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ABSTRACT
Computerised decision support (CDS) tools enabled by 
artificial intelligence (AI) seek to enhance accuracy and 
efficiency of clinician decision-making at the point of care. 
Statistical models developed using machine learning (ML) 
underpin most current tools. However, despite thousands 
of models and hundreds of regulator-approved tools 
internationally, large-scale uptake into routine clinical 
practice has proved elusive. While underdeveloped system 
readiness and investment in AI/ML within Australia and 
perhaps other countries are impediments, clinician 
ambivalence towards adopting these tools at scale could 
be a major inhibitor. We propose a set of principles and 
several strategic enablers for obtaining broad clinician 
acceptance of AI/ML-enabled CDS tools.

STANDFIRST
New artificial intelligence (AI)-enabled tech-
nologies for augmenting clinical decision-
making are proliferating but clinicians will 
only use them if convinced of their worth. Dr 
Ian Scott and colleagues outline 10 principles 
and 5 enabling system strategies that could 
promote wider adoption by clinicians.

 

AI-enabled computerised decision support 
(CDS) tools seek to augment the accuracy 
and efficiency of clinician decision-making 
at the point of care. Currently, conventional, 
task-specific models developed using super-
vised machine learning (ML) underpin most 
current clinician-facing AI-enabled CDS tools. 
These are dominated by diagnostic imaging 
and risk prediction tools.1 However, large 
language models (LLMs) and generative AI, 
such as ChatGPT, are poised to revolutionise 
care given their ability to converse with clini-
cians and perform multiple tasks, ranging 
from clinical documentation to multidomain 
decision support. However, despite hundreds 
of regulator-approved ML tools internation-
ally,2 large-scale uptake into routine clinical 
practice has proved elusive.3 While many 
non-clinical factors may partly account for 
this adoption gap,4 ambivalence of frontline 
clinicians towards using AI tools may also 

contribute, principally due to a lack of under-
standing of and trust in, AI applications.5 6 
We propose a set of principles and strategic 
enablers for achieving broad clinician accep-
tance of AI tools embedded within electronic 
medical records (EMRs). As no LLM has yet 
received regulator approval in clinical care, 
our focus is on approved conventional ML 
tools, although we would contend all the prin-
ciples discussed will pertain equally to LLMs. 
This work builds on previous experience with 
digitally-enabled rule-based CDS systems7 and 
is informed by recent research into AI imple-
mentation barriers and enablers.3 8 9 There 
was no patient or public involvement in 
writing this article as our focus was clinician-
facing tools.

PRINCIPLES FOR PROMOTING ADOPTION
The tool must address a pressing clinical need
Tools must enhance decision-making for 
commonly encountered scenarios where 
current clinical judgement is suboptimal, 
such as early detection of sepsis10 or timely 
diagnosis of stroke.11 Use of AI tools by clini-
cians in such instances can improve patient 
care,12 13 and these tools do not have to be 
perfectly accurate. A modestly accurate tool 
substantially better than current clinical 
judgement will be favoured over a highly 
accurate tool no better than current judge-
ment.14 AI tools must also perform better 
than current well-accepted, high-performing 
but simpler decision rules.15 Tool developers, 
collaborating with clinicians, must first deeply 
understand the clinical task and the data sets 
being targeted and why, their amenability to 
AI, current clinical decisional performance, 
clinician end-user needs and the primary 
goal(s) to be achieved.16 These goals should 
ideally be expressed as measurable targets in 
improved clinical processes and outcomes, 
patient and professional experience, 
economic and efficiency gains or greater 
equity and sustainability in care delivery.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-7596-0837
http://orcid.org/0000-0002-8426-5588
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjhci-2023-100971&domain=pdf&date_stamp=2024-05-30


2 Scott IA, et al. BMJ Health Care Inform 2024;31:e100971. doi:10.1136/bmjhci-2023-100971

Open access�

The tool must demonstrate clinically meaningful 
improvements in care
Clinicians need to know if deployed AI tools will improve 
patient care and outcomes to an extent they and their 
patients would regard as clinically relevant, irrespective 
of the statistical significance of reported results. Whether 
an effect is clinically important depends on the nature of 
the condition, the effect, and the context such as patient 
population and clinical setting. Minimally important 
absolute effects may range from a 5% decrease in 
deaths17 to as high as a 40% decrease in pain.18 Prospec-
tive impact studies of clinically deployed tools are few 
and incomplete. In one review, only one-third of 51 
studies examined patient outcomes, with mixed results (8 
positive effects, 6 no change).1 In a more recent review 
of 32 studies, only 8 (25%), 10 (31%) and 12 (38%) 
assessed effects on decision-making, care delivery and 
patient outcomes, respectively, in all cases reporting 
mixed results.19 Randomised trials are even fewer, mostly 
involving imaging tools and limited by high variability in 
adherence to current reporting standards, risk of bias, 
under-representation of minority groups, small samples 
and single site designs.20 Other studies contain meth-
odological flaws that bias against clinician judgement 
(box  1).21 22 Training data must be representative of 
populations to which the tool will be applied and models 
must undergo rigorous external validation. Impact effects 
in absolute terms are also often small, with a review of 122 
trials of CDS tools showing the proportions of patients 
receiving recommended care increasing by an average of 
only 5.8 percentage points.23

The tool is, and remains, accurate and safe for the chosen 
task
Tools may generate inaccurate and unsafe advice if their 
models have been trained on inadequate or unrepresen-
tative (biased) data,24 used in an inappropriate clinical 

setting or context, misinterpret minor data set shifts that 
clinicians know to ignore or account for (ie, changes in 
patient, clinical practice or equipment characteristics), or 
which under-sense (too few alerts resulting in harm) or 
over-sense (too many causing alert fatigue) (box 2). Data 
required to operate the tool must be accurate, represen-
tative and readily accessible when needed and models 
must be resilient to class imbalance (ie, outcomes being 
predicted are infrequent) and label leakage (ie, using 
image background or other artefacts to make predictions 
rather than clinically relevant features).

For all these reasons, rigorous external validation of 
acceptable model performance when used in different 
populations by different clinicians25 is paramount, 
together with an ability to retrain models on local data 
if performance is found to be suboptimal. Importantly, 
clinicians want to know when and for whom a tool should, 
and should not, be used (ie, clear, transparent task spec-
ification). Ideally, information should be forthcoming 
about how the model was trained, who was included in 
the data set, what its performance is like, who funded its 
development and what assumptions or conditions should 
be satisfied for its use.26 Tool developers should share 
model code and input features to allow other researchers 

Box 1  Shortcomings in comparative studies of artificial 
intelligence versus clinician21 22

A systematic review of 82 studies compared the diagnostic accuracy of 
deep learning tools versus clinicians in classifying diseases using med-
ical images.21 Most studies had several limitations that biased against 
clinicians:21 22

	⇒ Model accuracy was assessed in isolation in ways that do not reflect 
clinical practice.

	⇒ Very few studies reported comparisons with clinicians using the 
same test data set.

	⇒ Clinicians were rarely provided with additional clinical information, 
as they would have been in usual clinical practice.

	⇒ Diagnostic criteria for disease were often poorly defined.
	⇒ Performance metrics varied greatly across studies, and many were 
under-reported.

	⇒ External validation was not done for both the tool and the clinician.
	⇒ Very few prospective studies performed using live data in real-world 
clinical environments.

	⇒ No randomised trials.

Box 2  Calibrating artificial intelligence tools in optimising 
clinical utility

A failure to recognise clinical deterioration in the hospital due to sepsis 
or other potentially life-threatening conditions is a leading cause of in-
hospital death and unplanned transfers to intensive care units. Early 
warning systems (EWS) can predict a patient’s risk of clinical deterio-
ration, and potentially allow clinicians to intervene earlier. Current EWS 
comprise simple prediction rules to estimate risk based on a combina-
tion of a small number of input variables, usually fewer than 10, such as 
vital signs. The rules only offer a narrow time window, usually less than 
12 hours, to trigger an alert prior to overt deterioration that activates a 
medical emergency team response. The rules are also prone to false-
positive alerts which induce alert fatigue. An EWS that uses machine 
learning could make more accurate and timely predictions given its 
ability to input hundreds of variables.
The ideal prediction tool should miss very few cases of clinical dete-
rioration (high sensitivity) and not overcall cases with no deterioration 
(high specificity). Clinicians may decide the tool should aim for no more 
than two false alerts for every true positive alert in order to balance the 
time required to assess alert patients with other competing demands. 
The data scientists would then set the threshold for categorising pa-
tients as high risk at a positive predictive value of around 30%. At this 
threshold, based on historical data, the sensitivity may be only 50%, 
but clinicians may decide this would be a useful proportion of cases to 
detect. Clinicians may find the tool more useful if it can predict events 
within the following 48 hours. A shorter window would not leave enough 
time to intervene, and a longer window would make it difficult for clini-
cians to know how to respond.
In adjusting sensitivity thresholds and striking the right balance be-
tween clinician workload and patient safety, input from clinician users 
is required. Such adjustments will also vary according to the criticality 
of the event being predicted, for example, pressure sores versus septic 
shock.
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to reproduce and reconfirm model performance using 
different data sets from different settings.

The tool outputs must be comprehensible and actionable, but 
not necessarily fully explainable in how they were derived
Tools should produce user-friendly visualisations of 
outputs that are readily understood and clinically action-
able, especially for more inexperienced clinicians. 
Evidence suggests clinicians desire graphical or numer-
ical displays of probabilities or alert thresholds for a diag-
nosis or event, confidence scores for these outputs and 
links to relevant, consistent recommendations for tests 
or treatments.27 However, decisional discretion must 
remain based on clinician/patient preferences and clini-
cian judgement about possible model bias or clinical and 
situational factors unknown to the model. In comparing 
simpler and more explainable models with complex but 
more accurate ones, clinicians will likely trade-off model 
explainability for greater accuracy, as full explainability 
is, in many instances, neither possible28 nor necessary 

for both clinician29 30 and patient acceptance31 (box 3). 
Greater explainability may be warranted for high-stakes, 
nuanced decision-making such as choosing the right anti-
biotic in a septic, immunosuppressed patient or deter-
mining organ donor and recipient matches.

The tool must align with clinical workflows
Tools must be easy to use with intuitive human-computer 
interfaces that standardise output visualisation, blend 
seamlessly into clinical workflows, avoid creating work-
arounds and alert fatigue, customise the alert sensitivity 
to local populations and prevent cognitive overload 
and over-reliance on automated decisions. The require-
ments for integration may vary according to whether 
tools are assistive (ie, offering predictions for clinicians 
to consider) or more autonomous (explicit determina-
tions directly influencing clinical actions). Involving clini-
cian end-users is critical in providing current operational 
context, pre-empting training and support needs and 
raising awareness of how incorrect tool use by clinicians, 
such as inputting data errors, misinterpreting informa-
tion displays or clicking wrong options, can incur patient 
harm.32 All these human factors relevant to AI tool use 
have to date been underemphasised33 34 (box 4).

The tool must operate within a governance and regulatory 
framework
Clinicians will want an organisational governance frame-
work that guarantees all the previously stated principles 
are met at inception, and continue to be met over the 
life cycle of the tool.35 Such a framework will determine 
when adoption should proceed or be revoked if the 
model proves valueless, is not implementable, does not 
operate across sites, fails in prospective evaluations or 
leads to potentially unsafe over-reliance. Clinicians will 
also demand a regulatory framework that determines, 
under software as a medical device legislation, when 
liability for errors and resultant patient harm from tool 

Box 3  Limitations of attempts to render artificial 
intelligence (AI) models and tools fully explainable28–31

	⇒ There is a lack of agreement on the different levels of explainability, 
no clear guidance on how to choose among different explainability 
methods and an absence of standardised methods for evaluating 
explainability.28

	⇒ The value to clinicians of any explanation will vary according to the 
specific model and its task (or use case) and the expertise (ie, level 
of AI or domain knowledge), preferences for accuracy relative to ex-
plainability and other contextual values of the clinician user.29

	⇒ The more complex the model, especially deep learning models, the 
less explainable it becomes and hence expecting clinicians (and 
patients) to master the technical and statistical intricacies of most 
models is unrealistic.

	⇒ Explainability methods commonly used to identify model input fea-
tures strongly influencing its predictions,* while useful in making 
input–output relationships clearer, are imperfect post hoc approxi-
mations of model functions rather than precise explanations of the 
inner workings of the model.

	⇒ Explainability methods may present plausible but misleading expla-
nations, do not ensure the model has considered all relevant fea-
tures,30 and may hamper human ability to detect model mistakes, 
resulting in decreased vigilance and auditing of AI tools and over-
reliance on their outputs.29 30

	⇒ Clinician experts will question the clinical plausibility of implied 
causal relationships involving predictive input features identified 
by explainability methods, will assess how well tool outputs align 
with observable clinical features and prioritise established knowl-
edge and experience over finding novel but potentially spurious 
associations.30

	⇒ Citizen jurors, when faced with two healthcare scenarios in one UK 
study, favoured accuracy over explainability of AI tools because of 
the potential for harm from inaccurate predictions and the poten-
tial of accurate tools to increase the efficiency of, and access to, 
services.31

*These methods comprise Locally Interpretable Model-agnostic Explanations 
(LIME), SHapley Additive exPlanations (SHAP) and heat or saliency maps.

Box 4  Human factor principles applicable to artificial 
intelligence/tools33 34

Any tool must:
	⇒ Sit and operate seamlessly within existing digital platforms such as 
an electronic medical record already familiar to users and be readily 
accessible.

	⇒ Be automated and not incur unacceptable delays in providing nec-
essary advice for time-sensitive decision-making and operate at the 
right time in the clinical trajectory.

	⇒ Have a standardised visualisation and delivery of outputs that is 
minimally interruptive.

	⇒ Require no or very little manual data entry by clinicians.
	⇒ Minimise clerical tasks and added work generated by its use (eg, 
extra clicks, menu navigation, more documentation).

	⇒ Be able to operate on mobile devices where required.
	⇒ Reflect a ‘human-centred’ design approach that adapts to user 
needs rather than a ‘technology-centred’ approach that expects us-
ers to adapt to the technology.
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use lies primarily with them and their personal indemnity 
insurer (eg, negligent, reckless or ‘off-label’ use), or their 
employing organisation, or tool developers and vendors.36 
Liability may extend to ‘failure to use’ if using a specific 
AI tool becomes a practice standard for certain clinical 
scenarios. Such frameworks remain works in progress in 
most jurisdictions, trying to balance regulation with inno-
vation and aligning it with evolving clinical governance 
procedures. More autonomous tools or those directly 
impacting critical clinical decisions will require greater 
regulatory oversight and higher levels of safety evidence 
for approval.37 Ongoing monitoring of tool performance, 
tool auditing processes38 and in-built self-improvement 
feedback loops will be needed in ensuring tool resilience 
to data set shifts, noise and cyberattacks.39

The tool must not compromise the clinician-patient 
relationship
Using AI tools, especially LLMs, to produce evidence 
syntheses, clinical letters and discharge summaries may 
free up cognitive time and space for clinicians to engage 
more in empathetic, person-centred shared decision-
making (SDM). However, more information is needed 
about the true impacts of AI tools on clinician-patient 
interactions in different contexts,40 tool designs that best 
support each step of SDM,41 how to obtain patient consent 
to AI being used to assist SDM and the circumstances in 
which care is not compromised if patients may not want 
to know, or are able to comprehend, model predictions.

The tool must not promote overdiagnosis and overtreatment
Tools used in screening programmes may promote overdi-
agnosis of benign or indolent disease by the inclusion of 
a loose disease definition in the model, overdetection 
of minor abnormalities or misinterpretation of normal 
physiological variation as pathological due to contin-
uous monitoring of multiple variables over prolonged 
time periods. For example, increased AI detection of 
non-progressive ductal carcinoma in situ on screening 
mammograms42 may incite overtreatment which carries 
ethical and economic implications. Clinical studies are 
needed that assess outcome impacts according to different 
definitions of disease and patient risk, and which should 
prompt greater collaborative efforts at rendering disease 
definitions more explicit. Over time, models need to 
become more capable of differentiating between benign 
variations and true disease.

The tool must promote health equity
AI tools must alleviate, not exacerbate, health dispari-
ties. Model bias is often disproportionately distributed to 
underserved populations with poorer health, reinforcing 
the need for representative training data. The tools and 
required digital infrastructure must be accessible to such 
populations, as well as treatments and interventions for 
treating identified diseases or risks. Such equity require-
ments go beyond the tool itself to the capacity and respon-
siveness of the healthcare system more broadly.

The tool must not incur excessive opportunity cost or 
environmental impacts
Developing, testing and deploying tools cost money: data 
scientists for gathering and pre-processing input data; 
clinicians for labelling data sets; information and commu-
nication technology (ICT) staff for converting models 
into software-embedded tools and training staff. Added 
to this are ongoing life-cycle costs of maintaining the tool 
and hardware and redressing the effects of tool-induced 
errors. Carbon emissions from training and deploying 
AI models must also be weighed against the potential for 
models to reduce emissions through improved process 
efficiency and changing models of care.43 The few 
economic evaluations of AI tools are of limited quality,44 
mostly cost minimisation analyses of specific cost elements 
within single-use cases over short time horizons and with 
no emissions quantification. For clinicians, a key consid-
eration is estimating, for the outcome being predicted, 
the number of patients the tool flags as being positive, 
thereby incurring costs of preventive or therapeutic 
interventions, versus the number of true-positives.45 This 
equation and the estimated costs will vary according to 
what clinicians perceive as the most clinically appropriate 
sensitivity and specificity thresholds or cut-off points for 
the tool which, using simulation methods, determine the 
net monetary benefit.46

Strategic enablers for greater adoption
Several cross-cutting strategic enablers may facilitate the 
enactment of these 10 principles.
1.	 Enhance AI literacy of clinicians: Clinicians need to 

have an understanding of the basic concepts of AI/ML 
tool design and evaluation in gauging its appropriate 
use.47 This requires the provision of educational re-
sources,48 sets of AI competencies49 and interdisciplin-
ary training programmes involving AI specialists and 
clinicians. When a tool is deployed, there must be ad-
equate training, technical support and onboarding of 
new clinician users.50 Healthcare institutions will need 
to provide the time, money and personnel required for 
such activities.

2.	 Establish interdisciplinary AI teams: At the local organ-
isational level, clinicians must partner with data and 
computer scientists, ICT personnel, vendor represen-
tatives and consumers in forming multistakeholder 
co-design groups tasked to select, develop, test, deploy 
and monitor AI tools most relevant to addressing lo-
cally prioritised needs.51 Such collaboration must also 
be extended to regulators in formulating workable 
regulatory frameworks, all of which promote clinician 
receptivity to AI.

3.	 Streamline and harmonise data access and sharing 
procedures: Collaborative, multistakeholder efforts 
are needed to build and curate large repositories of di-
verse, accurate, multimodal data from EMRs and other 
sources necessary for training high-performing mod-
els acceptable to clinicians and applicable to different 
populations and clinical settings. Siloing of data and 
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cumbersome data access approval processes involving 
multiple data custodians must be replaced by efficient, 
standardised processes for accessing and sharing data 
from EMR and other sources which is rendered in-
teroperable using data exchange standards (eg, Health 
Level Seven Fast Healthcare Interoperability Resource 
and Observational Medical Outcomes Partnership).52 
Concurrently, data privacy and security must be safe-
guarded under umbrella instruments such as the Gen-
eral Data Protection Regulation.

4.	 Establish platforms for integrating and testing tools 
within EMRs: A testing infrastructure is needed where-
by prototype AI tools can be integrated into current 
EMRs, using application programming interfaces, and 
their performance compared with standard care in 
‘silent trials’ or ‘shadow mode’ conducted within live-
data clinical environments. These activities and subse-
quent clinical trials should be conducted with clinician 
oversight, prior to full roll-out.53 This approach avoids 
delays in undertaking full-platform EMR reconfigura-
tions to facilitate such testing, while allowing clinician-
informed customisation in prototype design and func-
tionality. It also facilitates trialability of the tool in that, 
even without a deep understanding of AI, clinicians 
can build trust through experience in using it, seek 
expert endorsement and validation and help design a 
tool that accommodates their autonomy and expertise, 
while providing a ‘second pair of eyes’ and supporting 
them across their entire workflow, not just for a one-off 
task.54

5.	 Invest in and use implementation science targeting AI 
tools: Research into successful translation of AI tools 
into clinical practice is nascent with few examples of 
applied implementation science.55 There is a critical 
need for metrics and methods to measure success 
and identify areas for improvement. Only recently 
have step-by-step implementation frameworks been 
developed and validated which clearly delineate the 
different phases, both clinical and technical, of tool 
development and deployment and the decision points, 
enablers and barriers at each phase.8 9 Such frame-
works sit under overarching system issues related to 
organisational readiness for AI and the broader ethi-
cal, legal and policy environment in which AI tools will 
operate.

CONCLUSION
The current adoption gap for the ever-increasing 
number of AI-enabled CDS tools will persist if clini-
cians remain unconvinced of their utility in clin-
ical decision-making. While not intended to be an 
exhaustive list, the principles and enablers enunci-
ated here may help guide actions all stakeholders 
will need to take in closing the gap and which align 
with modern concepts of ethically responsible use 
of AI.
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