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Abstract

Venom is known as the source of natural antimicrobial products. Previous studies have largely focused on the expression of venom-
related genes and the biochemical components of venom. With the advent of metagenomic sequencing, many more microorganisms,
especially viruses, have been identified in highly diverse environments. Herein, we investigated the RNA virome in the venom-related
microenvironment through analysis of a large volume of venom-related RNA-sequencing data mined from public databases. From
this, we identified viral sequences belonging to thirty-six different viruses, of which twenty-two were classified as ‘novel’ as they
exhibited less than 90 per cent amino acid identity to known viruses in the RNA-dependent RNA polymerase. Most of these novel viruses
possessed genome structures similar to their closest relatives, with specific alterations in some cases. Phylogenetic analyses revealed
that these viruses belonged to at least twenty-two viral families or unclassified groups, some of which were highly divergent from
known taxa. Although further analysis failed to find venom-specific viruses, some viruses seemingly had much higher abundance in the
venom-related microenvironment than in other tissues. In sum, our study provides insights into the RNA virome of the venom-related

microenvironment from diverse animal phyla.
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1. Introduction

Venom is a known source of natural antimicrobial products (da
Mata et al. 2017). It is generally held that venom and venom-
producing tissues are largely sterile environments (Ul-Hasan et al.
2019), and previous studies have largely focused on the biochem-
ical components of venoms and the gene expression of venom-
producing tissues (Robinson et al. 2017). However, recent studies
have revealed that there may be hidden diverse microbial com-
munities in the microenvironment of venom or venom-producing
tissues, such as the venom gland and venom duct (Ul-Hasan et al.
2019; Esmaeilishirazifard et al. 2022). These microorganisms can
coexist with the host and even play roles in host reproduction (Zhu
et al. 2018). As venom can be used as a defensive weapon in ani-
mals, its biochemical components can poison other animals and
the microorganisms present in venom may be injected into other
animals to cause infection or modulate the host immune reaction
(Monteiro et al. 2002; Coffman and Burke 2020).

Metagenomic (DNA) and metatranscriptomic (RNA) sequenc-
ing approaches have facilitated the identification of novel and

existing microorganisms. In recent years, thousands of novel
viruses have been identified in this manner (Shi et al. 2016, 2018;
He et al. 2022), with many more to be discovered (Carroll et al.
2018). Viruses are the most abundant biological entities on earth
(Paez-Espino et al. 2016), although the vast majority have still to be
described (Geoghegan and Holmes 2017; Zhang, Shi, and Holmes
2018).

To date, high-throughput sequencing of venom-producing tis-
sues has resulted in the discovery of many novel venom peptides
and accumulation of a large volume of transcriptomic sequenc-
ing data (Robinson et al. 2017). However, little is known about
the viruses in the venom-related microenvironment (including
venom and venom-producing tissues) of animals. Herein, we
used these publicly available transcriptome sequencing data to
explore the RNA virome in the venom-related microenvironment
of diverse animals, representing those in the phyla Chordata,
Mollusca, Arthropoda, Annelida, and Cnidaria. In doing so, we
identified thirty-six different RNA viruses in thirty-three of the
474 venom-related transcriptome datasets, some of which were
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phylogenetically distant from known viruses. In addition, we char-
acterized the genomic and phylogenetic features of these viruses
and explored their abundance among venom-related tissues and
non-venom tissues.

2. Materials and methods
2.1 Dataset retrieving and processing

RNA-sequencing (Seq) data from the venom-related microenvi-
ronment of animals was retrieved and downloaded from the
National Center for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) database with the keywords ‘venom’ and ‘RNA-
seq’. The final data set contained 474 paired-end SRA files from
the venom-related microenvironment of 151 species spanning the
phyla Chordata, Arthropoda, Mollusca, Annelida, and Cnidaria
(Figure S1 and Table S1), with a total of 2,702.87 Gb.

2.2 Sequence assembly and virus discovery

For each RNA-seq dataset, sequencing reads were first adapter
trimmed and filtered using Fastp v0.19 (Chen et al. 2018), with
the ribosomal RNA reads then removed. The remaining reads
were de novo assembled with Trinity v2.5.1 (Grabherr et al. 2011)
using default parameters. The assembled contigs were searched
against the non-redundant nucleotide (nt) and non-redundant
protein (nr) databases from NCBI using Basic Local Alignment
Search Tool (BLAST) related toolkits, including BLASTn (Camacho
et al. 2009) and Diamond BLASTx (Li et al. 2021), respectively. Viral
contigs were identified, and by comparing the virus contigs with
the known closest references, viral contigs with near complete
genomes were subjected to further analyses.

2.3 Virus genome annotation

Open reading frames (ORFs) within the virus contigs were pre-
dicted using the ‘Find ORFs’ function of Geneious v2021.0.1. The
closest virus references for each virus contig were downloaded
from NCBI. Conserved domains (CD) of the virus contigs and their
closest relatives were identified using CD search against the NCBI
CD Database.

2.4 Phylogenetic analysis

To infer the evolutionary relationships of the newly identified
viruses, the closest relatives and representative viral protein
sequences of associated genera were retrieved by BLASTX by
comparing the new viral contigs against the nr database (NCBI).
Sequences of the relatively well-conserved RNA-dependent RNA
polymerase (RARp) were selected for phylogenetic analysis. Mul-
tiple sequence alignment was performed using MAFFT v7.407
(Katoh and Standley 2013) employing the L-INS-I algorithm, with
ambiguously aligned regions removed using TrimAl v1.4 (Capella-
Gutiérrez, Silla-Martinez, and Gabaldén 2009). Phylogenetic trees
were inferred using the maximum likelihood method imple-
mented in IQ-TREE v2.2.0 (Minh et al. 2020) with 1,000 bootstrap
replicates, and ModelFinder (Kalyaanamoorthy et al. 2017) was
used to find the best-fit substitution model in each dataset.

2.5 Abundance calculation of RNA viruses

Based on the data with ribosomal RNA reads removed, the abun-
dance of the newly found RNA viruses was calculated as Reads
Per Million (RPM) using the formula, ‘Viral reads/Total non-rRNA
reads x one million’. Bowtie2 v.2.4.2 (Langmead and Salzberg 2012)
was used to align reads to the virus genomes. SAMtools v1.10 (H.
Li et al. 2009) was used to output the number of matched reads
from the Bowtie2 SAM result.

3. Results
3.1 Overview of the venom-related RNA-seq data

The RNA-seq data of the venom and venom-related tissues
(including venom gland, venom duct, and venom bulb) were
retrieved and downloaded from the NCBI SRA database. Only
paired-end sequencing data were analysed. The final dataset
finally comprised 474 SRA files from 151 species spanning the
phyla Chordata (eighty-four species, 353 SRA files), Arthropoda
(thirty-nine species, seventy-three SRA files), Mollusca (twenty-
five species, forty-four SRA files), Annelida (one species, two
SRA files), and Cnidaria (two species, two SRA files), with
total sequencing bases of 2,702.87 Gb (Fig. S1 and Table S1).
Further analysis showed that the phylum Chordata mainly
included samples from Colubroidea, the phylum Arthropoda
mainly included samples from Araneae, Scorpiones, Scolopen-
dromorpha, Diptera, and Hymenoptera, while the phylum Mol-
lusca contained samples from Conidae and Turridae (Fig. S1). A
total of 160 SRA files had information on collection locations,
involving at least nineteen countries or regions (Fig. S2). The
samples were mainly collected from North America (n=68), Asia
(47), and South America (21), and the three countries with the
most samples were the USA (n=60), Brazil (n=20), and China
(n=16).

3.2 Diverse RNA viruses in the venom-related
microenvironment

Sequencing reads were de novo assembled into contigs, which
were further analysed by BLAST against the NCBI nr/nt databases.
A total of forty-five virus strains with complete or partial
genome sequences containing at least the RdRp region were
recovered from thirty-three RNA-seq data sets. These forty-
five virus strains likely represented thirty-six different viruses
(Fig. 1 and Table 1), including twenty-eight negative-sense
single-stranded (-ssRNA), thirteen positive-sense single-stranded
(+ssRNA), and four double-stranded RNA (dsRNA) viruses (Table
S3). BLAST analysis revealed that approximately half of virus
contigs were divergent from the known viruses: twenty-two
viruses shared less than 90 per cent amino acid identity in RdRp
with the most closely related viruses, including sixteen that
exhibited <70per cent amino acid identity to known viruses
(Table 1).

The virus with the highest abundance (RPM) was Pteromalus
puparum dicistrovirus (Dicistroviridae), found in the venom gland
of the arthropod Pteromalus puparum (RPM=59,818.7), followed
by Pelteobagrus fulvidraco oncotshavirus-1 strain VG (Toban-
viridae) from the chordate Tachysurus fulvidraco (RPM =16,523.3),
and Tetragnatha versicolor phenuivirus (Phenuiviridae) from the
arthropod Tetragnatha versicolor (RPM=11,612.0) (Table S3). The
abundance of different viruses in the venom-related microen-
vironment also varied sharply across hosts. For example, the
abundance of Crotalus cerastes sunvirus and Crotalus chuvirus
was different within the same host or among different hosts
(Table S3). Although this is likely due to limited data, it may
also reflect the infection status and tissue tropism of the
viruses.

The viruses identified here came from twenty-six venom-
producing animals, involving the phyla Arthropoda (n=12), Chor-
data (n=11), and Mollusca (n=3). Viruses in the venom-related
microenvironment of Arthropoda species were the most common
(n=24), including eleven +ssRNA, nine —ssRNA viruses, and four
dsRNA viruses (Fig. 1). These viruses were identified in fourteen
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Figure 1. Viral species identified in the venom-related microenvironment from diverse animals. The number of viral species identified in the
venom-related microenvironment is summarized according to the respective host organism. The size of the points indicates the number of viral
species. The host genus Crotalus marked with a star includes the species Crotalus cerastes, Crotalus durissus terrificus, Crotalus molossus, Crotalus morulus,
Crotalus polystictus, and Crotalus totonacus. The colours of the horizontal bars and animal icons represent host groups; brown, pink, and grey indicate
Arthropoda, Chordata, and Mollusca, respectively. The aquamarine, royal blue, and light green of the vertical bars represent negative-sense
single-stranded, positive-sense single-stranded, and double-stranded RNA viruses, respectively.

Arthropoda RNA-seq datasets, with a detection rate of 19.18 per
cent (14/73). Viruses in the venom-related microenvironment of
Chordata (n=18) largely comprised —ssRNA viruses (n=16), with
only two +ssRNA viruses. Viruses were present in sixteen RNA-seq
datasets from Chordata species, with a detection rate of 4.53 per
cent (16/353). Three —ssRNA viruses were identified in the venom-
related microenvironment of Mollusca, with a detection rate of
6.82 per cent (3/44). As the detection rates documented here are
based on the available datasets with potential sampling biases, the
true prevalence of these viruses in nature is unclear and requires
additional investigation.

3.3 Genome organization of the venom-related
RNA viruses

Most of the viruses found in the venom-related microenvironment
were similar to their closest relatives in terms of genome struc-
ture (Figs. 2 and S3). There were, however, some clear structural
variations. Seven Crotalus chuvirus sequences were recovered, with
RdRp identities to their closest relative (Guangdong red-banded
snake chuvirus-like virus) ranging from 71.86 per cent to 74.20 per
cent. ORF prediction showed that these chuviruses had simi-
lar genome structures to known viruses, although three strains
identified in Crotalus polystictus might possess an additional ORF
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Figure 2. Genome structures of the novel RNA viruses found in the venom-related microenvironment. Genome structures of representative novel RNA
viruses (<90 per cent amino acid identity in RARp with known viruses) are displayed with boxes and coloured blocks. The black boxes represent
predicted ORFs, while the coloured blocks indicate predicted functional domains, including viral polymerase (RdRp), glycoprotein (Gly), nucleoprotein
(NP), viral methyltransferase (Met), and coat protein (CP), as the legend in bottom right. The host groups of the viruses are also labelled with icons.

(Fig. S4). The genome sequences of segmented viruses were dif-
ficult to recover from sequencing data alone, and the genomes
identified were different from those from known viruses. For
example, three genome segments were identified for Micrurus are-
navirus (Arenaviridae), which were annotated as RdRp, glycoprotein
precursor, and nucleoprotein (Fig. 2). However, the closest viruses
had only two segments: one with RdRp and a zinc-binding matrix
protein and another with a glycoprotein precursor and a nucle-
oprotein (Fig. S3). Similarly, Tetragnatha versicolor phenuivirus
(Phenuiviridae) was identified with three segments (L, M, and S
segments). Although the Tetragnatha versicolor phenuivirus S
segment contained one predicted ORF (Fig. 2), while the closest
viruses have two ORFs, as the S segment obtained here was only
partial, it is possible that the additional ORF existed but was not
sequenced (Fig. S3).

3.4 Phylogenetic relationships of the
venom-related RNA viruses

Phylogenetic analysis of the forty-five RNA viruses identi-
fied from the venom-related microenvironment revealed that
they fell within a wide range of taxonomic groups, includ-
ing at least twenty-two viral families or unclassified groups
(Table 1 and Figs 3-5). The -ssRNA viruses were classified
into eleven viral families: Rhabdoviridae, Artoviridae, Filoviridae,
Xinmoviridae, Sunviridae, Myriaviridae, Chuviridae, Bornaviridae,
Orthomyxoviridae, Arenaviridae, and Phenuiviridae (Fig. 3). Thir-
teen +ssRNA viruses clustered into at least eight viral families
and unclassified groups (Fig. 4), while four dsRNA viruses fell
into three families: Spinareoviridae, Partitiviridae, and Totiviridae
(Fig. 5).
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Figure 3. Phylogenetic trees of negative-sense single-stranded RNA viruses. Maximum likelihood phylogenetic trees were estimated using RdRp
sequences. The virus names in red were found from venom gland in this study, with their hosts also labelled. The red circles represent viruses sharing
<90 per cent amino acid identity with the most closely related viruses.
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Figure 4. Phylogenetic trees of positive-sense single-stranded RNA viruses. Maximum likelihood phylogenetic trees were estimated using RdRp
sequences. The virus names in red were found from venom gland in this study, with their hosts also labelled. The red circles represent viruses sharing

<90 per cent amino acid identity with the most closely related viruses.

3.4.1 Negative-sense single-stranded viruses

Nine -ssRNA viruses were discovered in arthropods, sixteen
were discovered in Chordata, and three were found in Mollusca.
Phylogenetic analyses revealed that the viruses from the fami-
lies Artoviridae, Filoviridae, Sunviridae, Chuviridae, and Bornaviridae
fell within known genera. The others, however, may represent
new taxa (Fig. 3). Two rhabdoviruses (Crassispira cerithina rhab-
dovirus and Conus episcopatus rhabdovirus) were identified from
the venom duct of Mollusca (Gastropoda), which fell basal to
lyssaviruses in the Rhabdoviridae phylogeny (Fig. 3A). There are
few reports of rhabdoviruses in molluscs, with only two rhab-
doviruses recently discovered in freshwater mussels (Mollusca:

Bivalvia) (Goldberg et al. 2023). Two strains of Microplitis media-
tor mononega-like virus were recovered from the venom gland of
Microplitis mediator, belonging to the family Xinmoviridae, but were
divergent from any established genera (Fig. 3D). Five orthomyx-
oviruses were found in the venom-related microenvironment,
although some were divergent to known genera within the family
Orthomyxoviridae (Fig. 3H).

3.4.2 Positive-sense single-stranded viruses

Eleven +ssRNA viruses were discovered in venom glands of arthro-
pod animals, with the other two found in Chordata. Most +ssRNA
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Figure 5. Phylogenetic trees of double-stranded RNA viruses. Maximum likelihood phylogenetic trees were estimated using RdRp sequences. The virus
names in red were found from venom gland in this study, with their hosts also labelled. The red circles represent viruses sharing <90 per cent amino

acid identity with the most closely related viruses.

viruses fell within known genera, although some required fur-
ther classification (Fig. 4). For instance, Apis picorna-like virus 4
strain SKS was also found in the venom gland of Apis cerana col-
lected from South Korea, exhibiting 96.04 per cent amino acid
identity to Apis picorna-like virus 4 in RdRp. Phylogenetic analy-
sis showed that Apis picorna-like virus 4 strain SKS fell into the
family Solinviviridae, although none genus has yet been assigned
(Fig. 4B). In addition, three viruses had no known assigned taxon-
omy: Phoneutria nigriventer picorna-like virus (Fig. 4C), Solenop-
sisinvicta virus 17 strain Ptepi (Fig. 4F), and Tetragnatha versicolor
virus (Fig. 4G).

3.4.3 Double-stranded viruses

Four dsRNA viruses were identified from the venom-related
microenvironment, belonging to the families Spinareoviridae, Par-
titiviridae, and Totiviridae (Fig. 5). Hemiscolopendra marginata
reovirus shared 27.66per cent amino acid identity with Shelly
headland virus in the RdRp. Phylogenetic analysis showed that
the virus clustered with the viruses of the genera Mycoreovirus
and Coltivirus (Fig. SA). Microplitis mediator partiti-like virus and
Phoneutria nigriventer partiti-like virus shared 64.11 per cent and
34.21per cent amino acid identity with known viruses (RdRp).
Phylogenetic analysis showed that the two viruses were grouped
with partiti-like viruses found in arthropods, but were divergent
to known genera (Fig. 5B). Phoneutria nigriventer toti-like virus
exhibited 53.24 per cent amino acid identity in the RdRp region
with known viruses, and phylogenetic analysis revealed that the

Phoneutria nigriventer toti-like virus clustered with Hubei toti-like
virus 16, both of which may belong to an additional genus in the
family Totiviridae (Fig. 5C).

A number of observations can be made for the viruses newly
identified here as a whole. First, Tetragnatha versicolor virus,
together with Hubei tetragnatha maxillosa virus 7, might rep-
resent a previously unclassified virus family (Fig. 4G). Second,
it is notable that many newly reported viruses were divergent
to classified genera, such as Crassispira cerithina rhabdovirus
and Conus episcopatus rhabdovirus (Fig. 3A), Tapajos virus (Horie
2021) (Fig. 3C), Microplitis mediator mononega-like virus (Fig. 3D),
Conus consors orthomyxo-like virus (Fig. 3H), Tetragnatha ver-
sicolor phenuivirus (Fig. 3I), Solenopsis invicta virus 17 strain
Ptepi (Fig. 4F), Hemiscolopendra marginata reovirus (Fig. SA),
Phoneutria nigriventer partiti-like virus and Microplitis media-
tor partiti-like virus (Fig. 5B), and Phoneutria nigriventer toti-like
virus (Fig. 5C), indicative of substantial untapped genetic diversity.
Finally, prior to this study, the families Sunviridae and Myriaviridae
only had one member each. Herein, we report new members from
the two families, thereby enriching their genetic diversity.

3.5 Are the newly identified RNA viruses
venom-specific?

To assess whether the newly identified RNA viruses were venom-
specific, we retrieved the RNA-seq data of other tissues available
under the same SRA BioProjects. This comprised forty-three SRA
files from different tissues of eight host species (Table S2). The RNA
viruses identified from the venom-related microenvironment were
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Figure 6. Comparison of the abundance of the RNA viruses from the venom-related microenvironment and other tissues. The SRA files of other tissues
were retrieved from the same Bioproject as the venom data. The abundance of the RNA viruses from different tissues was calculated as RPM based on
the non-rRNA reads. For visualization and comparison, the RPM values were normalized with log. (A) Only one RNA virus was identified from each
host. (B) Multiple RNA viruses were identified from one host. * Female body carcasses without venom apparatus, ™ Whole body without abdomen.

then screened in the other tissues (Fig. 6). Eleven viruses identi-
fied from the venom-related microenvironment (Conus consors
orthomyxo-like virus, Conus episcopatus rhabdovirus, Pteroma-
lus puparum dicistrovirus, Tetramorium bicarinatum iflavirus,
Solenopsis invicta virus 17, Nasonia vitripennis virus strain VG,
Israeli acute paralysis virus, Sacbrood virus, Apis picorna-like
virus 4, Microplitis mediator mononega-like virus, and Micropli-
tis mediator partiti-like virus) were also detected in other tis-
sues, with abundance ranging from 1.1 to 279,236.7, indicating
that these viruses might not be venom-specific (Fig. 6). However,
some viruses had clearly higher abundance in the venom-related

—

microenvironment. For example, Conus episcopatus rhabdovirus
was enriched in the venom duct (RPM = 19.0), compared with those
in radular sac (RPM =1.2) and salivary gland (RPM =2.4) (Fig. 6A).
Similarly, Tetramorium bicarinatum iflavirus was enriched in the
venom gland (RPM=213.2), while the whole body without the
abdomen had a low abundance (RPM = 1.1) of this virus (Fig. 6A).
In addition, multiple viruses were identified in individual host
species, although with variable abundance among tissues (Fig. 6B).
Three viruses were identified from the venom glands of Apis cer-
ana—Israeli acute paralysis virus (Dicistroviridae), Sacbrood virus
(Iflaviridae), and Apis picorna-like virus 4 (Solinviviridae). Sacbrood



virus was also detected in high abundance in larvae, while Israeli
acute paralysis virus and Apis picorna-like virus 4 were absent.
In addition, Apis picorna-like virus 4 was not detected in the
brain and hypopharyngeal gland. Two viruses were found in the
venom glands of Microplitis mediator, including Microplitis medi-
ator mononega-like virus (Xinmoviridae) and Microplitis mediator
partiti-like virus (Partitiviridae). Besides the venom gland, these two
viruses were also found in the carcass, ovary, and whole body,
although they were at the lowest abundance in the venom gland.
It should be noted, however, that this heterogeneity might also
reflect the pooling strategies employed in the sequencing projects,
with each pool including multiple samples of the same host.

4, Discussion

There have been few studies on microorganisms in the venom-
related microenvironment (Ul-Hasan et al. 2019), with little atten-
tion paid to virome diversity. We explored the RNA virome in the
venom-related microenvironment using 474 public RNA sequenc-
ing datasets. From this, we identified forty-five viruses represent-
ing thirty-six viral species belonging to at least twenty-two viral
families or groups. These viruses were identified from twenty-
six venom-producing animals, representing the phyla Arthropoda,
Chordata, and Mollusca, which were collected from at least seven
countries. The diverse host and wide geographic range indicate
that RNA viruses are commonly present in the venom-related
microenvironment. Considering the limited sample size anal-
ysed here, we speculate that there are many more viruses to be
discovered in the venom-related microenvironment.

Some of the newly described viruses might represent novel
viral species and even genera. In particular, twenty-two viruses
exhibited <90per cent RdRp amino acid identity to their most
closely related viruses, representing potentially novel viruses.
Among these, sixteen viruses had <70 per cent of known viruses in
RdRp, indicative of even more divergent taxa. For example, Cras-
sispira cerithina rhabdovirus and Conus episcopatus rhabdovirus
shared low identity with known viruses and formed a separated
branch, representing a potential new genus.

The number of viral species in the venom-related microenvi-
ronment varied sharply across different animals. Arthropods har-
boured most viruses, involving thirteen viral families or groups,
followed by chordates. In addition, viruses described in the fam-
ilies Dicitroviridae, Iflaviridae, and Partitiviridae were only identified
from arthropods, while those from Sunviridae, Chuviridae, and
Bornaviridae were mostly found in chordates.

It is notable that the abundance of the same virus species
in the venom-related microenvironment of different hosts varied
sharply and that most of the viruses described here had not previ-
ously been described in the venom-related microenvironment. For
example, Crotalus cerastes sunvirus was found in venom gland
samples of two Crotalus cerastes individuals, but their abundance
varied approximately five-fold, from 287.1 to 1431.4. Furthermore,
viruses found in the venom-related microenvironment were also
detected in other tissues, but showed different abundance levels.
For example, Conus episcopatus rhabdovirus was found in high
abundance in the venom duct, but it was in much less abundance
in the radular sac and salivary gland. Clearly, further investiga-
tion is required to understand the potential heterogeneous tissue
tropism of these viruses.

In conclusion, we explored the diversity of RNA viruses in the
venom-related microenvironment, identifying twenty-two novel
viruses and fourteen known viruses. As such, our study sheds
light on the hidden diversity of RNA viruses in the venom-related
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microenvironment, although we may have only documented the
tip of the iceberg of virus diversity in this specific microenviron-
ment.
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