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Abstract
The lymphatic system plays a vital role in maintaining fluid balance in living tissue and serves as a pathway for the transport of antigen, 
immune cells, and metastatic cancer cells. In this study, we investigate how the movement of cells through a contracting lymphatic 
vessel differs from steady flow, using a lattice Boltzmann-based computational model. Our model consists of cells carried by flow in a 
2D vessel with regularly spaced, bi-leaflet valves that ensure net downstream flow as the vessel walls contract autonomously in 
response to calcium and nitric oxide levels regulated by stretch and shear stress levels. The orientation of the vessel with respect to 
gravity, which may oppose or assist fluid flow, significantly modulates cellular motion due to its effect on the contraction dynamics of 
the vessel, even when the cells themselves are neutrally buoyant. Additionally, our model shows that cells are carried along with the 
flow, but when the vessel is actively contracting, they move faster than the average fluid velocity. We also find that the fluid forces 
cause significant deformation of the compliant cells, especially in the vicinity of the valves. Our study highlights the importance of 
considering the complex, transient flows near the valves in understanding cellular motion in lymphatic vessels.
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Significance Statement

The transit of cells through the lymphatic system is an important process in immune responses. Advection of cells in the lymph fluid is 
conceptually different than that in the blood circulation because of the lack of erythrocytes, the contraction-driven flow, and the intra
luminal valves. In this study, we develop a mathematical model to better understand the dynamics of cell transport through the lymph
atic system. The simulations show that when vessel contractions drive flow, the average cell velocity can exceed the velocity of the 
surrounding fluid due to complex fluid dynamics near the valves. By simulating deformable leukocytes, we show that the cell undergoes 
significant deformation during vessel contractions and when transiting the valves—a result relevant to immune cell mechanobiology.

Introduction
The lymphatic system is responsible for fluid homeostasis and 
transport of cells critical to the immune system. It is also a route 
for cancer cell metastasis. When cells transit blood microvessels, 
they are exposed to relatively constant shear stress levels. In the 
lymphatic system, vessel contractions create large temporal and 
spatial variations in intralumenal shear stress, with peak levels 
∼20× the average shear stress (1). In addition, there is significant 
retrograde flow due to downstream contractions, as upstream 
valves are closing. Cells traversing the lymphatic system, there
fore, experience large inhomogeneous shear stress forces that 
can mechanically deform the cells and nucleus and influence 
transit times (2).

Lymph transport and fluid homeostasis are affected by gravita
tional forces and limb orientation, and a common therapy for per
ipheral edema is limb elevation so that gravity can assist the 

drainage. However, there are still outstanding questions concern
ing how lymphatic function and cell transport are affected by dif
ferent body forces (3–8). In previous work, we have analyzed 
leukocyte dynamics in blood flow (9). We have also investigated 
how the dynamics of nitric oxide (NO; produced by shear stress 
on lymphatic endothelial cells) and intracellular calcium fluxes 
in lymphatic muscle cells can establish feedback that controls 
lymphatic contractions in response to gravitational forces (i.e. 
limb position) (10–14). In this study, we use a lattice Boltzmann 
computational model to investigate how lymphatic vessel con
tractions drive cell transport.

Model summary
Details of the model have been described elsewhere (11, 14) and 
are included in the Supplementary Material. In summary, the 
model domain includes a lymphatic vessel system, which consists 
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of an initial lymphatic vessel segment that receives fluid from the 
surrounding tissue (Fig. 1A, circled “1”). This is connected to several 
collecting lymphangions arranged in series (Fig. 1A, circled “2”) and 
one outlet lymphangion (Fig. 1A, circled “3”). Each lymphangion is 
bounded by two valves, and the vessel is situated in a porous tissue 
space where pressure gradients can cause fluid movement. The 
outer boundary of the model domain, represented by a gray line, 
marks the interface with the surrounding tissue and is modeled 
as an equilibrium distribution function.

Fluid dynamics are simulated by the D2Q9 lattice Boltzmann 
method (LBM) (17), and the fluid exchanges momentum with solid 
elements of the domain, including the vessel wall, valves, cells, 
and the porous media of the tissue. The fluid moves into the do
main from the surrounding tissue across the boundary, as shown 
in Fig. 1B; the tissue is modeled as a porous medium. Fluid can 
then enter the initial lymphatic capillary through apertures, 
which represent primary valves.

The initial lymphatic capillary in our model contains perme
able gaps that allow fluid to enter the vessel. These gaps, which 
make up 50% of the vessel wall, permit fluid to flow freely into 
the vessel. However, if the pressure gradient favors backflow 
into the tissue, 15% of the fluid passes back to the tissue, while 
85% is reflected. This retrograde flow is necessary to allow closure 
of the first intraluminal valve during a contraction. At the vessel 
outlet, we impose a pressure boundary condition (18).

The initial lymphatic segment connects to the collecting 
lymphatic vessel—consisting of a series of lymphangions sepa
rated by explicit mechanical valves. The vessel wall in this region 
is flexible and is anchored to the surrounding tissue with visco
elastic springs oriented perpendicular to the vessel wall (11). 
Fluid pressure gradients across the wall induce movement of 
the vessel wall locally, implemented by transferring momentum 
between the fluid and wall nodes (Fig. 1C) (11, 16). The bi-leaflet 
valves are modeled as viscoelastic solid structures anchored at 
the vessel wall (Fig. 1D) (11). The opening and closing of the valves 
are passive, entirely controlled by forces imparted by the flowing 
fluid. In the absence of fluid flow, the valves are biased in the open 
position, consistent with experimental observations (19).

The cell is modeled as a flexible membrane that encloses fluid 
with the same density as the surrounding fluid. The cell membrane 
has bending and stretching elasticity, including elasticity anchored 
to the center of the cell. The cell membrane is divided into 20 seg
ments, and elastic energy variation is used to calculate the elastic 
forces stored in the cell membrane (Fig. 1E). By calculating the elas
tic energy stored in each membrane “spring” and summing this over 
the entire membrane, we get an overall cell elastic energy, which 
provides a measure of the deviation of the cell shape from baseline 
(circular). This metric does not presume any specific deformation 
geometry. The cell is initially placed 0.0008 cm above the centerline 
of flow at the entrance to the vessel.

Lymphatic muscle contractions are implemented using a sim
plified scheme for calcium dynamics in the muscle cells (Fig. 1F) 
(10). Ca++ is restricted to the vessel wall but can diffuse laterally 
(simulating gap junction transport). It is produced at a baseline 
level and degrades with first-order kinetics. Additional terms ac
count for calcium-induced Ca++ channels and for the rapid accu
mulation of Ca++ in response to increased vessel diameter (to 
simulate stretch-activated ion channels; see Supplementary 
Material for model details). Contractions are initiated when the 
Ca++ level exceeds a threshold, and the resulting contraction force 
is proportional to the Ca++ level. Ca++ is depleted from the cyto
plasm according to a recharge rate. As the wall moves, it transfers 
energy to move the fluid.

The Ca++ dynamics described above are known to be modu
lated by NO production (10, 20), which is affected by fluid shear 
stress exerted on the endothelial structures (vessel wall and 
valves). In the model, the NO production rate is proportional to 
the shear stress at the vessel wall (10, 20), and it degrades expo
nentially with a half-life of 0.31 s. NO diffuses and convects freely 
in the domain, and increases the degradation rate of Ca++.

To examine the range of behaviors of lymphatic transport that 
would be expected in vivo, we also consider the effects of gravity, 
which have a significant influence on contraction dynamics. To 
simulate gravity, a body force is applied to the fluid, either assisting 
or opposing the flow. Note that no model parameters are changed 
when simulating the different gravitational forces (Table S1). The 
observed changes in contractions naturally emerge due to the me
chanobiological mechanisms that drive NO and Ca++ dynamics. 
To initiate the simulations, we start with a high Ca++ concentration 
(just below the threshold level for contraction) at every vessel node. 
This is sufficient to induce rhythmic contractions, except in cases 
with high adverse gravity. In these cases, an additional perturbation 
in the form of a transiently increased Ca++ force constant is needed 
(Fig. S1). Additional details of the mathematical model are included 
in the Supplemental Material.

Results
Effects of gravity and NO production on cell 
transport
The model cell is introduced within the initial lymphangion at t = 0. 
Because adverse gravitational forces influence lymphatic contrac
tions, we simulate cases with various levels of opposing gravity. 
Figure 2 shows the position of the cell over time. When moving 
against 3g, the cell periodically reverses direction as it advects 
because the flow is occasionally retrograde. This occurs when 
the cell has passed a valve, and a vessel wall contraction occurs 
in the same lymphangion. When this happens, the cell can also 
collide with the upstream valve as it closes, causing the cell to 
pause, thus interrupting its retrograde motion. Adverse gravita
tional forces also result in elevated transwall pressure, which lim
its the contraction amplitude. Consequently, cell transit is slower 
with higher gravity because of the opposing pressure gradient and 
the backflow that occurs before the valves close.

There are reports that leukocytes can produce NO as they trav
el in the bloodstream (21, 22). To test whether this would affect 
lymphatic contraction dynamics and cell velocities in lymphatic 
vessels, we simulated a cell producing NO. We assume that NO 
production is sensitive to the average fluid shear stress at the 
cell surface. We see that the cell moves slightly faster if it is able 
to produce NO (see the inset panel, Fig. 2). This is likely due to a 
delay in contraction caused by the additional cell-produced NO. 
However, the difference in average speed is small and likely of lit
tle practical consequence in relatively large diameter vessels.

To further investigate the factors that affect cell motion, we 
next analyzed the NO and pressure distributions as a contraction 
approaches the cell (Fig. 3). The concentration of NO decreases 
with increased gravity because of the larger vessel diameter and 
slower flow caused by the gravity-induced pressure; this de
creases wall shear stress as well as the resulting NO production. 
Consistent with experiments (23), the concentration of NO is al
ways higher near the valves and varies during the contraction 
cycle. As the vessel is contracting, the NO concentration increases 
near any flanking valve that is open (upstream or downstream). 
The valve opening sequence along the chain generally follows 
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the direction of flow—from upstream to downstream. When the 
vessel is relaxing and the fluid is being pulled in (Fig. 3, top), 
the NO concentration near the upstream valve is higher than 
the downstream valve. Note that fluid pressure in the tissue out
side the vessel decreases transiently as the adjacent vessel con
tracts (Fig. 3, bottom).

Cell deformation in flow
We next investigated the effects of cell compliance by allowing a 
nominally circular cell to deform dynamically in response to the 
local flow field (9). Cell shapes and trajectories are shown as time- 
resolved snapshots along the length of the vessel in Fig. 4. The lar
ger spaces between snapshots indicate higher velocities, and cells 
that are moving backward are shown in blue. Fluid forces im
parted to the cell cause it to deform, and we can calculate the 

energy stored in these interactions by determining how the cell 
changes shape. Specifically, we calculate the deviation of each 
elastic component from its rest position; this yields a transient po
tential strain energy, Ec

p, which results from the deformation (see 
Supplemental Material for details of implementation). When the 
vessel is relaxing, Ec

p is approximately 0, indicating that the cell 
is close to its rest configuration (black line, Fig. 4). When the cell 
is passing a valve, Ec

p can spike, indicating significant cell deform
ation (see Fig. 4, “0G” and “0G, no cell NO production” downstream 
of the third valve and Fig. 4, “1G” downstream of the sixth valve). 
This is due to acceleration of the fluid in this region and the in
creased shear stresses.

Deformations also arise during retrograde motion. When a con
traction occurs downstream of the cell, the upstream valve closes, 
and the cell is flattened because the contraction creates a back
ward jet of flow between the closing valve leaflets that briefly de
celerates the cell (Fig. 4; see Videos S3–S6). These transient 
deformations as the cell transits the lymphatic system may 
have implications for the activation of mechanosensitive path
ways in the cell. Simulations of cells with different membrane ri
gidity show that cells with higher deformability undergo more 
pronounced shape changes, as expected (Videos S7–S9).

We can also examine how Ec
p is affected by vessel contractions 

by plotting local NO and Ca++ concentrations in the reference 
frame of the cell as it transits the vessel (Fig. 5). We again see 
cell deformation as the cell passes through valves (Fig. 5, shaded 
boxes). Spikes in Ec

p also occur when the calcium concentration 
reaches its peak value near the cell (Fig. 5, red trace), indicating 
that the initiation of a wall contraction at the cell location is re
sponsible for the deformation. The largest deformations occur 
when a contraction occurs near the cell as it passes a valve. The 
short duration of these large deformations indicates that the 
cell experiences large fluid forces only briefly, and the cell is other
wise exposed to low shear stress. Comparing Fig. 5 cases for 0g and 
0g, no NO for t ≈ 0.86 s and t > 1.6 s shows that cells generating NO 
are protected somewhat from large deformations as the local ves
sel walls contract less forcefully. This also promotes faster cell 
movement through the valves (see Videos S1–S6).
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Cell and fluid velocities
We next compared the cell velocity with that of the fluid (Fig. 6A). 
Because of the periodic contractions and the intraluminal valves, 
fluid dynamics and velocities are constantly changing, and there
fore, we measured the average cell velocity as the distance traveled 
divided by the total transit time. For the fluid, we calculated the aver
age centerline and bulk fluid velocities at the exit. When negative 
gravity assists flow (left side regime, Fig. 6A), the cell moves at rough
ly the same speed as the centerline of the flow. Note that for steady 
laminar flow between stationary parallel walls, the ratio of center
line velocity to average velocity is 3:2. In our system, the cell velocity 
approximates this 3:2 ratio when gravity assists the flow, likely due 
to the suppression of contractions by increased NO production. 
Indeed, the vessel never contracts when gravity is −2g and only oc
casionally contracts at −1g. The intermittent nature of the contrac
tions at −1g also contributes to the larger variation in speeds.

On the other hand, when gravity opposes flow (positive gravity), 
the vessel spontaneously contracts to drive flow. In this regime, 
the average cell velocity is up to three times faster than the 

calculated average fluid velocity at the exit—and even faster 
than the centerline velocity. This result is due to the decreased 
average diameter of the vessel due to the contractions (which in
creases cell and fluid centerline velocities during transit) and the 
fact that the vessel diameter at the exit is fixed at the larger, base
line diameter. Thus, the “effective” vessel diameter for cell transit 
is affected by the vessel contractions as well as the constrictions 
formed by the valves. This is most easily visualized by the flow 
streamlines, which show the converging regions of acceleration 
as well as the zones of recirculation near the valves (Fig. 6B). 
Nevertheless, this analysis shows that the cell transits the vessel 
efficiently during—and in the absence of—contractions.

Discussion
The lymphatic system is a complex, self-regulated system that 
drains fluid, cells, and proteins from tissues. Cells move through 
the lymphatic system as they transit from tissues to lymph nodes 
and back to the systemic blood circulation. This process is 
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critically important for immune function and also has implica
tions for metastatic dissemination of cancer cells. However, trans
port in lymphatics—where cell density is sparse, and periodic 
vessel contractions drive the flow—differs from that in the blood 
system, where cell densities are high, and there is negligible retro
grade flow. Here, we used a mathematical model that includes 
computational fluid dynamics, accurate mechanobiological ves
sel dynamics, and fluid–cell interactions to investigate lymphatic 
transport of cells.

Consistent with previous work (14), our simulations show 
that gravitational forces affect the dynamics of lymphatic 

contractions. When gravity assists flow, vessel contractions are 
less frequent or absent, as gravity-driven flow creates vessel 
wall shear stress that increases NO production; this, in turn, re
laxes the lymphatic muscle cells, inhibiting contractions. In con
trast, when flow opposes gravity, contractions drive flow 
through valves, which maintain an averaged positive flow. 
During these contractions, there is some retrograde flow that in
fluences cell transport (24). Cell transport is affected by these dy
namics, and we see that, in general, cell velocities are higher with 
assisting or 0g and lower when flow is against the direction of 
gravity. These results suggest that in addition to alleviating 
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edema, therapeutic limb elevation can enhance the transport of 
immune cells.

We also tested the hypothesis that cell-produced NO might in
fluence the vessel dynamics, and consequently, cell transport 
speeds. In these simulations, the cells produce NO proportional 
to shear stress at the cell surface (25), and this NO can diffuse 
and convect in the fluid phase to reach the vessel wall. The results 
predict that cell-produced NO has a very small effect on vessel 
contractions, which causes a correspondingly small increase in 
cell velocity. Further investigations are needed to see whether 
this small effect is of any cumulative consequence as the cell 
moves through the entire lymphatic system.

A major difference in fluid dynamics between the blood and 
lymphatic systems is the frequent oscillations that occur during 
lymphatic pumping. Although large arteries in the blood system 
can have pulsatile flow, oscillations and retrograde flow are 

generally not observed. In the lymphatic system, the oscillations 
can have a large effect on the forces felt by transiting cells. Our 
simulations show that as flow reverses in the vicinity of a cell, 
there is an observable deformation of the cell membrane. Cell de
formation is also exacerbated during transit through valves, 
where there is flow acceleration due to the partial constriction im
posed by the valve leaflets. These cell deformations, which are 
quickly induced, but decay with a half-life of ∼0.2 s (Fig. 5), may 
have important implications for cell mechanobiology, as many 
stress-related pathways can be induced by mechanical forces.

When comparing cell velocities with those of the fluid, we con
firmed that cell velocity is roughly the same as fluid velocity in the 
absence of vessel pumping. When the vessel is contracting, the 
cells still move faster than the fluid, on average. This result can 
be explained by the decreased effective diameter of the vessel 
through which the cell moves, caused by the contractions and 
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the valves. Thus, the ratio of cell to fluid velocity is higher than ex
pected for a noncontracting vessel with a constant baseline 
diameter.

Conclusion
Our simulations show that gravitational forces and contraction- 
induced retrograde flow can affect cell transport velocities and 
deformation. These effects can, in turn, influence a number of 
physiological processes, including immune system efficacy and 
cancer cell dissemination. Future experimental studies may pro
vide more information about cell mechanobiology in lymphatic 
flow and the transport of immune cell populations at a larger scale 
through the lymphatic system.
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