Table 4.
ML Platform | Model Type | Dataset Characteristics |
Discriminative Model Test Performance |
|||||||
---|---|---|---|---|---|---|---|---|---|---|
Dataset # | n | Outcome Ratio | F2 Score | AUROC | Accuracy (%) | PPV | Sensitivity | Specificity | ||
MATLAB Classification Learner App | Linear Superior Vector Machine (SVM) | Dataset 1 | 483 | 2:1 | 0.01 | 0.53 | 68.3 | 1.00 | 0.01 | 1.00 |
Dataset 1 prime | 1449 | 2:1 | 0.02 | 0.60 | 68.5 | 0.67 | 0.01 | 1.00 | ||
Dataset 2 | 660 | 1:1 | 0.60 | 0.66 | 61.4 | 0.62 | 0.59 | 0.63 | ||
Dataset 3 | 1313 | 1:1 | 0.58 | 0.64 | 60.9 | 0.61 | 0.58 | 0.64 | ||
Ensemble Random Undersampling Boosting (RUSBoosted) | Dataset 1 | 483 | 2:1 | 0.52 | 0.56 | 52.6 | 0.35 | 0.59 | 0.50 | |
Dataset 1 prime | 1449 | 2:1 | 0.60 | 0.67 | 60.3 | 0.42 | 0.67 | 0.57 | ||
Dataset 2 | 660 | 1:1 | 0.72 | 0.65 | 62.4 | 0.60 | 0.76 | 0.48 | ||
Dataset 3 | 1313 | 1:1 | 0.62 | 0.66 | 61.2 | 0.61 | 0.62 | 0.61 | ||
Python | Support Vector Classification (SVC) | Dataset 1 | 483 | 2:1 | 0.71 | 0.61 | 59.6 | 0.76 | 0.57 | 0.43 |
Dataset 1 prime | 1449 | 2:1 | 0.71 | 0.61 | 59.6 | 0.76 | 0.57 | 0.43 | ||
Dataset 2 | 660 | 1:1 | 0.61 | 0.62 | 61.5 | 0.64 | 0.54 | 0.60 | ||
Dataset 3 | 1313 | 1:1 | 0.66 | 0.66 | 66.3 | 0.66 | 0.68 | 0.66 |
AUROC = area under the receiver operating characteristic curve; ML = machine learning; PPV = positive predictive value.
This table does not include validation results for the Google AutoML models as the software generates an output for performance metrics for the test phase only.