Skip to main content
. 2024 Jan 19;4(5):100470. doi: 10.1016/j.xops.2024.100470

Table 4.

Performance Metrics of the Automated Machine Learning Compared to Custom Models on the Validation Phase

ML Platform Model Type Dataset Characteristics
Discriminative Model Test Performance
Dataset # n Outcome Ratio F2 Score AUROC Accuracy (%) PPV Sensitivity Specificity
MATLAB Classification Learner App Linear Superior Vector Machine (SVM) Dataset 1 483 2:1 0.01 0.53 68.3 1.00 0.01 1.00
Dataset 1 prime 1449 2:1 0.02 0.60 68.5 0.67 0.01 1.00
Dataset 2 660 1:1 0.60 0.66 61.4 0.62 0.59 0.63
Dataset 3 1313 1:1 0.58 0.64 60.9 0.61 0.58 0.64
Ensemble Random Undersampling Boosting (RUSBoosted) Dataset 1 483 2:1 0.52 0.56 52.6 0.35 0.59 0.50
Dataset 1 prime 1449 2:1 0.60 0.67 60.3 0.42 0.67 0.57
Dataset 2 660 1:1 0.72 0.65 62.4 0.60 0.76 0.48
Dataset 3 1313 1:1 0.62 0.66 61.2 0.61 0.62 0.61
Python Support Vector Classification (SVC) Dataset 1 483 2:1 0.71 0.61 59.6 0.76 0.57 0.43
Dataset 1 prime 1449 2:1 0.71 0.61 59.6 0.76 0.57 0.43
Dataset 2 660 1:1 0.61 0.62 61.5 0.64 0.54 0.60
Dataset 3 1313 1:1 0.66 0.66 66.3 0.66 0.68 0.66

AUROC = area under the receiver operating characteristic curve; ML = machine learning; PPV = positive predictive value.

This table does not include validation results for the Google AutoML models as the software generates an output for performance metrics for the test phase only.