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Abstract  Circadian biology’s impact on human physical health and its role in 
disease development and progression is widely recognized. The forefront of 
circadian rhythm research now focuses on translational applications to clinical 
medicine, aiming to enhance disease diagnosis, prognosis, and treatment 
responses. However, the field of circadian medicine has predominantly concen-
trated on human healthcare, neglecting its potential for transformative applica-
tions in veterinary medicine, thereby overlooking opportunities to improve 
non-human animal health and welfare. This review consists of three main sec-
tions. The first section focuses on the translational potential of circadian medi-
cine into current industry practices of agricultural animals, with a particular 
emphasis on horses, broiler chickens, and laying hens. The second section 
delves into the potential applications of circadian medicine in small animal 
veterinary care, primarily focusing on our companion animals, namely dogs 
and cats. The final section explores emerging frontiers in circadian medicine, 
encompassing aquaculture, veterinary hospital care, and non-human animal 
welfare and concludes with the integration of One Health principles. In sum-
mary, circadian medicine represents a highly promising field of medicine that 
holds the potential to significantly enhance the clinical care and overall health 
of all animals, extending its impact beyond human healthcare.
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Introduction

The health of soil, plant, animal and man is one and 
indivisible (Albert Howard).

Early breakthroughs in circadian biology emerged 
from studies involving non-human animals. 
Researchers like Patricia DeCoursey, investigating 
diurnal behaviors in wild-caught rodents like squir-
rels and chipmunks, coupled with laboratory-bred 
animal studies, notably contributed to our under-
standing of mammalian circadian biology (DeCoursey, 
1960, 1964, 1986b, 1986a; DeCoursey et  al., 1997; 
DeCoursey and Krulas, 1998; DeCoursey et al., 1998, 
2000; DeCoursey, 2014). Nicholas Mrosovsky (1971) 
explored the circadian biology of ground squirrels, 
and later investigated daily rhythmicity in laboratory 
hamsters (Shibuya et al., 1980). Studies on wild birds 
such as house sparrows and migrant songbirds fur-
thered our understanding of avian circadian rhythms 
(Gwinner et  al., 1997; Cassone, 2014). Foundational 
research such as these, and many others such as those 
described below, advanced our knowledge of circa-
dian rhythms in non-human animals and paved the 
way for broader implications in human medical 
advancements, ultimately paving the way for the 
emergence of circadian medicine.

A pivotal component of circadian biology revolves 
around melanopsin, a photopigment localized in dis-
tinct retinal ganglion cells separate from rods and 
cones. The identification of the melanopsin gene by 
Provencio and colleagues (1998), its presence in the 
human retina (Provencio et al., 2000), and its associa-
tion with intrinsically photosensitive retinal ganglion 
cells (ipRGCs; Lucas et  al., 1999; Berson et al., 2002; 
Hattar et al., 2002) significantly influenced our under-
standing. Melanopsin’s sensitivity to short-wave-
length blue light in humans (Brainard et  al., 2001; 
Thapan et al., 2001) underscores its role in synchroniz-
ing our internal body clock with the light-dark (L:D) 
cycle and regulating core circadian processes like mel-
atonin production (Arendt, 2019). Extensive research 
into light’s influence on circadian biology has been 
pivotal for understanding its broader orchestration of 
physiological functions (Bedrosian et al., 2013; Fonken 
and Nelson, 2014; Nelson et al., 2021).

Molecular circadian mechanisms govern 24 h 
daily cellular cycles and are present in virtually all 
our cells. These mechanisms, including factors like 
brain and muscle ARNT-like 1 (BMAL1), circadian 
locomotor output cycles kaput, cryptochrome, 
period (PER1/2/3), nuclear receptor Subfamily 1 
Group D Member 1 (NR1D2; REV-ERBa/b), and 
retinoic acid receptor–related orphan receptor, 
oscillate daily in the SCN, extending to peripheral 
clocks in different tissues, contributing to overall 
physiological coordination. Microarray studies have 

extensively documented these rhythmic cycles (e.g., 
Panda et al., 2002; Storch et al., 2002; Martino et al., 
2004; Rudic et al., 2005) as have studies using other 
techniques, with similar findings in non-human pri-
mates (Mure et al., 2018) and human organs like the 
heart (Leibetseder et  al., 2009) and others (Zhang 
et al., 2014; Hughes et al., 2017; Ruben et al., 2018). 
The molecular circadian mechanism has been exten-
sively reviewed, for example (Roenneberg and 
Merrow, 2005; Eckel-Mahan et al., 2012; Martino and 
Young, 2015; Takahashi et  al., 2018; Rabinovich-
Nikitin et al., 2021).

While variations exist across species, with species-
specific differences highlighted in each of the relevant 
sections below, it is generally noted that circadian 
rhythms are involved in many vital body functions, 
impacting heart rate, blood pressure, body tempera-
ture, hormone production, metabolism, activity, and 
autonomic nervous system bias. Research and reviews 
in circadian biology have extensively covered these 
aspects (Reppert and Weaver, 2002; Roenneberg and 
Merrow, 2005; Martino and Sole, 2009; Sole and 
Martino, 2009; Alibhai et al., 2015; Martino and Young, 
2015; Mistry et al., 2017; Khaper et al., 2018; Rabinovich-
Nikitin et  al., 2019; Gumz et  al., 2023), including 
sleep’s partial regulation by circadian rhythms along-
side homeostatic control (Meyer et al., 2022; Hastings 
et al., 2023). Understanding circadian rhythms across 
animal groups provides insights into their evolution-
ary adaptations, forming a foundation for applying 
circadian principles to enhance the health and welfare 
of all animals.

Despite being primarily focused on human health 
outcomes (e.g., Martino and Sole, 2009; Alibhai et al., 
2015; Reitz and Martino, 2015; Cederroth et al., 2019; 
Martino and Harrington, 2020; Allada and Bass, 2021; 
Aziz et al., 2021; Kramer et al., 2022; Gumz et al., 2023; 
Martino and Delisle, 2023; Sole and Martino, 2023), 
circadian medicine has largely overlooked its poten-
tial impact on non-human animals. This review aims 
to redirect attention to circadian medicine’s principles 
that could significantly benefit companion animals, 
agricultural livestock, and animal husbandry prac-
tices. The term “animal” in this context generally 
refers to non-human animals unless otherwise speci-
fied. By examining foundational studies and explor-
ing their implications, we can unlock the potential for 
developing medical applications based on circadian 
rhythms across diverse species.

Health and welfare benefits of  
circadian medicine for animals

Investigating circadian medicine for non-human 
domesticated animals holds immense promise for 
enhancing their health and welfare. This potential is 
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rooted in the sheer number of domesticated animals 
integrated into our societies. Annually, over 70 billion 
animals are managed in farm settings worldwide, 
including 59 million horses and 25 billion chickens, 
contributing significantly to the global economy 
(World Economic Forum, 2019; Food and Agricultural 
Organization of the United Nations, 2021).

Consider the scale of this integration: The equine 
veterinary services market is projected to reach $15.9 
billion globally by 2027 (Equine Veterinary Services 
Market, 2022). In Canada, livestock farms allocate 
around $21 billion in operating expenses annually, 
with up to 5% dedicated to veterinary services 
(Lachapelle, 2014). Similarly, American livestock 
farms invest $357 billion yearly in operating costs, 
allocating up to 8% to veterinary services (U.S. 
Department of Agriculture, 2019).

Companion animals also constitute a substantial 
segment: Approximately, 35% of households in Canada 
and the United States have dogs, and 38% have cats 
(American Veterinary Medical Association [AVMA], 
2017, 2018a; Canadian Animal Health Institute, 2022). 
Globally, approximately 471 million dogs and 373 mil-
lion cats are kept as pets (Nestle, 2019). The US pet 
industry alone spends approximately $35.9 billion 
annually on veterinary care and product sales 
(American Pet Products Association, 2022).

Circadian medicine offers considerable health and 
welfare opportunities for both agricultural and com-
panion animals. As we explore new frontiers, con-
sider also the rapid expansion of the seafood industry 
and aquaculture to meet growing human nutrition 
demands. In 2017, seafood production exceeded 180 
million tons from over 400 aquatic species and is 
expected to increase by an additional 100 million tons 
by 2050, mainly from cultured species (Stentiford 
et al., 2022). However, health issues pose a significant 
constraint to sustainable aquaculture development, 
costing the global industry over $6 billion annually 
(World Bank, 2014). In sectors like shrimp farming, 
infectious diseases alone cause over 40% of produc-
tion loss (Israngkura, 2002).

Introducing innovative medical strategies like cir-
cadian medicine holds the potential to collectively 
improve animal health and welfare across various 
species and sectors. The time has arrived for circa-
dian medicine in non-human animals, offering a 
compelling array of crucial health applications (sum-
marized in Figure 1, and detailed below).

Agricultural animals—horses

Circadian Rhythms in Horses

Since their domestication over 6000 years ago, 
horses have been an important part of human life and 

history, serving vital roles in agriculture, transporta-
tion, war, sport, and companionship. However, the 
domestication of horses has considerably altered 
their exposure to environmental cues that serve to 
entrain circadian rhythms of physiology and behav-
ior. From highly social, migratory herd animals 
exposed to natural photoperiods and continuous 
grazing, today’s equine athletes are placed within 
confined indoor housing, often in isolation, with regi-
mented feeding, exercise, and social interactions.

Evidence of Equine Peripheral Cell Clocks

Like most mammals that have evolved on our 
rotating planet, endogenous circadian rhythms that 
are synchronized to the environmental L:D cycle gov-
ern 24-h physiology in the horse. Initial temporal 
characterization of circadian clock gene expression 
patterns in the horse comprised cell culture experi-
ments whereby a media change to high nutrient con-
centrations was used as a clock resetting signal 
(mimicking a feeding cue; Balsalobre et al., 1998) and 
revealed the robust circadian oscillations of equine 
clock genes in a fibroblast cell line for the first time 
(Murphy et  al., 2006). This work permitted subse-
quent assessment and confirmation of peripheral 
clocks in equine adipose tissue, blood cells, skeletal 
muscle, and hair follicles (Murphy et  al., 2007b; 
Martin et al., 2010; Watts et al., 2012). The finding of 
robust 24-h rhythms in clock gene expression in hair 
follicle cells continues to serve as a useful non-inva-
sive method of assessing the circadian system in this 
species (Watts et al., 2012; Murphy et al., 2021), with 
potential for use in other species relevant to veteri-
nary medicine.

Circadian Regulation of Equine Activity

Diurnal variation in equine locomotor activity was 
previously reported (Berger et  al., 1999; Piccione 
et al., 2002a; Bertolucci et al., 2008), and its circadian 
component was subsequently confirmed (Martin 
et  al., 2010). A series of experiments investigating 
activity patterns and skeletal muscle gene expression 
in horses maintained under three conditions—(1) at 
pasture as a herd, (2) individually stabled under a 
normal L:D cycle, and (3) individually stabled in con-
tinuous darkness (D:D; a condition necessary to 
unmask the true endogenous nature of a circadian 
rhythm)—revealed the diurnal (day-active) nature of 
this species and confirmed that activity rhythms 
demonstrated circadian periodicities. Horses were 
fitted with halter-mounted actigraphy-based moni-
tors that recorded a digitally integrated measure of 
motor activity and light exposure at 1-min epochs 
and were sensitive to 0.05 g pressure/movement in 



240  JOURNAL OF BIOLOGICAL RHYTHMS / June 2024

any direction (Actiwatch-L, Respironics). These 
devices were previously used in human studies 
(Baehr et al., 2003). Ultradian (<24 h) bouts of activity 
were found to be primarily confined to daylight 
hours when horses were stabled and higher mean 
activity counts were only observed during the subjec-
tive day under the D:D condition (Martin et al., 2010). 
This emphasizes the importance of eliminating envi-
ronmental and management time cues when experi-
mentally determining the endogenous nature of 
physiological or behavioral rhythms in the horse and 
other species. During this study, the existence of an 
oscillating peripheral clock in skeletal muscle was 
simultaneously confirmed by observations of robust 
cycling of clock gene transcripts in time series biop-
sies collected under D:D. It was hypothesized that the 
molecular clock in muscle tissue regulated the expres-
sion of genes involved in muscle hypertrophy, myo-
genesis, and mitochondrial respiration, pointing to a 
potential circadian variation in equine performance 
capacity (Martin et  al., 2010). The study served to 

highlight how equine circadian rhythms can be 
strengthened, or unmasked when exposed to human 
management regimes that limit the horse’s natural 
social entrainment and grazing activity cues. The 
human tendency to encourage diurnal behavior 
among domesticated animals has also been noted in 
dogs, who are naturally crepuscular (active at dawn 
and dusk), but exhibit diurnal activity patterns 
through human interactions (Wells, 2017).

Subsequent research evaluating the impact of 
regular morning exercise on muscle gene expres-
sion in horses convincingly showed that time of 
exercise acts as an important secondary synchro-
nizer of equine skeletal muscle physiology (Murphy 
et  al., 2014a). By exposing previously sedentary 
Thoroughbreds to an 8-week low-intensity exercise 
regime, involving 40-60 min each morning on a 
horse exerciser at walk-trot speeds, a significant 
shift in the expression pattern of exercise-relevant 
genes in skeletal muscle was recorded. A circadian 
rhythm in myogenic differentiation 1 (MYOD1), 

Figure 1.   The emergence of circadian medicine for non-human animals has arrived. The circadian mechanism involves a complex 
interplay of genes and proteins operating in a feedback loop, cycling approximately every 24 h. The factors exhibit coordinated fluctua-
tions, governing both the physiologic and behavioral rhythms in animals. Circadian medicine, a novel therapeutic field, leverages the 
body’s circadian biology to optimize health, enhance welfare, and modulate responses to diseases. Innovative strategies demonstrating 
promise for dogs include circadian lighting, time-restricted feeding, and chronotherapy. Time-restricted eating also holds potential for 
reducing obesity and associated health issues in cats. Manipulating the photoperiod has shown applications in chickens to enhance 
growth and reproduction. Photoperiod considerations have also shown proven benefits for the racehorse breeding industry. Moreover, 
considerations around photoperiod manipulation have also proven beneficial for aquaculture and food safety for humans. These appli-
cations of circadian medicine notably intersect with Veterinary Medicine’s new frontiers, One Health initiatives, and Comparative/
Translational Research and Medicine, bridging the gap between non-human animal and human health. Notably, some of the most 
promising circadian medicine strategies as discussed in this review include circadian lighting, chrononutrition, and chronotherapy, 
each presenting considerable potential to extend the lifespan and improve the well-being of non-human animals, transcending benefits 
solely for humans.
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myogenic factor 6 (MYF6), uncoupling protein 3 
(UCP3), and pyruvate dehydrogenase 4 (PDK4) 
either appeared (from having recorded no 24-h varia-
tion before the exercise regime) or was significantly 
strengthened, and peak expression times shifted rela-
tive to the timing of morning exercise (Murphy et al., 
2014a). Myogenic regulatory factors MYOD1 and 
MYF6 contribute to muscle hypertrophy (Psilander 
et al., 2003) and myogenesis (Montarras et al., 1991). 
UCP3 is an antioxidant defense mechanism in mito-
chondria to protect against damaging reactive oxy-
gen species during oxidative stress (MacLellan et al., 
2005; Jiang et al., 2009). PDK4 regulates the entry of 
carbohydrate-derived fuel into muscle mitochondria 
for oxidation (Pilegaard and Neufer, 2004), increasing 
substrate availability and production of adenosine 
triphosphate (Andrews et al., 1998). Given the obvi-
ous shift in expression patterns of the aforementioned 
gene transcripts, the authors concluded that the met-
abolic capacity of equine skeletal muscle is influenced 
by a scheduled exercise program (Murphy et  al., 
2014a). This suggests the potential benefit of aligning 
training and competition times for optimal perfor-
mance in the equine athlete, aligning with findings 
from studies of human athletes (Hill et al., 1989; Hill, 
1996; Okamoto et al., 2013). Conversely, mismatches 
in timing, commonly seen in racehorse training and 
competition schedules, may increase the risk of mus-
culoskeletal injury.

Circadian Regulation of Equine Immune Function

A complex bi-directional relationship exists 
between the immune system and the circadian sys-
tem in that almost all immune parameters undergo 
circadian regulation (Scheiermann et  al., 2013), and 
during an acute inflammatory response, the induc-
tion of sickness-type behavior (Soto-Tinoco et  al., 
2016) is regulated by pro-inflammatory cytokines 
that induce sleepiness, disrupt circadian output, 
phase shift circadian rhythms, and alter photic 
entrainment (Cermakian et al., 2013; Labrecque and 
Cermakian, 2015). In horses, the pro-inflammatory 
mediator prostaglandin E2 was shown to upregulate 
the core clock genes PER2 and BMAL1 in ex vivo cul-
tured polymorphonuclear neutrophils (Murphy 
et al., 2008). This cell population was thus considered 
responsible for the synchronous upregulation of 
clock genes in whole blood observed following endo-
toxin-induced acute systemic inflammation (Murphy 
et al., 2007b) and confirmed a role for the circadian 
clock in neutrophil function during an immune chal-
lenge in the horse.

From a health management perspective, another 
important equine rhythm is that of the horse’s core 
body temperature. The daily temperature range 

varies by more than 1 °C (Piccione et  al., 2002a, 
2002b), with a nadir at the start of the light phase 
(around dawn) and a peak at approximately 2200 h 
(Piccione et al., 2002a, 2002b; Murphy et al., 2007a). 
The clear variation between morning and evening 
values, as well as individual temperature range dif-
ferences, is important to take into consideration in 
daily health assessments of animals, particularly in 
foals where clear dawn-dusk temperature variations 
are detectable from 10 days old (Piccione et al., 2002a, 
2002b).

Clock gene and cytokine response to an antigenic 
challenge were shown to vary over the 24-h cycle in 
the horse (McGlynn et  al., 2010). In blood samples 
collected at 4-h intervals and incubated with lipo-
polysaccharide, interleukin-6 (IL-6) was highest 
when blood cells collected during the evening hours 
were stimulated. As an important immunomodula-
tory mediator produced primarily by Th2 cells (Diehl 
and Rincon, 2002), this time-of-day–specific peak in 
IL-6 expression in response to antigenic challenge led 
the authors to suggest there may be an optimum time 
for vaccine administration for priming the immune 
system and for subsequent disease protection 
(McGlynn et al., 2010), but this is yet to be experimen-
tally validated.

Similarly, chronopharmacology, the concept of 
clinical treatment that enhances both effectiveness 
and tolerance and minimizes the side effects of a drug 
by determining the best biological time for its admin-
istration, is an area of veterinary medicine that war-
rants extensive future research. Considering the 
breadth of circadian physiology, it makes sense that 
the pharmacodynamics and pharmacokinetics of 
many drugs would also be circadian, and thus drug 
efficacy and safety profiles may vary with time of day 
(Dallmann et al., 2014).

Circadian Rhythms in Equine Reproduction

Many equine reproductive functions exhibit time-
of-day peaks suggestive of circadian control. Two-
thirds of mares ovulate at night (Witherspoon and 
Talbot, 1970; Bowman et  al., 2007) and data from 
other species suggest that a circadian clock drives the 
sensitivity of the ovary to luteinizing hormone (LH; 
Sellix et al., 2010). The circadian rhythm of oxytocin 
production by the hypothalamus is thought to gov-
ern the onset of myometrial activity at parturition 
(Roizen et al., 2007), potentially explaining why 86% 
of mares foal between the hours of dusk and dawn 
(Rossdale and Short, 1967). It was previously postu-
lated that while activation of the fetal hypothalamic-
pituitary-adrenal axis due to cramped conditions 
decided the day of foaling, the mare’s endogenous 
regulation of myometrial activity by increased 
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production of oxytocin at night fine-tunes the hour of 
birth to the period of darkness (Murphy et al., 2019).

Stallions exhibit robust daily rhythms in testoster-
one production, with peaks in the morning and low-
est levels recorded between 1600 and 0000 h 
(Kirkpatrick et al., 1976). This rhythm is related to the 
circadian control of adrenal glucocorticoid produc-
tion (Son et al., 2008) and highlights the importance 
of considering the time of sampling when evaluating 
testosterone concentrations during fertility assess-
ments of stallions.

Circadian Disruption in Horses

Jet Lag.  The consequences of circadian disruption are 
well recognized for humans, with jet lag, shift work, 
and light pollution from screens providing erratic 
entrainment signals that contribute significantly to 
many disease conditions (Escobar et  al., 2011). The 
circadian misalignment described as jet lag results 
from a slow readjustment of physiological and behav-
ioral rhythms that shift with different speeds to a 
new environmental L:D schedule (Davidson et  al., 
2009). Horses are traveled extensively for breeding 
and competition purposes making jet lag effects a rel-
evant concern for equine owners and veterinarians. 
Significant decreases in reaction times, cardiorespira-
tory functions, and muscle strength have been 
reported in human athletes following travel across 
multiple time zones (Manfredini et al., 1998; Lemmer 
et al., 2002; Reilly et al., 2005).

A study to evaluate the extent of circadian disrup-
tion in horses by mimicking an abrupt time zone 
change evaluated melatonin and body temperature 
rhythms following a 6-h shift in the L:D cycle (Murphy 
et  al., 2007a). Serum melatonin and core body tem-
perature rhythms are considered robust markers of 
the circadian phase in humans, and melatonin has 
been frequently used to provide reliable estimates of 
circadian adaptation to phase shifts (Akerstedt et al., 
1979; Van Cauter et al., 1998; Boivin and James, 2002). 
In horses, 24-h melatonin production patterns shifted 
immediately to the 6-h advanced light schedule, 
whereas disturbances in the body temperature 
rhythms persisted for the 11-day post-shift sampling 
period, with greatest disturbances reported on days 7 
and 9.

The surprising finding of rapid resynchronization 
of the melatonin rhythm led the authors to surmise 
that the equine circadian system may be more ame-
nable to rapid shifts in the L:D cycle than other spe-
cies (Murphy et  al., 2007a). However, subsequent 
research has shown that melatonin production is not 
under circadian control in this species, and instead, 
its production appears to be directly responsive to the 

photoperiodic conditions (Murphy et  al., 2011; 
Piccione et al., 2013a). Thus, the duration of consid-
erable disruptions observed during resynchroniza-
tion of the body temperature rhythm is a more 
reliable reflection of the time required for the horse’s 
body clock to re-align with the environmental con-
ditions following a 6-h time shift. Future research 
should evaluate jet lag effects in horses utilizing 
alternative markers of the circadian clock. Evaluation 
of clock gene expression in hair follicle cells (Watts 
et al., 2012) represents a practical, non-invasive way 
of doing this and has already been implemented in 
human studies (Akashi et al., 2010; Takahashi et al., 
2018). Mitigating potential performance deficits 
associated with jet lag should reduce the risk of 
injury at competition destinations.

Inappropriate Light Exposure.  Modern management of 
the equine often requires nighttime interventions to 
monitor, feed, or medicate, and this necessitates the 
switching on of lights. Regular exposure to inappro-
priately timed white light at night is considered the 
primary disruptor of circadian rhythms for the horse 
(Murphy, 2019). Interference with the nightly produc-
tion of the pineal hormone melatonin is thought to 
contribute strongly to this. As a key mediator of the 
transmission and maintenance of circadian and circ-
annual messages (Brainard et al., 2001), the 24-h pat-
tern of melatonin production that reflects the 
environmental L:D cycle acts as an important health 
regulator by optimizing nighttime rest (Paredes et al., 
2007) and immune function (Markus et  al., 2007). 
Exposure to bright light at night very strongly sup-
presses melatonin secretion in humans and horses 
(Redlin, 2001; Walsh et al., 2013), disrupts circadian 
rhythmicity, and can profoundly affect many aspects 
of mammalian physiology (Bartness and Goldman, 
1989; Berson et  al., 2002; Bedrosian et  al., 2011). In 
humans, frequent white light exposure at night is 
associated with an increased risk of developing a 
variety of serious diseases including certain types of 
cancer (breast, colon, and prostate), obesity, diabetes, 
and depression (Stevens and Zhu, 2015).

Circadian Lighting for Equine Health and 
Medicine

The concept of circadian lighting as it relates to 
human health stems from our understanding of the 
beneficial impact of blue light exposure by day and 
its chrono-disruptive effect by night, for example 
(Pauley, 2004; Bedrosian et  al., 2011, 2013; Bonmati-
Carrion et al., 2014; Fonken and Nelson, 2014). In con-
trast to blue light, low levels of long-wavelength red 
light only minimally stimulate ipRGCs as has been 
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shown in rodents (Bedrosian et  al., 2011). Whereas 
5 lux white light intensities disrupted sleep-wake 
cycles in rats (Stenvers et  al., 2016), <10 lux of red 
light permit normal activity-rest behavior and meta-
bolic function in rats and mice (Opperhuizen et al., 
2017; Zhang et  al., 2017b). Of course, nocturnal 
rodents differ in many ways from diurnal animals 
including humans. Nevertheless, similarities persist, 
for example, in a study on horses aimed to determine 
if red light could be used as an alternative to darkness 
at night to avoid disturbances to the diurnal pattern 
of melatonin secretion, no differences were observed 
in its 24-h pattern and waveform characteristics in 
horses maintained under L:D compared to light-red 
photo-schedules (Murphy et  al., 2019). The low-
intensity red light (5 lux, peak wavelength 625 nm, 0.3 
µW/cm2/nm) used in the study permitted sufficient 
visibility to safely carry out routine animal hus-
bandry, collection of rectal temperatures, blood sam-
pling, and blood collection tube labeling—important 
routine tasks for animal care in breeding facilities or 
veterinary hospitals. The authors suggested that like 
rodents, red light at night may be functionally equiv-
alent to total darkness concerning its impact on the 
equine circadian system, and thereby its use may per-
mit normal maintenance of nocturnal circadian phys-
iology (Murphy et al., 2019).

These studies have important translational impli-
cations for care environments. It is well known that 
unnatural ambient lighting conditions in human 
intensive care units (ICUs) and experimental rodent 
studies lead to poor sleep, melatonin suppression, 
delirium, and other chronobiologically disruptive 
effects on a large number of important organ systems 
(Figueroa-Ramos et al., 2009; Boyko et al., 2012; Chan 
et al., 2012) as well as influencing survival outcome 
following sepsis in rats (Carlson and Chiu, 2008), and 
impair cardiac repair in mice following myocardial 
infarction (Alibhai et  al., 2014). Combined with a 
recent study in human athletes reporting that expo-
sure to short durations of red light at night improved 
sleep and athletic performance (Zhao et al., 2012), it 
was postulated that the benefits of consistent expo-
sure to long-wavelength light at night in horses may 
extend beyond a simple means to eliminate unwanted 
circadian disruption caused by shorter wavelengths 
(Murphy et al., 2019).

The sensitivity of horses to blue wavelength light 
was highlighted by a study demonstrating the effec-
tiveness of levels as low as 10 lux at acutely suppress-
ing serum melatonin when administered to a single 
eye (Walsh et  al., 2013). A mobile headpiece that 
delivers timed blue light to one eye to extend day-
light was subsequently developed and has been 
shown to effectively advance the circannual rhythm 
of reproductive activity in mares (Murphy et  al., 

2014b) and influence gestation length (Nolan et  al., 
2017), foal maturity (Lutzer et al., 2022), and coat con-
dition in horses (O’Brien et al., 2020).

By combining the findings of the preceding 
research studies, the same researchers developed a 
customized light-emitting diode (LED) lighting sys-
tem for equine housing that comprised timed blue-
enriched daytime polychromatic white light (peak 
wavelength 450 nm and 0.8 µW/cm2/nm) and night-
time monochromatic red light (625 nm, 0.3 µW/cm2/
nm) and an investigation to determine its impact on 
peripheral clock gene rhythmicity compared to stan-
dard lighting practices in a racehorse training yard 
undertaken (Murphy et al., 2021; Collery et al., 2023). 
After 20 weeks of exposure to the customized LED 
stable lighting, 24-h clock gene expression of PER2 
and NR1D2 was found to be rhythmic in hair follicle 
cells (as determined by cosinor analyses), whereas no 
rhythmicity was apparent in samples collected from 
horses maintained in stables with incandescent lights 
that were used at will by the staff. The strengthened 
oscillatory expression of core clock genes observed in 
hair follicle cells of horses exposed to blue-enriched 
daytime polychromatic light and nighttime red light 
leads the authors to strongly suggest that circadian 
synchrony is improved throughout body tissues 
under these lighting conditions (Murphy et al., 2021). 
A second important implication of this research was 
that standard management regimes for stabled horses 
disrupt circadian cohesion and potentially contribute 
to sub-optimal health and compromised immunity 
(Collery et al., 2023).

As previously highlighted, the provision of light-
ing environments that support internal circadian 
cohesion, maintaining synchrony between the SCN 
and peripheral oscillators, could have widespread 
benefits for equine health and performance (Murphy, 
2019). Future investigations should aim to evaluate 
the impact of custom LED lighting regimes, such as 
those previously described (Collery et al., 2023), on 
the health and behavioral parameters of the horse. 
Indeed, preliminary research indicates that expo-
sure to blue LED light may improve some symptoms 
of Pituitary Pars Intermedia Dysfunction (Miller 
et al., 2022).

Agricultural animals—chickens

Circadian Rhythms in Chickens

Birds, including chickens, have a highly complex 
and diversified circadian system. While the retinal 
circadian clock was initially identified in the African 
clawed frog, Xenopus laevis (Besharse and Iuvone, 
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1983) has been conserved across the avian species 
(McMillan et al., 1975; Ebihara et al., 1984; Barrett and 
Underwood, 1991), and additional self-sustaining cir-
cadian oscillators have been identified in the pineal 
gland and hypothalamus of birds (Ebihara et  al., 
1984; Zatz and Mullen, 1988; Okano et  al., 1994; 
Natesan et al., 2002). Notably, in birds, the avian ret-
ina is not indispensable for circadian entrainment 
(Menaker, 1968; Menaker et  al., 1970). Enucleated 
house sparrows maintain their biological rhythms 
under standard day length periods due to these extra-
retinal oscillators. This is supported by observations 
that birds develop arrhythmicity when light cannot 
penetrate the skull, despite intact eyes, demonstrat-
ing the necessity of encephalic circadian oscillators 
for entrainment (Menaker et  al., 1970; Foster and 
Follett, 1985).

Of note, avian photoreceptors also reside in these 
three photoreceptive organs, including rhodopsin 
and melanopsin (OPN4) in the retina; pinopsin, 
OPN4, and vertebrate-ancient opsin (VA-Opsin) in 
the pineal gland; and VA-Opsin, OPN4, and neurop-
sin (OPN5) in the hypothalamus (Foster et al., 1985, 
1994; Chaurasia et al., 2005; Halford et al., 2009; Kang 
et  al., 2010; Nakane and Yoshimura, 2010; Davies 
et al., 2012; Ohuchi et al., 2012). These photoreceptors 
in encephalic tissues sustain biological rhythms by 
capturing and transducing photons through the skull, 
relaying this information to peripheral circadian 
oscillators (Ebihara and Kawamura, 1981; Takahashi 
and Menaker, 1982; Cassone and Moore, 1987).

In birds, both the retina and pineal gland detect 
changing day lengths (Gaston and Menaker, 1968; 
Binkley et al., 1971; Ebihara and Kawamura, 1981; Lu 
and Cassone, 1993; Wang et al., 2012) through eleva-
tions in tryptophan hydroxylase (Chong et al., 1998), 
arylalkylamine N-acetyltransferase (AANAT; Bernard 
et al., 1997), and hydroxyindole-O-methyltransferase 
during the dark phase (Hamm and Menaker, 1980; 
Thomas and Iuvone, 1991), resulting in increased 
melatonin production and release from the pineal 
gland (Deguchi, 1979; Hamm and Menaker, 1980; 
Takahashi et  al., 1980). Melatonin production 
decreases in response to light stimulation, demon-
strating a circadian rhythm under 24-h L:D cycles. 
However, arrhythmic responses have been observed 
under continuous 24-h light or 24-h dark photoperi-
ods, with melatonin rhythmicity absent under both 
conditions (Saito et  al., 2005; Ozkan et  al., 2012; 
Honda et  al., 2017; Ma et  al., 2019). These studies 
establish light stimuli as a primary zeitgeber in avian 
species.

Earlier studies in pigeons and house sparrows also 
investigated feeding schedules as an additional pos-
sible zeitgeber (Phillips et  al., 1993; Rashotte and 
Stephan, 1996). However, little progress has been 

made in this area. Food-entrainable oscillators can be 
desynchronized from the photic response. This has 
been demonstrated as an earlier onset of photophase 
alters the rise of core body temperature and oxygen 
consumption, typically identified as anticipatory 
feeding behaviors, with the birds gradually re-
entraining their feeding schedule within days 
(Rashotte and Stephan, 1996). Feeding regimens serve 
as a weak zeitgeber (Hau and Gwinner, 1992). 
Desynchronized birds can demonstrate “masking” 
behavior and adjust their feeding patterns accord-
ingly (Hau and Gwinner, 1996). Honda and col-
leagues (2017) observed constant feed intake of male 
broiler chicks throughout 24 h of continuous light 
and increased feed intake before and following the 
dark period of a 12L:12D photoperiod. However, 
despite differences in feed intake, the expression of 
an appetite-stimulating peptide, neuropeptide Y, and 
an appetite-suppressing peptide, termed pro-opi-
omelanocortin, did not differ between these photope-
riods (Honda et  al., 2017) This suggests minimal 
interaction between the circadian rhythm and the 
melanocortin system in chickens, warranting further 
investigation into the mechanisms behind the control 
of feed intake and photoperiods.

Current Industry Practices

Over the past century, there has been a substantial 
increase in the production capacity of meat (broilers) 
and table eggs (laying hens), shifting production 
from a dual-purpose backyard flock model to larger 
scale farms with specific, divergent breeding goals 
(Lawler, 2012). In these larger indoor systems, pro-
ducers have gained greater control over environmen-
tal factors like temperature, humidity, ventilation, 
and lighting. This control allows year-round produc-
tion in temperate zones.

Producers often adjust the length of photoperiodic 
exposure to benefit the health of broilers (as reviewed 
by Classen et al., 1991) and to enhance the reproduc-
tive efficiency of laying hens and broiler breeders (as 
reviewed by Sharp, 1993).

Given that photoperiod is the primary zeitgeber 
in poultry, various lighting programs have been 
implemented over the years, each with its advan-
tages and challenges. Industry standards differ for 
broilers and laying hens based on breeding objec-
tives. Broilers are typically reared under longer day 
lengths to allow for extended feed access and to pro-
mote growth (Cobb-Vantress, 2020). Meanwhile, to 
optimize reproductive performance, laying pullets 
are typically maintained under short-day lengths of 
less than 10 h, stepping up to 16L:8D at the time of 
maturation, which occurs at approximately 18 and 
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22 weeks of age in layers and broiler breeders, respec-
tively (Aviagen, 2016; Lohmann-Tierzucht, 2021).

Implications of Spectrum Lighting on the 
Circadian Rhythm

In the commercial context, alongside manipulat-
ing the photoperiod, there has been extensive 
research into using spectrum lighting, especially 
with the phasing out of inefficient lighting systems 
such as incandescent bulbs and the introduction of 
LEDs. It is largely understood that hens housed 
under red wavelengths exhibit enhanced reproduc-
tive capacity (Mobarkey et al., 2010; Min et al., 2012; 
Hassan et al., 2013; Baxter et al., 2014), while those 
under green wavelengths show increased skeletal 
muscle cell proliferation leading to improved 
growth (Halevy et al., 1998; Rozenboim et al., 2004). 
Recent research indicates that these wavelengths 
directly impact the circadian rhythm.

Under green light, gene expression in the positive 
arm of the circadian mechanism (Clock and Bmal1) 
has been shown to increase in expression (Jiang et al., 
2016; Cao et  al., 2017; Jiang et  al., 2020; Yang et  al., 
2020), and activate the melatonin regulatory factor 
AANAT (Cao et al., 2017; Jiang et al., 2020; Yang et al., 
2020), whereas gene expression in the negative arm 
(Per and Cry) are downregulated (Jiang et  al., 2016; 
Yang et al., 2020). This leads to a concomitant eleva-
tion in melatonin production under green wave-
lengths (Jiang et al., 2016; Cao et al., 2017; Bian et al., 
2020; Jiang et al., 2020; Yang et al., 2020). In contrast, 
an opposite effect has been observed under red wave-
lengths, with gene expression in the negative arm 
upregulated (Cao et al., 2017; Yang et al., 2020) and 
those in the positive arm downregulated in the hypo-
thalamus (Cao et  al., 2017; Jiang et  al., 2020; Yang 
et al., 2020). Interestingly, Bmal1 seems elevated in the 
pituitary gland of female birds only, although no fur-
ther studies investigating this have been conducted 
to date (Wang et al., 2015).

Blue light, the shortest wavelength, negatively 
affects gene expression in both the positive and nega-
tive arms of the circadian mechanism (Yang et  al., 
2020), and inhibits melatonin secretion (West et  al., 
2011). Surprisingly, maintaining male broiler chicks 
under a 24-h lighting program consisting of 12 h of 
white light and 12 h of blue light sustains circadian 
gene expression (Honda et  al., 2017). Presumably, 
birds perceive blue light in a similar manner to scoto-
phase when coupled with other spectrums with lon-
ger wavelengths. The implications of these altered 
circadian patterns will be further explored concern-
ing growth and egg-laying applications.

Photoperiodic Control of Reproduction in Laying 
Hens and Broiler Breeders

Chickens, being seasonal breeders, heavily rely on 
their circadian and circannual systems to regulate 
their reproductive processes. Short and long photo-
periods play roles in inhibiting and stimulating the 
hypothalamic-pituitary-gonadal (HPG) axis, respec-
tively (Tsutsui et al., 2000; Bentley et al., 2003; Ubuka 
et al., 2005).

To maintain an immature state, pullets are exposed 
to short-day conditions (less than 10 h of light), trig-
gering the release of melatonin (Ubuka et al., 2005). 
Melatonin then upregulates the expression of gonad-
otropin-inhibitory hormone (GnIH). GnIH, upon 
binding to its receptor, directly inhibits the release of 
gonadotropin-releasing hormone (GnRH) and 
gonadotropins (like follicle-stimulating hormone and 
LH) effectively suppressing the HPG axis.

During photo-stimulation, reducing the duration 
of darkness reduces melatonin production, leading to 
a decrease in GnIH expression. The mediobasal hypo-
thalamus (MBH) containing a molecular circadian 
mechanism (Yasuo et  al., 2003) then integrates the 
changes in photic information to stimulate thyrotrope 
cells in the pars tuberalis of the pituitary gland to pro-
duce thyroid-stimulating hormone (TSH). Increased 
TSH levels prompt tanycytes on the base of the third 
ventricle to upregulate type 2 deiodinase (Dio2), an 
enzyme upregulated under longer days (Yoshimura 
et al., 2003). Dio2 facilitates the conversion of thyrox-
ine to triiodothyronine (T3; Bernal, 2002; Nakao et al., 
2008). Elevated levels of T3 within the MBH act on the 
median eminence, allowing GnRH nerve terminals to 
interact with the basal lamina and release this stimu-
latory neuropeptide, activating the remainder of the 
HPG axis (Prevot et al., 1999; Yamamura et al., 2004; 
Yamamura et al., 2006).

While this downstream process is well established, 
the receptor responsible for responding to light and 
signaling this cascade of events remains unclear. 
Current hypotheses suggest a single “breeding opsin” 
initiates HPG axis activation, with potential photore-
ceptors including VA-Opsin (Hankins et  al., 2008; 
Halford et  al., 2009; Garcia-Fernandez et  al., 2015), 
OPN4 (Foster et al., 1987; Bailey and Cassone, 2005; 
Hankins et al., 2008), and OPN5 (Tarttelin et al., 2003; 
Halford et  al., 2009; Nakane and Yoshimura, 2010) 
located in deep brain regions. Studies on their 
involvement in seasonal responses have been recently 
reviewed (Hanlon et al., 2020).

As hens reach sexual maturity, their reproductive 
tract synchronizes with circadian oscillators and 
genes related to the circadian mechanism to regulate 
the ovulatory cycle’s timing (Fahrenkrug et al., 2006; 
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Karman and Tischkau, 2006; Nakao et  al., 2007; 
Yoshikawa et al., 2009). This cycle can be entrained to 
photoperiods between 21 and 30 h, varying by spe-
cies. In domesticated laying hens exposed to a 16-h 
light and 8-h dark cycle (16L:8D), this process slightly 
exceeds a 24-h rhythmic cycle. Notably, there are two 
separate rhythms—one governing ovulation and the 
other controlling follicle growth and maturation. 
When these align, it leads to the laying of eggs on 
consecutive days, termed a clutch (Bahr and Johnson, 
1984). These eggs are laid within a 6-10–h window 
known as the “open period.” If these rhythms become 
desynchronized, a pause day without egg-laying 
resets the cycles (Etches et al., 1984).

The LH surge before ovulation acts as a zeitge-
ber, influenced by circadian mechanism genes 
(Tischkau et  al., 2011). LH acts via steroidogenic 
acute regulatory protein and BMAL1 (Nakao et al., 
2007), increasing progesterone just before ovula-
tion (Tischkau et al., 2011). The importance of this 
ovarian circadian system is evident in ovariecto-
mized hens, where core body temperature becomes 
arrhythmic (Underwood et  al., 1997; Zivkovic 
et  al., 2000), and in hens under 24-h light cycles 
where hormonal profiles maintain ovulatory cycles 
(Kadono et al., 1981). Interestingly, only the most 
mature follicles (F1-F3) exhibit rhythmic responses 
when exposed to LH, while less mature preovula-
tory follicles do not display rhythmic expression of 
these circadian genes (Zhang et  al., 2017a). This 
suggests that rhythmic interaction develops as the 
follicle matures. The central circadian system 
likely controls this rhythm. For instance, hens 
under 16L:8D supplemented with exogenous mel-
atonin will lay eggs with significantly larger yolks 
due to disrupted timing and extended rapid 
growth for lipid deposition (Taylor et al., 2013). A 
key message is manipulating photoperiods can 
influence the egg weight and internal components, 
potentially impacting industry standards.

Lighting Applications for Reproduction

Studies exploring light duration and spectrum 
aimed to improve reproductive capacity have 
revealed important findings. It was observed that 
longer day lengths can stimulate the reproductive 
axis, leading to investigations into continuous 24-h 
lighting. However, when mature hens were con-
stantly exposed to light, it disrupted the synchroniza-
tion of critical follicular maturation, LH surges, 
ovulation, and oviposition (Dawson and Goldsmith, 
1997). Consequently, the overall production rate 
through the cycle decreased (Callenbach et al., 1944; 
Wilson et al., 1956).

Efforts were made to address these challenges 
through ephemeral lighting programs, extending the 
total hours of light beyond 24 h to align with natural 
ovulatory rhythms (Byerly and Moore, 1941). 
Unfortunately, this was unsuccessful, as eggshell 
quality and weight improved at the expense of the 
production rate (Leeson and Summers, 1988). The 
variation of the open window period within individ-
uals in a flock likely contributed to these unfavorable 
results.

Overall, the current industry practices, using 24-h 
L:D cycles for photo-stimulation, seem to strike a bal-
ance by leveraging the physiological benefits while 
maintaining circadian rhythmicity.

When considering spectrum lighting for birds, it is 
first important to acknowledge that birds have extra-
retinal photoreceptors, present in places like the 
pineal gland and hypothalamus. The penetrability of 
light through bone and nervous tissue is dependent 
on wavelength. Remarkably, hens maintained under 
red wavelengths demonstrate earlier sexual matura-
tion and greater cumulative production (Min et  al., 
2012; Hassan et al., 2013), regardless of retinal stimu-
lation (Baxter et  al., 2014), emphasizing the signifi-
cance of extra-retinal deep brain photoreception. 
Interestingly, this effect is achieved by downregulat-
ing the positive arm of the circadian genes and 
AANAT, which lowers melatonin production (Jiang 
et al., 2016; Bian et al., 2020; Yang et al., 2020). While 
this suggested that red light may synchronize repro-
ductive processes, further research is needed to fully 
understand its role in hen circadian biology.

Conversely, green light, known to increase melato-
nin production, delays the onset of egg-laying. This 
aligns with how melatonin interacts with GnIH in the 
hypothalamus (Min et al., 2012; Hassan et al., 2013; 
Baxter et  al., 2014). The decreased production rate 
observed with green light aligns with melatonin’s 
ability to delay the initiation of each egg-laying cycle 
(Greives et al., 2012). Interestingly, the delay caused 
by green light is more pronounced when the retina 
remains intact compared to hens with retinal degen-
eration. This suggests that the retina plays a signifi-
cant role in melatonin production specifically under 
green light conditions (Baxter et al., 2014).

Photoperiodic Control of Bone Growth and 
Development

Early studies in layers revealed the vital role of 
melatonin in maintaining skeletal health and pre-
venting bone disorders like scoliosis (Machida et al., 
1995; Wang et al., 1998). While a pinealectomy con-
tributes to anywhere between 52% and 100% of birds 
developing scoliosis, melatonin treatment can reduce 
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the severity or even entirely prevent this disease 
(Machida et  al., 1995). Further investigation has 
revealed that melatonin stimulates osteoblastic pro-
liferation and differentiation—the cells responsible 
for bone formation (Nakade et  al., 1999; Cardinali 
et al., 2003; Park et al., 2011). Simultaneously, it inhib-
its the activation and formation of osteoclasts, which 
break down bone tissue (Koyama et  al., 2002). 
Melatonin also supports the production of type I col-
lagen, a critical component of bone structure (Nakade 
et  al., 1999). Without melatonin, the normal bone 
growth process at the epiphyseal plate—a critical 
area for bone development—is disrupted (Aota et al., 
2013). These findings emphasize how adjusting the 
length of the dark period can greatly impact the 
growth and development of bones, a phenomenon 
that has been especially studied in broiler chicks and 
layer hens.

Broiler Leg Health

Broilers have been intensively bred for rapid 
growth and efficient feed consumption, usually kept 
under prolonged 18-23–h periods of light to encour-
age extensive feeding (Cobb-Vantress, 2020). 
However, while extended photoperiods promote 
increased feed intake, short scotophases demonstrate 
an abolishment of circadian rhythmicity, decreasing 
locomotor activity. In combination, this results in 
rapid weight gain that in turn leads to the develop-
ment of leg abnormalities, including but not limited 
to lameness and tibial dyschondroplasia (Classen and 
Riddell, 1989; Sorensen et al., 1999), impacting their 
movement, ability to access food and water, and often 
ending with on-farm culling. Thus, this is a major 
economic and welfare concern within the industry.

Broilers with leg weakness preferentially select 
feed supplemented with an analgesic agent (McGeown 
et al., 1999; Danbury et al., 2000), indicating consider-
able discomfort associated with these disorders 
(Sorensen et al., 1999). However, shortening the pho-
toperiod has been proven effective in reducing the 
incidence of leg abnormalities and is coincident with 
the maintenance of rhythmic melatonin production 
(Taylor et al., 2013; van der Pol et al., 2017; van der Pol 
et al., 2019).

Laying Hen Bone and Shell Development

Laying hens require 2.2 g of calcium for deposition 
on the shell of each egg produced, equating to about 
10% of their total calcium content on a 24-h basis 
(Bouvarel et al., 2011). Thus, calcium homeostasis is 
critical to their health, welfare, and the quality of the 
consumer product. In the case of breeder layers, this 

shell quality becomes even more important due to its 
role in providing calcium to the growing embryo for 
cartilage formation (Qi et al., 2016; Torres and Korver, 
2018). To accommodate the demands of eggshell 
deposition during scotophase, hens maintain a spe-
cialized and readily labile source of bone within the 
endosteal surface of long bones (Bloom et  al., 1941; 
McCoy et  al., 1996), referred to as medullary bone. 
This bone source provides about 30% of the total 
required calcium, in addition to the dietary source, to 
prevent the breakdown of structural bone (Comar 
and Driggers, 1949; Mueller et  al., 1964). However, 
osteoporosis is a common disease in laying hens 
resulting in a disorder termed cage layer fatigue. It is 
highly prevalent and a major cause of poor health 
and welfare (Whitehead and Fleming, 2000).

Calcium homeostasis appears to be partially regu-
lated by the circadian mechanism. The timing of cal-
cium consumption can entrain circadian oscillators, 
acting as a potential zeitgeber for the circadian oscil-
latory mechanism in the kidney of hens (Damiola 
et al., 2000; Lin et al., 2018). When the same levels of 
calcium are fed in the morning and evening, the cir-
cadian genes in the intestinal jejunum and in the 
kidney of laying hens exhibit normal daily rhyth-
micity. However, if the calcium provided is higher in 
the morning and lower in the evening, these circa-
dian genes become arrhythmic (Lin et al., 2018). In 
addition, serum calcium levels display a circadian 
rhythm (Sloan et  al., 1974), which can be altered 
through photoperiod manipulations (Pablos et  al., 
1995). These findings suggest that varying photope-
riods can mechanistically impact the timing of egg-
shell formation.

In addition to calcium intake, calcium deposition 
and transport of calcium to the shell gland also occur 
rhythmically due to the circadian expression of 
1,25-dihydroxy vitamin D3 (1,25[OH]2D3; Abe et al., 
1979; Frost and Roland, 1991). Initially, it was thought 
that the circadian rhythm of the ovulatory cycle’s sex 
hormones controlled 1,25(OH)2D3 rhythms (Peterson 
and Common, 1972; Abe et al., 1979), but studies dis-
proved this when hens laid shell-less eggs despite 
normal sex hormone patterns when 1,25(OH)2D3 lost 
its rhythmicity (Nys et al., 1986).

Lighting Applications for Improving Bone Growth 
and Development

Recent studies have examined the effects of photo-
periods during incubation on early bone development. 
Continuous light exposure during embryonic growth 
negatively impacts melatonin production, and also 
results in weaker bones with higher rates of tibial dys-
chondroplasia. Conversely, using continuous dark 



248  JOURNAL OF BIOLOGICAL RHYTHMS / June 2024

conditions typically used in hatcheries does not cause 
such detrimental effects. Chicks incubated in D:D 
often show earlier ossification in the tibia and femur. 
However, using a 12L:12D dark cycle during incuba-
tion has shown additional benefits, like increased 
osteoblast activity by embryonic day 13 (van der Pol 
et al., 2019). This suggests that L:D cycles promoting 
circadian patterns might positively influence embry-
onic growth and extend benefits to the chick. While 
current research is focusing on spectrum lighting dur-
ing this period, no data on its impact on circadian 
rhythms are available.

Given that melatonin, beneficial for bone develop-
ment, increases under green light, it is hypothesized 
that using this spectrum during incubation and early 
growth be advantageous. While most studies focus 
on broiler chicks, similar improvements in bone 
development might be seen in laying hens, poten-
tially reducing the incidence of osteoporosis later in 
their lifespan. Beyond its bone benefits, melatonin, as 
an anti-inflammatory agent, is suppressed by inflam-
matory substances that decrease AANAT and clock 
gene expression (Majewski et  al., 2005a, 2005b; 
Carrillo-Vico et al., 2013). The prevalent use of con-
tinuous light in the industry might elevate inflamma-
tory markers, negatively impacting animal health 
(Majewski et al., 2005a; Shini et al., 2010). Thus, con-
sidering the light spectrum environment could poten-
tially enhance animals’ immune status and overall 
health in the industry.

Companion animals—dogs

Circadian Rhythms and Effects of Rhythm 
Disruption in Dogs

Dogs are the descendants of wolves. Their domes-
tication by humans is thought to have occurred at 
least 15,000 years ago, and possibly much earlier as 
they formed beneficial relationships with humans. In 
the wild, wolves typically have a diurnal activity 
pattern where they are most active during the day 
and rest at night. However, there is some controversy 
in the literature regarding circadian activity patterns, 
as this can vary depending on the availability of 
prey, and in the winter months, they may become 
even more active at night (Theuerkauf, 2009; Eriksen 
et al., 2011, 2022; Merrill and Mech, 2023). Dogs can 
also tend toward crepuscular behavior, but that is 
modified by being with humans such that domesti-
cated dog breeds typically exhibit only diurnal loco-
motor and activity-rest patterns, following similar 
patterns as their human owners (Nishino et al., 1997; 

Zanghi et  al., 2012; Wells, 2017; Jean-Joseph et  al., 
2022). Experimental and clinical studies reveal robust 
diurnal circadian rhythms in domesticated canine 
heart rate (Ashkar, 1979; Matsunaga et  al., 2001), 
blood pressure (Ashkar, 1979), body temperature 
(Refinetti and Piccione, 2003), respiratory rate 
(Ashkar, 1979), bone metabolism (Liesegang et  al., 
1999), and heat dissipation (Besch and Woods, 1977), 
similar to other diurnal mammals. Somewhat sur-
prisingly, daily rhythms in endocrine hormones such 
as adrenocorticotropic hormone, cortisol, and thy-
roxine remain controversial in dogs as results differ 
between studies (Kemppainen and Sartin, 1984; 
Palazzolo and Quadri, 1987), even though daily 
rhythmicity in these hormones is prevalent in 
humans and other diurnal mammals (Gamble et al., 
2014). Understanding circadian rhythms in dogs is 
important for healthy canine physiology and 
well-being.

Disruption of a dog’s circadian rhythm may have 
detrimental effects on their physiology, behavior, and 
overall health. Unfortunately, in our modern society, 
circadian disruption is often unavoidable due to pro-
longed exposure to artificial lighting, which extends 
our daylight hours (photoperiods). This affects not 
just humans, but our companion animals as well. One 
consequence for dogs is that disrupting daily rhythms 
may increase the risk for metabolic disorders. For 
example, a study demonstrated that just one night of 
disruption in dogs significantly diminished insulin 
sensitivity (Brouwer et al., 2020). However, it is worth 
noting that study achieved disruption through con-
stant contact rather than changes in environmental 
lighting, leaving further research necessary to fully 
understand the effects of circadian disruption on 
metabolism in dogs.

Another perspective on how circadian disruption 
affects the physiology of dogs can be examined 
through the lens of canonical light entrainment path-
ways. Dogs possess the ipRGCs responsible for light 
detection and SCN entrainment (Yeh et  al., 2017). 
They are sensitive to light intensity too: Low lumi-
nous intensity (<50 lux) at night promotes sleep, 
while high illumination (>1600 lux) at night disrupts 
this behavior (Fukuzawa and Nakazato, 2015). This 
understanding matters because studies in humans 
and other daytime-active animals show that low 
nighttime light fosters pineal melatonin production, 
while increased nighttime light suppresses melato-
nin, potentially disrupting body processes (Gooley 
et al., 2011; Arendt, 2019). Although our understand-
ing of pineal melatonin in dogs is limited, their 
peripheral blood shows a rhythmic pattern, peaking 
at night (Stankov et  al., 1994), similar to what is 
observed in humans.
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Circadian Medicine: Using Light Timing to Benefit 
Health in Dogs

Various studies, both in experimental animals 
and humans, emphasize the importance of daily 
rhythms for maintaining health across numerous 
body processes. These rhythms influence things 
like autonomic nervous system bias (Reitz et  al., 
2022), blood vessels (Kroetsch et al., 2022), autoph-
agy (Rabinovich-Nikitin et al., 2021), inflammatory 
responses (Alibhai et al., 2015; Khaper et al., 2018; 
Rabinovich-Nikitin et  al., 2019; Aziz et  al., 2021), 
heart health (Young et al., 2014; Martino and Young, 
2015; Mia et  al., 2020), diurnal gene and protein 
rhythms (Martino et  al., 2004, 2007a, 2007b; 
Chalmers et al., 2008a, 2008b; Tsimakouridze et al., 
2012; Alibhai et  al., 2014; Podobed et  al., 2014a, 
2014b; Bennardo et al., 2016; Hughes et al., 2017), 
and numerous other processes (e.g., see Martino 
and Sole, 2009; Scheer et al., 2009; Sole and Martino, 
2009; Kinlein et al., 2015; Labrecque and Cermakian, 
2015; Martino and Young, 2015; Reutrakul and 
Knutson, 2015; Morris et  al., 2016; Martino and 
Young, 2017; Reutrakul and Van Cauter, 2018; 
Thosar et al., 2018; Haspel et al., 2020; Boivin et al., 
2022; McEwen and Karatsoreos, 2022).

Disruptions to normal L:D cycles have been linked 
to disease development and can hinder the body’s 
repair processes. In dogs, excessive nighttime light 
exposure might affect their physiology similarly to 
what is seen in other animals and humans, poten-
tially impacting diseases like heart issues and cancer, 
common in both dogs and humans.

From a clinical perspective, these studies indicate 
that pet owners acknowledge and prioritize their 
dogs’ circadian rhythms. Establishing a consistent 
daily routine can actively contribute to their pet’s 
overall well-being and good health.

Circadian Medicine: Using Time-restricted Eating 
to Address Obesity and Related Comorbidities in 
Dogs

Maintaining circadian rhythms is crucial for 
overall health, and the emerging field of circadian 
medicine offers potential therapeutic strategies for 
various conditions, including obesity in dogs. In the 
United States, the prevalence of overweight and 
obese dogs, as assessed by veterinarians, is reported 
to be 34% and 5%, respectively (AVMA, 2018a). 
These conditions are associated with increased risk 
of comorbidities and reduced lifespan (Kealy et al., 
2002; Adams et  al., 2015). Factors such as aging, 
neutering, reduced exercise, and inappropriate 
feeding practices contribute to weight gain in dogs 
(Perry et al., 2020).

One promising approach for treating obesity is 
time-restricted eating (TRE; Vollmers et  al., 2009; 
Hatori et al., 2012; Melkani and Panda, 2017), which 
has gained attention in human circadian medicine and 
for cardiometabolic diseases (Mattson et  al., 2014; 
Chaix et al., 2019; Quist et al., 2020; Wilkinson et al., 
2020; Crose et  al., 2021; Prasad et  al., 2021). TRE 
involves limiting the daily time window for food con-
sumption. Dogs, like other mammals, have sensitive 
circadian systems that respond to meal timing. Studies 
on dogs show hormone levels like ghrelin peak before 
feeding and drop afterward, while leptin peaks 5-8 h 
post-meal (Ishioka et al., 2005; Yokoyama et al., 2005), 
suggesting meal timing influences these hormone 
peaks (Ishioka et al., 2005; Yokoyama et al., 2005).

However, understanding the effects of TRE in dogs 
is complex due to their classification as opportunistic 
carnivores. Wolves, for instance, can eat up to 22% of 
their body weight in a single meal (Stahler et al., 2006), 
and dogs can survive for extended periods without 
food (Howe et al., 2012), indicating resistance to pro-
longed food deprivation. In addition, wild canids 
experience seasonal variations in food availability, 
suggesting they can respond to changes in meal fre-
quency. Furthermore, pet owners often align their 
dog’s feeding schedules with their meals, or that of 
other companion animals (Laflamme et al., 2008).

Despite these complexities, TRE holds potential 
health benefits for companion dogs’ health. Studies 
show that intermittent fasting, along with a high-fat 
diet, can improve insulin sensitivity and reduce fast-
ing glucose levels compared to daily feeding. Dogs on 
intermittent fasting with a low-fat, high-carbohydrate 
diet consumed fewer calories and lost more weight 
than those on daily feeding or a high-fat diet (Leung 
et al., 2020). Observational data from more than 20,000 
dogs indicate that the once-daily feeding of adult dogs 
is associated with a reduced risk of various age-related 
health conditions (Bray et al., 2022). Further research 
on TRE’s effects in obese dogs, including weight loss, 
better metabolic health, reduced disease risk, increased 
energy, and improved sleep, is needed.

Circadian Medicine: Chronotherapy for the 
Treatment of Cardiovascular Diseases and Cancer 
in Dogs

Cardiovascular disease is a prevalent and often 
fatal condition in dogs, with an estimated 7.8 million 
affected in the United States, representing around 10% 
of the canine pet population (Lombard et  al., 2006; 
Haggstrom et  al., 2008; O’Grady et  al., 2008; Atkins 
et al., 2009; O’Grady et al., 2009). Conditions like con-
gestive heart failure (Guglielmini, 2003), mainly due 
to myxomatous mitral valve disease (Borgarelli and 
Buchanan, 2012), impact about 75% of dogs over the 
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age of 16 (Guglielmini, 2003). Dilated cardiomyopathy 
is also prevalent in various breeds (Dukes-McEwan 
et  al., 2003; McCauley et  al., 2020), and especially 
Doberman Pinschers (O’Grady et  al., 2009), and pro-
ceeds unremittingly toward heart failure.

Conventional treatments such as angiotensin-con-
verting enzyme inhibitors (ACEIs) or angiotensin 
receptor blockers (ARBs) have limited success, and car-
diovascular disease remains a leading cause of death in 
dogs. Novel strategies are needed, and recent studies in 
rodents (Martino and Sole, 2009; Martino et al., 2011; 
Martino and Young, 2015; Tsimakouridze et al., 2015), 
and humans (Hermida et al., 2021; Gumz et al., 2023), 
suggest potential benefits of chronotherapy with ACEIs 
or ARBs. Chronotherapy aligns treatments with the 
body’s circadian rhythms and has shown promise in 
reducing adverse cardiac changes, lowering nighttime 
blood pressure, and slowing heart failure progression. 
Considering that ACEIs are commonly used for heart 
disease in dogs (Lefebvre et al., 2007; O’Grady et al., 
2008), investigating chronotherapy’s potential benefits 
in enhancing drug effectiveness is a logical step.

Chronotherapy might also impact cancer treat-
ment, as many widely used medications target prod-
ucts of circadian rhythmic genes (Zhang et al., 2014; 
Ruben et al., 2019b). Healthy tissues and tumors have 
differing susceptibility to chemotherapy based on the 
time of day (e.g., Innominato et  al., 2014; Ballesta 
et al., 2017; Lee et al., 2021). Dogs, like humans, are 
prone to cancer, with a quarter developing it in their 
lifetime and nearly half of all dogs over the age of 10 
face cancer (AVMA, 2023). Chronotherapy in veteri-
nary cancer care could improve tolerance, and safety, 
and increase tumor sensitivity to treatment.

On a final note, it is likely also important to con-
sider the feeding patterns of owned dogs when devel-
oping chronotherapy. Owners often vary in how 
frequently they feed their pets, and this frequency 
can influence the metabolic rhythms in dogs. By 
aligning scheduled feeding with medication admin-
istration, it may be possible to enhance the timed 
delivery of drugs, which could impact their effective-
ness. Research into how drugs interact with the 
body’s rhythms at different times of the day—phar-
macokinetics and pharmacodynamics—is a crucial 
area to explore (Dallmann et al., 2016). Further inves-
tigations are eagerly anticipated to fully uncover the 
benefits of chronotherapy in veterinary medicine.

Companion animals—cats

Circadian Rhythms in Cats

Literature characterizing circadian rhythms in 
domestic cats is scarce and contradictory. Early 

reports suggested a lack of rhythmicity in activity 
and body temperature (Sterman et al., 1965; Hawking 
et  al., 1971); however, research has since demon-
strated circadian fluctuations in total sleep time and 
brain temperature indicating a bimodal pattern of 
wakefulness at dusk and dawn, supporting the 
notion of crepuscular rhythms under artificial L:D 
cycles (Kuwabara et  al., 1986). These rhythms are 
endogenously produced and not merely a response 
to L:D cycles, as cats were observed to have free-run-
ning circadian organization of activity and feeding 
behavior when kept in D:D and arrhythmicity when 
kept in constant light (L:L; Randall et  al., 1985). A 
more recent study further demonstrated the bimodal 
profile of daily rhythms in domestic cat locomotion 
using automatic recording technologies (Parker et al., 
2019). Intriguingly, cats also appear to display similar 
bimodal circadian rhythms in endocrine hormones 
including norepinephrine (Reis et al., 1969) and mela-
tonin (Reppert et al., 1982), and in daily blood pres-
sure cycling (Mishina et al., 2006). In contrast, rhythms 
in plasma aldosterone (Yu and Morris, 1998) are 
absent, while they are evident in humans and other 
mammals.

Characterizing the daily rhythms of the domestic 
cat has proven difficult, as recent studies have dem-
onstrated that cats exhibit different chronotypes 
according to their housing conditions (Piccione et al., 
2013b). In addition, as cats are considered symbionts 
to humans, their activity and feeding behaviors are 
affected by human interaction (Randall et al., 1985). 
Collectively, these studies are consistent with the 
presence of a bimodal profile of circadian rhythms in 
cats, with crepuscular peaks associated with twilight. 
Indeed, cats exposed to 16 h of light and 8 h of dark 
had greater physical activity and good intake and 
resting metabolic rate, in contrast to cats exposed to 
an 8L:16D cycle, suggesting that the length of day 
could have a significant impact on energy balance 
although the mechanism by which this occurred was 
not clear (Kappen et al., 2013). Ultimately, by improv-
ing our understanding of feline circadian rhythms, 
we may be able to further develop nutritional and 
housing guidelines to support health and recovery 
from disease.

Circadian Medicine: Feeding Frequency for the 
Prevention and Treatment of Obesity and Diabetes 
in Cats

Similar to dogs, obesity and its associated comor-
bidities in cat populations are a growing concern 
worldwide (German, 2006; German et  al., 2010; 
Chandler et al., 2017; AVMA, 2018b). The percent-
age of overweight and obese cats was recently esti-
mated to be between 22% and 52%, respectively, 
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depending on study parameters and country of ori-
gin (Colliard et  al., 2009; Rowe et  al., 2017; 
Association for Pet Obesity Prevention, 2018; 
Öhlund et  al., 2018). Clinically, obesity is consid-
ered a low-grade inflammatory disease, resulting 
from positive energy balance due to increased food 
intake, often a result of feeding regimen misman-
agement by the owners, or reduced energy expendi-
ture (German, 2006; Laflamme, 2006; German et al., 
2010). However, many other factors contribute to 
obesity, including activity, breed, sex, neutering sta-
tus, and age (Wall et al., 2019). Obese cats are also 
3.9 times more likely to develop diabetes mellitus 
(Nelson and Reusch, 2014), a health condition char-
acterized by insulin resistance, decreased glucose 
tolerance, and glucosuria.

In the wild, the cat is an opportunistic carnivorous 
hunter, feeding on small prey who themselves have 
different circadian rhythms, such as diurnal birds 
and nocturnal rodents, suggesting flexibility in the 
wild cats’ feeding patterns (Konecny, 1987). However, 
feeding rhythms may differ in domestic cats, which 
largely rely on humans for food provision. To investi-
gate rhythms in food intake, domestic cats kept in 
L:D cycles (hours) of 10:14, 15:9, and 17:7, with ad libi-
tum access to food and water, displayed rhythms in 
feeding behavior, albeit with a wide range of interin-
dividual variability in nocturnal versus diurnal pref-
erence (Randall et al., 1985). About nocturnal feeding, 
there was a strong association with simulated noctur-
nal starlight as well as with human presence (Randall 
et al., 1985). As this study sought to determine per-
cent nocturnality in cat food intake and activity, it 
was not clear whether the animals displayed multiple 
peaks in food intake throughout the day. Recently, 
Parker and colleagues investigated rhythms in food 
intake in a colony of 14 cats with ad libitum access to 
food, 7 of which showed a tendency toward bimodal-
ity, 4 being unimodal, and 3 being arrhythmic with 
peaks occurring between 0400-1000 h (dawn) and 
1700-2100 h (dusk; Parker et  al., 2019). While these 
studies appear to report contradicting results regard-
ing cat feeding rhythms, they also reiterate that cats 
display interindividual variability and flexibility in 
their food intake, adapting to the environment 
around them. Further studies investigating the fac-
tors that determine diurnal versus nocturnal prefer-
ence and bimodality are required.

In 2018, a consensus statement by the American 
Association of Feline Practitioners recommended fre-
quent small meals throughout the day to support 
healthy body composition and weight, despite a lack 
of empirical evidence to support this regimen (Sadek 
et  al., 2018). Indeed, a recent study reported that 
once-a-day feeding may promote satiation and devel-
opment/maintenance of lean body mass in cats 

(Camara et  al., 2020). In other reports, it has been 
shown that ad libitum access to food permits a cat to 
eat more than its energy requirements and may lead 
to increased body weight. Furthermore, ad libitum 
feeding relies on the presentation of dry food, which 
generally has a greater inclusion of carbohydrates 
compared to wet foods, since wet cat food cannot be 
provided for extended periods of exposure at room 
temperature (Michel et al., 2005). As cats are obligate 
carnivores, diets that are high in carbohydrates result 
in longer periods of postprandial hyperglycemia, 
which may lead to insulin resistance, a major risk fac-
tor for obesity and diabetes (Farrow et  al., 2013). 
Therefore, strategies to reduce body weight that rely 
less on caloric restriction are warranted.

As discussed earlier in the section on dogs, TRE 
can provide significant cardiometabolic benefits, and 
it may also be an effective strategy for reducing excess 
body weight in cats. In a study by Deng and col-
leagues, cats were fed either twice daily (0800 and 
2000 h) or four times daily (0800, 1200, 1600, and 2000 
h) with commercial dry food. Cats fed twice daily 
showed more variability in glucose and insulin con-
centrations over 24 h and maintained higher insulin 
concentrations as compared to cats fed four times 
daily. In addition, cats fed 4 meals daily had consis-
tently lower total ghrelin levels throughout the 24 h, 
while cats fed 2 meals daily had ghrelin concentra-
tions above baseline during the light period. The 
opposite trend was observed for leptin concentra-
tions. These findings suggest that cats fed more fre-
quently with commercial dry food experience 
increased satiety compared to those fed less fre-
quently (Deng et al., 2013).

However, a recent study by Camara and colleagues 
demonstrated contrasting results when cats were fed 
wet commercial food. Cats fed once a day (at 0800 h) 
had greater postprandial levels of appetite-regulating 
hormones such as gastric inhibitory polypeptide, glu-
cagon-like peptide 1, and peptide YY compared to 
those fed four times a day (0800, 1130, 1500, and 1830 
h). Cats fed once a day also showed lower postpran-
dial respiratory quotients, which suggests greater fat 
oxidation occurring (Camara et al., 2020). Increasing 
feeding frequency has also been shown to decrease 
diurnal fluctuations in glucose, insulin, leptin, and 
ghrelin in cats (Deng et al., 2013). This may be due to 
more chronic exposure to dietary nutrients; however, 
the nutrient content of the diets is also a contributing 
factor to the physiological response. Over time, 
increased feeding frequency can lead to increased 
glucose tolerance, decreased insulin sensitivity, and 
eventual weight gain. Nevertheless, it suggests that 
feeding cats multiple meals throughout the day may 
disrupt entrainment by food or lead to circadian 
desynchrony, resulting in adverse metabolic profiles.
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It is important to note that the mentioned studies 
did not examine feeding frequency during the dark 
period. Also, the cats were housed together although 
fed in a separate room; cohabitation should be con-
sidered as a variable in future research. Ultimately, 
these studies suggest that aligning feeding practices 
with cats’ circadian rhythms by providing food less 
frequently throughout the day could be beneficial in 
preventing and managing feline obesity and diabe-
tes, especially when combined with appropriate 
lighting periods. However, there is a lack of available 
data to fully understand and differentiate these 
effects. Further research is needed to explore feeding 
times aligned with crepuscular, nocturnal, and diur-
nal patterns, as well as employing time-restricted 
food provision and alternating feeding frequencies.

New frontiers

Aquaculture

Aquaculture is the fastest growing food sector. For 
instance, in 2017 production was estimated at 180 
million tons with more than 400 aquatic species 
farmed. It is predicted that by 2050, production will 
be bolstered by an additional 100 million tons of sea-
food, mostly from cultured species (Stentiford et al., 
2017, 2022). Necessary intensification of the industry 
poses significant health and welfare challenges and 
wider environmental issues. In fish, particularly sal-
monids such as Atlantic salmon, Salmo salar, it is now 
common practice to use highly extended day 
lengths or even L:L to increase growth (Boeuf and 
Le Bail, 1999) and manipulate maturation (Strand 
et  al., 2018) and reproduction (Wang et  al., 2010). 
While in some species, including Atlantic salmon, 
these extreme light regimes appear to have no 
observable behavioral or physiological effects (Fang 
et al., 2019; Hines et al., 2019; Hamilton et al., 2022), 
in others such as Coho salmon (Oncorhynchus 
kisutch) and rainbow trout (Oncorhynchus mykiss), 
they elicit markers of stress and/or alter immune 
profiles (Melingen et  al., 2002; Leonardi and 
Klempau, 2003). However, the extent to which 
manipulation of circadian biology in cultured 
aquatic species influences disease susceptibility—
arguably the greatest challenge to aquaculture 
(Stentiford et al., 2017, 2022)—is largely unknown.

In common with other vertebrates, fish have 
cycling immunity (Lazado et al., 2016; Onoue et al., 
2019; Zhang et al., 2020). However, they have decen-
tralized clocks (Froland Steindal and Whitmore, 2019) 
and perturbation of these peripheral clocks and con-
sequent disruption of rhythmic immunity could 

expose vulnerabilities in the host fish to pathogenic 
attack or parasitism. Indeed, it has recently been 
shown that L:L disrupts immune gene expression in 
the skin of rainbow trout and has negative impacts on 
resistance to lice infestation (Ellison et  al., 2021). 
Intriguingly, in the same study, skin microbiome pro-
files which also showed daily modulation in abun-
dance and diversity are concomitantly perturbed by 
L:L. Given the association of microbial communities 
and immunological status in other mammalian mod-
els (Thaiss et  al., 2016), L:L might have detrimental 
consequences not yet revealed with more routine 
physiological or behavioral analyses.

Fish photobiology and clock gene biology are very 
complex, particularly teleost fish that have under-
gone full genome duplications. For example, zebraf-
ish have been shown to have 42 distinct photopigment 
genes including 5 melanopsin genes (Davies et  al., 
2015). Nevertheless, recognition and deeper appreci-
ation of the nuances of circadian biology on fish 
health could yield considerable benefits from a pro-
ductivity and welfare perspective, contributing to a 
more sustainable industry. For example, chronothera-
peutic approaches to pathogen control and disease 
mitigation could benefit the producer in terms of effi-
cacious dosing and have positive ecological impacts 
as have been shown in other vertebrate and even 
plant systems (Belbin et  al., 2019). Moreover, TRE 
strategies are gaining interest in terms of salmonid 
growth and feed efficiencies (the single greatest cost 
to producers; Asche and Oglend, 2016). While TRE is 
known to affect immunity and other health parame-
ters in mammalian models (Geiger et  al., 2017; Di 
Francesco et  al., 2018; Zheng et  al., 2020), this is 
largely unexplored in cultured aquatic species. 
Vitally, chronotherapeutic and chrononutrition prac-
tices must consider inter-specific differences; match-
ing conditions to chronotypes to enhance welfare, 
growth, and viability.

Preserving Circadian Rhythms in Veterinary 
Hospitals and ICU: A Rationale for Optimal 
Patient Care

Lighting and Circadian Disruption in Veterinary Hospi-
tals.  In recent decades, the management of human 
patients in ICUs has intensified, inadvertently lead-
ing to increased environmental stimuli like light. In 
humans, it has been shown that these disruptions 
can disturb patients’ circadian rhythms and sleep, 
potentially compromising the healing process 
(Drouot et al., 2008; Buxton et al., 2012; Ruben et al., 
2019a, 2019b). This disruption similarly affects ani-
mals. Experimental studies using rodent models of 
heart disease have shown how a disturbed L:D 
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environment, similar to ICU conditions, impairs 
recovery and healing. For example, disrupting circa-
dian rhythms immediately following a myocardial 
infarction (heart attack) in mice severely impairs 
inflammatory responses, hindering healing (Alibhai 
et al., 2014). These findings highlight the detrimental 
effects of circadian disruption on patient outcomes 
(Alibhai et al., 2015; Reitz and Martino, 2015; Khaper 
et al., 2018). However, there has been limited focus 
on how this affects companion animal patients in 
veterinary hospitals.

Veterinary critical care units function similarly to 
human hospitals, providing intensive, around-the-
clock care in well-lit environments. Just as seriously 
ill humans, critically ill animals in veterinary hospi-
tals often need extended stays for treatments—rang-
ing from chemotherapy complications to acute 
kidney injury, spanning several days to weeks 
(Britton et  al., 2014) and 3-48 days for acute kidney 
injury (Thoen and Kerl, 2011). While no specific stud-
ies have investigated light disturbance effects on cats 
and dogs in veterinary hospitals, evidence suggests 
that these species are physiologically impacted by cir-
cadian disruptions. Studies indicate that varying 
light intensities affect dogs’ sleep behavior, with low 
light intensity improving sleep and strong illumina-
tion causing varied effects (Fukuzawa and Nakazato, 
2015). L:L exposure has disrupted rhythmicity in 
measures like intraocular pressure in dogs (Piccione 
et al., 2010), and cerebral spinal fluid concentrations 
of vasopressin and melatonin in cats (Reppert et al., 
1982). Consequently, animal patients in these critical 
care units might experience disturbances in their cir-
cadian rhythms and sleep due to L:L exposure, mir-
roring the effects observed in human patients. 
Therefore, a promising area for future circadian med-
icine applications is in normalizing the light and dark 
period for animals in critical care environments.

Non-photic Disruptions in Veterinary Hospitals: Sound 
and Smell.  In veterinary hospitals, non-photic disrup-
tions like noise and smell might significantly affect 
animal patients, possibly more than humans. Cats 
and dogs have enhanced sensory sensitivity, espe-
cially to auditory and olfactory stimuli, and often 
experience fear-related issues during clinic visits 
and veterinary procedures. Their wider hearing 
range (Heffner, 1983; Heffner and Heffner, 1985) 
makes them more sensitive to high-frequency noises 
commonly found in veterinary settings, such as 
electronic devices (e.g., monitoring equipment, 
computer screens) and mechanical noises (e.g., ken-
nel doors opening and closing, equipment being 
moved around). This suggests that noise in veteri-
nary hospital environments might impede animals’ 
healing processes.

Notably, cats and dogs exhibit evident stress 
responses to loud noises in general (Gruner, 1989; 
Haverbeke et al., 2008; Eagan, 2020) and during vet-
erinary visits (Stellato et al., 2019; Furgala et al., 2022). 
They are prone to noise phobia (Blackwell et al., 2013; 
Storengen and Lingaas, 2015; Gates et al., 2019) and 
exhibit fear-related behaviors. Consequently, sound 
becomes an important disruptor to consider in veteri-
nary critical care units. A study conducted in aca-
demic veterinary ICU settings found that noise levels 
exceeded the recommendations by the World Health 
Organization of a maximum of 35 dB at night and in 
human ICUs (Fullagar et al., 2015), with average lev-
els between 1800 and 2100 h above 77 dB, levels reach-
ing the equivalent of a vacuum cleaner or an average 
radio (Dornbusch et al., 2020).

Moreover, cats and dogs possess highly sensitive 
olfactory systems (Vitale Shreve and Udell, 2017; 
Kokocińska-Kusiak et al., 2021). Exposure to various 
odors, such as cleaning supplies or pheromones, can 
trigger fear and general disturbance. Despite this, 
there is limited research on how these smells impact 
animals in veterinary settings, highlighting the need 
for further investigation. Overall, non-light disrup-
tions, especially noise and smell, might significantly 
impact companion animals more than human patients, 
necessitating careful consideration in veterinary care. 
This understanding of the animals’ stress and fear 
responses during veterinary care can guide approaches 
that aim to minimize these stressors, potentially lead-
ing to improved patient comfort, faster recovery 
times, and better overall health outcomes.

Non-photic Disruptions—Fear and Stress.  Animal 
patients also experience high levels of fear and stress 
during veterinary visits. Studies on rodents suggest 
that fear experiences can impact circadian rhythms 
(e.g., Amir and Stewart, 1998; Pellman et  al., 2015), 
indicating the potential for stressors to exacerbate cir-
cadian disruptions in veterinary critical care units. 
Animal patients are exposed to a range of stressors in 
the clinic including unfamiliar environments, noises, 
odors, people, and other animals, as well as handling 
and restraint and uncomfortable and painful proce-
dures. While these experiences are also common for 
humans during hospital visits, animals lack the same 
understanding of the necessity for their visit and gen-
erally have limited predictability and control of their 
experiences during care. As a result, most cats and 
dogs show increased signs of fear and stress during 
standard clinic visits, during routine handling, and 
procedures (Stanford, 1981; Döring et al., 2009; Glar-
don et al., 2010; Moody et al., 2020). This heightened 
stress can lead to increased disturbance during rou-
tine monitoring and procedures, as well as ongoing 
hypervigilance even during undisturbed periods.
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Effective Strategies for Enhancing Animal Welfare and 
Healing.  In veterinary intensive care, patients need 
continual attention regardless of day or night. To 
minimize circadian disruptions without compromis-
ing critical care, adopting strategies like cycle lighting 
and light-blocking at night can be beneficial, drawing 
from successful approaches used in human critical 
care units. This includes implementing a “chrono-
bundle” of interventions (Scotto et al., 2009; Xie et al., 
2009; Hu et al., 2010; Patel et al., 2014; McKenna et al., 
2018), potentially employing specific light spectra, 
such as blue-poor light during sleep time to limit 
light-induced melatonin suppression (Souman et al., 
2018). These strategies, proven to reduce sleep dis-
ruptions and delirium in human hospitals (Engwall 
et al., 2015, 2017; Ruben et al., 2019a), may offer simi-
lar benefits to animal patients. Moreover, controlling 
stimuli like noise and activity during rest periods, 
possibly through separating emergency triage areas 
from recovery spaces, could decrease stress and pro-
mote better circadian health in recovering animals. 
Further research into these practices could greatly 
enhance veterinary care.

One health and conclusions

Embracing the One Health concept acknowledges 
the interconnection between human, non-human ani-
mal, and environmental health (Zinsstag et al., 2011; 
Ancheta et al., 2021a, 2021b; Kelley, 2022). By recog-
nizing the shared health challenges between species, 
disciplines like human and veterinary medicine can 
collaborate to optimize health outcomes for all.

Circadian rhythms, crucial for mammalian well-
being, are intricately tied to environmental cues like 
light and food. Disruptions to these rhythms, often 
due to altered light environments, have been associ-
ated with various health issues, including metabolic 
instability and diseases like obesity, diabetes, cardio-
vascular conditions, cancer, and other pathologies. 
Understanding and addressing these disruptions play 
a vital role in promoting comprehensive well-being 
across species within the One Health framework.

Recent scientific advances in circadian medicine, 
involving innovative approaches like TRE, chronother-
apy, and circadian lighting, have shown promise for 
human health. However, there is a notable gap in 
exploring these advancements for animals. By adopting 
a One Health perspective, collaborative efforts can drive 
the development of novel therapies benefiting not only 
humans, but also non-human animal health. This holis-
tic approach emphasizes collective efforts to tackle 
shared health challenges, transcending conventional 
boundaries and leading to a healthier future for all.
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