commitment to overcoming 
issues in model design, development, and performance assessment. The complexities of AI/ML clinical translation present substantial chal-
lenges, requiring engagement with relevant stakeholders, assessment of cost-effectiveness for user and patient benefit, timely dissemination 
of information relevant to robust functioning throughout the AI/ML lifecycle, consideration of regulatory compliance, and feedback loops for 
real-world performance evidence. This commentary addresses several hurdles for the development and adoption of AI/ML technologies in med-
ical imaging. Comprehensive attention to these underlying and often subtle factors is critical not only for tackling the challenges but also for ex-
ploring novel opportunities for the advancement of AI in radiology.
Keywords: medical imaging; artificial intelligence/machine learning; AI/ML considerations; performance evaluation; AI/ML lifecycle. 

Introduction
The rise of AI for medical imaging has sparked concerns 
about the potential obsolescence of radiology as a profession. 

This commentary paper seeks to provide a more balanced 
perspective on the near-future role of AI in clinical radiology 
and explores the challenges in AI development and 
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implementation despite proliferation of AI systems. Prior to 
the early 2000s, limited data sets, insufficient computational 
power, and siloed research groups hindered progress 
(Figure 1). Nonetheless, conventional AI/ML algorithms were 
successfully implemented in the radiology and healthcare 
domains, with notable applications for breast cancer in mam-
mography, lung nodules in chest CT, and quantitative coro-
nary angiography. Breakthrough work in 2012 established 
the potential of novel deep learning (DL) architectures; cou-
pled with the availability of modern graphics processing units 
and large datasets in the computer vision field, these advances 
accelerated the progress of AI/ML development, which prop-
agated into medical imaging as early as 2015.1

The first U.S. FDA-approved medical device, which used 
an ML algorithm for the interpretation of cervical cytology 
slides in a semi-automated manner, was approved in 1995 
(U.S. Food and Drug Administration. PAPNET testing sys-
tem: summary of safety and effectiveness. https://www.access 
data.fda.gov/cdrh_docs/pdf/p940029.pdf 1995; P950009), 
and the first computer-aided diagnosis device for medical im-
aging, developed for mass and microcalcification detection in 
mammography, was approved for clinical use in 1998 (U.S. 
Food and Drug Administration. M1000 IMAGECHECKER: 
summary of safety and effectiveness. https://www.accessdata. 
fda.gov/cdrh_docs/pdf/p970058.pdf. 1998; P970058). Since 
2018, there have been many AI/ML-enabled medical devices 
for different clinical tasks and across different types of data 
acquisition systems due to open science initiatives, availabil-
ity of large data sets, algorithmic improvements, and easier 
accessibility. Consequently, AI/ML applications in radiology 
accounted for an impressive 87% of devices authorized by 
the U.S. FDA in 2022 (122 devices) (artificial Intelligence and 
Machine Learning (AI/ML)-Enabled Medical Devices, 
accessed in January 2024: https://www.fda.gov/medical-devices/ 
software-medical-device-samd/artificial-intelligence-and-machine- 
learning-aiml-enabled-medical-devices). The journey from initial 
AI/ML development to regulatory approval to clinical adoption 
has been the topic of much ongoing research and many publica-
tions (Table 1).

Despite tremendous progress in medical imaging AI/ML, 
important challenges remain that, if not thoroughly 

investigated and addressed, may negatively impact patient 
care, raise patient privacy concerns, and expose other ethical 
issues such as amplification of inequities in healthcare. The 
following sections explore important considerations in (1) de-
sign and development, (2) performance assessment, and (3) 
translation phases of the AI/ML lifecycle (Figure 2), factors 
that impact the ability of AI/ML systems to operate indepen-
dently in the near future, whether within radiology or within 
the broader healthcare ecosystem.

Design and development
In recent years, medical imaging research has experienced a 
shift towards greater openness by embracing data and code 
sharing, inter-disciplinary collaboration, scientific grand 
challenges, collaborative platforms such as GitHub, and soft-
ware platforms for fast prototyping of AI/ML algorithms. 
The new NIH data management and sharing policy may help 
further advance data sharing.13 Data quality and quantity for 
AI/ML training and testing, however, remain among the most 
important impediments to developing AI/ML for many criti-
cal clinical applications. Insufficient quantity of high-quality 
data also has major consequences in limiting model generaliz-
ability, equity, and fairness. Regardless of the characteristics 
of the development datasets, reliable and trustworthy perfor-
mance requires that algorithm validation use well-curated, 
high-quality, previously unseen external data that are repre-
sentative of the intended use and patient population.

Subgroup and data imbalances during model development 
can hinder AI/ML model performance and generalizability. 
Imbalances in the data can be broadly categorized into three 
groups: (1) demographic differences such as age, sex, race, 
and ethnicity and patient-specific characteristics such as dis-
ease severity and underlying conditions; (2) factors dependent 
on the data collection, image acquisition, and data conver-
sion processes; and (3) model development practices such as 
use of pretrained models that may propagate biases. 
Traditional mitigation approaches based on data sampling, 
cost-sensitive learning using custom loss functions, and post- 
hoc calibration may address these issues; however, these 
approaches need to be investigated further for the modern 

Figure 1. Journey of AI/ML in medical imaging.
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Table 1. Literature providing additional information on the considerations listed in Figure 2. A search in Scopus for review articles from 2018-present on 
AI in medical imaging resulted in 94 general review articles. The selection of the 11 reviews listed here is based on the consensus of authors to cover the 
main topics of the present opinion paper.

Study reference Title Objective Conclusion

Balki et al2 Sample-size determination meth-
odologies for machine learning in 
medical imaging research: A sys-
tematic review

To provide a descriptive review of 
current sample-size determination 
methodologies in ML applied to MI 
and to propose recommendations for 
future work in the field.

There is scarcity of research in train-
ing set size determination methodolo-
gies applied to ML in MI, a need for 
work in development and streamlin-
ing of pre-hoc and post-hoc sample 
size approaches, and a need to stan-
dardize current reporting practices.

El Naqa et al3 Artificial intelligence: Reshaping 
the practice of radiological scien-
ces in the 21st century

To reflect on lessons learned from 
AI’s past history and summarize the 
current status of AI in radiological 
sciences, highlighting its impressive 
achievements and effect on re-shap-
ing the practice of MI and radiother-
apy in the areas of computer-aided 
detection, diagnosis, prognosis, and 
decision support.

A summary of the current challenges 
to overcome for AI to achieve its 
promise of providing better precision 
healthcare for each patient while re-
ducing cost burden on their families 
and the society at large.

England and Cheng4 Artificial intelligence for medical 
image analysis: A guide for 
authors and reviewers

To highlight best practices for writ-
ing and reviewing articles on AI for 
medical image analysis.

AI/ML is in the early phases of appli-
cation to MI, and patient safety 
demands a commitment to sound 
methods and avoidance of rhetorical 
and overly optimistic claims. 
Adherence to best practices should el-
evate the quality of articles submitted 
to and published by clinical journals.

Huff et al5 Interpretation and visualization 
techniques for deep learning mod-
els in medical imaging

To summarize currently available 
methods for performing image model 
interpretation and critically evaluate 
published uses of these methods for 
MI applications.

Recap of toolkits for model interpre-
tation specific to MI applications, 
limitations of current model interpre-
tation methods, recommendations 
for DL practitioners looking to incor-
porate model interpretation into their 
task, and a general discussion on the 
importance of model interpretation 
in MI contexts.

Pesapane et al6 Artificial intelligence as a medical 
device in radiology: Ethical and 
regulatory issues in Europe and 
the United States

To analyze the legal framework regu-
lating medical devices and data pro-
tection in Europe and in the United 
States, assessing ongoing 
developments.

The processes of medical device deci-
sion-making are largely unpredict-
able, therefore holding the creators 
accountable clearly raises concerns. 
There is much that can be done to 
regulate (AI/ML)-enabled applica-
tions and, if done properly, the po-
tential of AI/ML-based technology, 
in radiology as well as in other fields, 
will be invaluable.

Reyes et al7 On the interpretability of artificial 
intelligence in radiology: 
Challenges and opportunities

To provide insights into the current 
state of the art for interpretability 
methods for radiology AI/ML.

Radiologists’ opinions on the topic 
and of trends and challenges that 
need to be addressed to effectively 
streamline interpretability methods 
in clinical practice were presented.

Sahiner et al8 Deep learning in medical imaging 
and radiation therapy

To (a) summarize what has been 
achieved to date in AI/ML for MI; (b) 
identify challenges and strategies that 
researchers have taken to address 
these challenges; and (c) identify 
promising avenues for future applica-
tions and technical innovations.

Lessons learned, remaining chal-
lenges, and future directions 
were presented.

van der Velden et al9 Explainable artificial intelligence 
(XAI) in deep learning-based med-
ical image analysis

To provide an overview of XAI used 
in DL-based medical image analysis.

There are many future opportunities 
for XAI in medical image analysis.

(continued) 
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data-driven, deep-learning architectures. In addition, with the 
expansion of AI into the clinical workflow, appropriate care 
must be taken to understand the consequences of false nega-
tives and false positives based on the intended use of the AI/ 
ML models.

Several approaches have been proposed to improve model 
generalizability by addressing data imbalances or dataset 
shift, including the use of privacy- preserving federated learn-
ing, and continual learning models; while these approaches 
are promising, many of the underlying issues remain 
unsolved. Privacy-preserving federated learning has the po-
tential to train AI/ML models with more data representing 
greater diversity, which could help improve model generaliz-
ability and overall performance. However, differential 

privacy (a concept that safeguards individual privacy by en-
suring that the inclusion or exclusion of a single person's data 
is not traceable) is difficult to guarantee.14,15 Continual 
learning algorithms allow model weights to evolve over time, 
thus providing an approach that adapts to drifts in the input 
data so that the AI/ML tool can maintain or even improve 
performance over time. Self-adapting and evolving algo-
rithms such as those with continual learning capabilities 
could result in a steady improvement in model performance, 
but a stringent quality assurance program should be imple-
mented to continuously monitor and validate their perfor-
mance in the clinical environment.

Synthetic datasets generated using generative AI 
approaches or in silico models have the potential to reduce 

Table 1. (continued) 

Study reference Title Objective Conclusion

Willemink et al10 Preparing medical imaging data 
for machine learning

To describe fundamental steps for 
preparing MI data in AI/ML algo-
rithm development, explain current 
limitations in data curation, and ex-
plore new approaches to address the 
problem of data availability.

The potential applications are vast 
and include the entirety of the MI life 
cycle from image creation to diagno-
sis to outcome prediction, but exist-
ing limitations need to be overcome.

Hadjiiski et al11 AAPM task group report 273: 
Recommendations on best practi-
ces for AI and machine learning 
for computer-aided diagnosis in 
medical imaging

To bring attention to the proper 
training and validation of ML algo-
rithms that may improve their gener-
alizability and reliability and 
accelerate the adoption of CAD-AI 
systems for clinical decision support.

Rigor and reproducibility of CAD-AI 
systems will provide the foundation 
for the success of such systems when 
translated into clinical practice. 
Following the best practices during 
system development and validation 
should increase the chance of clinical 
translation for the developed system.

Tang et al12 Canadian Association of 
Radiologists white paper on artifi-
cial intelligence in radiology

To provide recommendations derived 
from deliberations among members 
of the Association’s AI work-
ing group.

Key terminology, educational needs, 
research and development, partner-
ships, potential clinical applications, 
implementation, structure and gover-
nance, role of radiologists, and po-
tential impact of AI on radiology in 
Canada were presented.

Abbreviations: MI ¼ medical imaging, AI ¼ artificial intelligence, ML ¼ machine learning, DL ¼ deep learning, XAI ¼ explainable artificial intelligence.

Figure 2. Important considerations in the advancement and translation of AI/ML-enabled medical imaging applications.
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the imbalances in development datasets. However, there is 
still a need to innovate generative AI methodologies to reduce 
the creation of artefacts, generate higher-resolution images, 
and ensure realistic output. These limitations could reduce 
AI/ML utility by negatively affecting performance and creat-
ing safety issues in downstream tasks. For example, genera-
tive AI-assisted image reconstruction could introduce 
artefacts that hinder human interpretation tasks or affect the 
robustness of downstream AI/ML-aided detection tasks. 
Rigorous validation with real-world patient data is needed 
before AI/ML models developed with or with the assistance 
of synthetic data can be adopted for clinical use.

An important aspect of overall data quality is the integrity 
of their annotations (labels) or reference standard. With re-
cent advances in large language models such as ChatGPT, the 
automatic or semi-automatic generation of reference annota-
tions based on information extracted from electronic health 
records through natural language processing has become in-
creasingly possible for training AI/ML algorithms. However, 
the quality of annotations may be suboptimal compared with 
manual curation by domain experts. The tradeoff between a 
larger training sample with ‘noisy’ labels and a smaller sam-
ple with cleaner labels is a topic of continued investigation.

New AI/ML device categories such as computer-aided tri-
age, acquisition, optimization, and denoising have resulted in 
novel applications, but an overarching problem with AI/ML 
algorithms is the lack of understanding of their decision- 
making processes. The absence of interpretability not only 
undermines trust among radiologists and clinicians but also 
diminishes patient trust in AI/ML. Moreover, AI is not neu-
tral: AI/ML decisions, like clinician decisions, are susceptible 
to inaccuracies, discriminatory outcomes, and embedded or 
inserted biases. For example, it is known that “shortcut 
learning”, in which an AI/ML model learns to make decisions 
based on characteristics other than those intended (eg, output 
based on the presence of breathing tubes rather than on 
COVID-19 severity), is not only detrimental to generalizabil-
ity but can also amplify biases present in the training data. 
Proper bias identification and mitigation methods should be 
employed to minimize these problems before they cause gen-
eralization, and potentially health inequity, issues.

Performance evaluation
As radiologic AI/ML-enabled applications continue to ex-
pand, new evaluation approaches may be required.16

Additional research is needed to understand human-AI inter-
actions for medical imaging that broadly includes comple-
mentarity, transparency, and interpretability. Systematic 
understanding of the impact of AI on human performance 
and tuning the AI to complement the clinician through the 
use of novel frameworks17 are needed to make the optimum 
use of AI/ML tools, including seamless integration and im-
provement in human-perceived subjective factors such as per-
formance, trustworthiness, and usability.

To establish the trustworthiness of AI, it is essential to clar-
ify the relationship between input and AI output. Achieving 
this necessitates additional research and the application of 
mechanistic interpretability (reverse engineering fundamental 
AI/ML model components for human understanding). 
Uncertainty associated with the AI/ML device outputs should 
be an essential part of scientific communication and should 
be reported in a manner intuitive to clinicians. Consensus on 

types of uncertainty and uncertainty estimation in AI/ML 
models and methods remains elusive. Explainability is partic-
ularly challenging in open-set AI clinical applications and 
monitoring where the model encounters data outside the pre-
defined classes used for training. In addition, safe and trust-
worthy deployment requires detection, characterization, and 
mitigation of distribution shifts.

Implementing quality checks for scientific manuscripts is 
another ongoing challenge. Initiatives such as STARD,18

journal editorial guidelines,19 and recommended best practi-
ces from an American Association of Physicists in Medicine 
task group11 aim to improve the validity and generalizability 
of reported performance of AI/ML algorithms. These guide-
lines promote rigorous study design, appropriate selection of 
endpoints and metrics, and the use of reliable test data as 
well as consideration of bias, equity, and fairness.

Conventional strategies for performance evaluation of AI/ 
ML models are insufficient to provide adequate assessment of 
generalizability, trustworthiness, uncertainty, and explain-
ability. A system that passes all conventional tests in a con-
trolled environment nevertheless may not be ready for 
clinical use. Innovations in evaluation strategies and further 
testing during the acceptance phase are essential.

Translation
The application of AI/ML algorithms in clinical care requires 
rigorous evaluation, validation, and regulatory approval. AI 
acceptance by healthcare providers, practitioners, and 
patients is also inherently tied to the important considera-
tions mentioned in the previous sections. Addressing these 
challenges, including data quality, algorithm robustness, reg-
ulatory considerations, clinical workflow integration, patient 
safety, and continued quality assurance in an efficient man-
ner, is crucial. Collaboration among teams of stakeholders 
that represent AI/ML developers, regulators, and local AI/ 
ML domain experts along with physicists, clinicians, hospital 
administrators, payors, and patient advocacy groups is 
needed to aid in the transition of an AI/ML device from de-
velopment to clinical practice.20

Transparency is defined as the degree to which appropriate 
information about a device, including its intended use, devel-
opment, performance, and, when available, logic, is clearly 
communicated to stakeholders (U.S. Food and Drug 
Administration. Virtual Public Workshop—Transparency of 
Artificial Intelligence/Machine Learning-enabled Medical 
Devices. October 14, 2021. https://downloads.regulations. 
gov/FDA-2019-N-1185-0138/attachment_1.pdf). 
Determining what information is necessary, the mode of 
communication, and the target user is a practical challenge 
with implications for improved patient safety and for over-
coming automation bias due to human-AI interactions.21

Transparency is a persistent concern throughout all three 
stages of the AI/ML lifecycle, a crucial aspect that cannot be 
overstated. Its absence hampers the translation of AI/ML 
technologies into clinical practice and impedes their accep-
tance as supportive tools for radiologists. Lack of transpar-
ency also may prolong the time until AI/ML devices are 
capable of autonomous deployment in the clinic. During the 
translation phase, transparency is essential for monitoring 
AI/ML performance in clinical settings, identifying potential 
biases in patient subgroup performance, and detecting any 
deviations from performance observed during development.
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The diverse nature of healthcare delivery across organiza-
tions and the varied applications of AI/ML poses significant 
challenges in establishing a comprehensive framework of 
quality assurance, quality control, and acceptance testing to 
ensure consistent safety and effectiveness. Additionally, unre-
solved questions about legal liability persist when AI systems 
make errors. Such a framework, which is expected to influ-
ence every stage from development to translation, must be 
achieved expediently, especially as the field of medical imag-
ing stands on the brink of the AI revolution. Nonetheless, as 
we have argued here, this transformation may not occur as 
rapidly or with as extensive an impact as some AI advocates 
suggest. Collaborative approaches to quality assurance may 
be part of a solution, whereby healthcare organizations work 
together to develop practical QA methods and share data to 
enable effective risk assessment and mitigation strategies for 
specific AI tools.

Conclusion
It is anticipated that many AI/ML-enabled devices will be in-
tegrated into multiple facets of the clinical workflow for med-
ical imaging in the foreseeable future. To date, these devices 
have largely served as a second opinion for decision support. 
However, there is an expectation that patient care may be 
further improved if certain AI applications can operate au-
tonomously in a trustworthy manner. Nonetheless, the chal-
lenges associated with developing robust AI/ML applications 
for medical imaging, and the work that remains to resolve 
these challenges, reduce concerns regarding perceived threats 
to the radiology profession; instead, a clinician-AI partner-
ship or symbiosis is emerging as a more practical and realistic 
goal. The successful translation of AI/ML into clinical prac-
tice in medical imaging demands a critical perspective, en-
abling the identification and resolution of challenges while 
uncovering new opportunities for advancement.
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