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Abstract

Fairness is crucial in machine learning to prevent bias based on sensitive attributes in classifier predictions. However,
the pursuit of strict fairness often sacrifices accuracy, particularly when significant prevalence disparities exist among
groups, making classifiers less practical. For example, Alzheimer’s disease (AD) is more prevalent in women than
men, making equal treatment inequitable for females. Accounting for prevalence ratios among groups is essential for
fair decision-making. In this paper, we introduce prior knowledge for fairness, which incorporates prevalence ratio
information into the fairness constraint within the Empirical Risk Minimization (ERM) framework. We develop the
Prior-knowledge-guided Fair ERM (PFERM) framework, aiming to minimize expected risk within a specified function
class while adhering to a prior-knowledge-guided fairness constraint. This approach strikes a flexible balance between
accuracy and fairness. Empirical results confirm its effectiveness in preserving fairness without compromising accuracy.

Introduction

Fairness is a critical concern in machine learning (ML), particularly in high-impact domains such as healthcare, finance,
and criminal justice [1, 2, 3]. In these fields, ML models often make decisions with significant consequences for
individuals’ lives, necessitating fairness to prevent discrimination against specific groups. While there is no universal
definition of fairness in ML, two common criteria are frequently used: Demographic Parity and Equalized Odds.
Demographic Parity [4, 5, 6] requires that a model’s predicted scores be independent of an individual’s protected
attribute, such as race or gender. This means that the model should not make different predictions for people with the
same characteristics but different races or genders. On the other hand, Equalized Odds [2, 3] demands that the model’s
positive predictive value (PPV) be consistent across all groups, ensuring unbiased predictions for all races or genders.
Both criteria are crucial, but their suitability depends on the specific context. For instance, if one group is more likely to
be positive than another, Demographic Parity may not be the best choice, making Equalized Odds more appropriate.
The choice of fairness criterion should be carefully considered based on the application and relevant fairness concerns.

However, different groups often have varying prevalence ratios (positive rates), and enforcing strict fairness can
significantly harm accuracy [7]. For example, research has shown that Alzheimer’s disease (AD) is more prevalent in
women than in men. In the age group 65-69 years, 0.7% of women and 0.6% of men have the disease, with increasing
frequencies of 14.2% and 8.8% in individuals aged 85-89 years [8]. It would be fairer for each individual if females had
a higher chance of treatment. Specifically, when the disease status is unknown for both females and males, we hope the
classifier assigns a higher positive rate to females instead of providing the same predictive score. This way, females
have a better chance of getting treated based on classification results.

The question at hand is: How many additional predictive scores should we allocate to females? This decision can be
guided by the prevalence ratio among different groups. For instance, if the prevalence ratio indicates that females have a
2% chance of having AD, while males have a 1% chance, it means that females are twice as likely to have AD as males.
It is imperative that we incorporate this information, which we refer to as prior knowledge, into the fairness constraint.

In this paper, we incorporate this prior knowledge into the fairness constraint for Empirical Risk Minimization (ERM).
We empirically demonstrate that as the gap in the prevalence ratio between two groups widens, a typical ERM framework
with a fairness constraint like FERM [5] severely sacrifices accuracy. To address this issue, we define the ratio of
the positive rate of one group to the other as the prior knowledge π. We develop a Prior-knowledge-guided Fair
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ERM (PFERM) framework that aims to minimize expected risk within a prescribed function class while adhering to
a prior-knowledge-guided fairness constraint. Due to the non-convex nature of the PFERM constraint, we propose a
surrogate convex PFERM problem, related to the original goal of minimizing misclassification error under a relaxed
fairness constraint. As a specific example within this framework, we explain how kernel methods such as support
vector machines (SVMs) can be enhanced to satisfy the prior-knowledge-guided fairness constraint. We observe that a
specific instance of the fairness constraint, when ϵ = 0, reduces to an orthogonality constraint. To enhance flexibility,
we introduce a trade-off parameter λ to fine-tune the incorporation of prior knowledge into the fairness constraint.
Extensive empirical results on synthetic and real data validate the effectiveness of our proposed method.

Figure 1: Accuracy (ACC) versus π for
FERM [5] on synthetic data. Here, π repre-
sents the ratio of the positive rate between
one group and another group as defined
in Eq. (2). Larger values of π result in a
significant decrease in accuracy.

Our contributions can be summarized as follows:

• Empirical Evidence of Prevalence Ratio Impact: Our empirical
analysis vividly illustrates the profound impact of widening prevalence
ratios between two protected groups on the performance of the FERM [5]
framework. We systematically examine how increasing disparity between
these ratios, denoted as π, correlates with a substantial degradation in
accuracy, highlighting the real-world implications of this phenomenon.
See Figure 1 for an illustration.

• Prior-knowledge-guided Fair ERM: To address the challenges posed
by varying prevalence ratios, we introduce the Prior-knowledge-guided
Fair ERM (PFERM) framework. Within this new framework, we develop
a concrete algorithm tailored for SVMs that effectively incorporates prior
knowledge to guide fairness constraints. This enhancement allows for a
more nuanced and adaptive approach to fairness-aware classification.

• Empirical Validation Across Diverse Data Sources: We have per-
formed a comprehensive evaluation of the PFERM method using a diverse
set of datasets, encompassing ten synthetic datasets, four benchmark
datasets, and three AD datasets. The empirical results not only confirm the
effectiveness of our approach in preserving fairness without compromising accuracy but also underscore its robustness
and applicability across various settings.

Preliminary

Notations

For any integer n ≥ 1, let [n] := {1, . . . , n}. We denote the data by D = {(x1, s1, y1), . . . , (xn, sn, yn)}, which
consists of n samples drawn independently from an unknown probability distribution µ over X × S × Y . Here,
Y = {−1,+1} represents the set of binary output labels, S = {a, b} indicates group membership among two groups
(e.g., a for “female” and b for “male”), and X is the input space. It is worth noting that x ∈ X can either include
or exclude the sensitive attribute s ∈ S. We also denote the data from group g as Dg = {(xi, si, yi) : si = g} for
g ∈ {a, b} and ng = |Dg|, where | · | denote the cardinality of the set. Similarly, data from both group g and the positive
class are denoted as Dg,+ = {(xi, si, yi) : si = g, yi = 1}, and ng,+ = |Dg,+|.

Consider a model f : X → R chosen from a set of possible models F . The error (risk) of distribution f in approximating
µ is measured using a predefined loss function ℓ : R × Y → R. The risk of f is defined as L(f) = E[ℓ(f(x, y))].
The primary objective of a learning process is to discover a model that minimizes this risk. Typically, we employ the
empirical risk L̂(f) = Ê[ℓ(f(x, y))] as a surrogate for the true risk since the real risk cannot be computed due to the
unknown probability distribution µ. This approach is commonly referred to as ERM.

As previously mentioned, the literature offers various definitions of model fairness [1, 2, 3], yet consensus on the
most suitable definition remains elusive. In this paper, we explore a comprehensive fairness concept that incorporates
previous definitions, as outlined below.
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Definition 1 [5] Let L+,g(f)=E[ℓ(f(x), y)|y=1, s=g] represent the risk of positive labeled samples in the g-th group,
and let ϵ ∈ [0, 1]. We define a function f as ϵ-fair if |L+,a(f)− L+,b(f)| ≤ ϵ.

This definition signifies that a model is fair when it demonstrates roughly equal error rates on the positive class,
irrespective of group membership. In simpler terms, the conditional risk L+,g remains relatively consistent across both
groups.

Fairness Definitions

The literature presents a range of fairness definitions [1, 2, 3], yet achieving a consensus on the most suitable definition
remains a challenge [6]. In this paper, we focus primarily on two widely adopted notions: Demographic Parity [4] and
Equalized Odds [2].

Demographic Parity (DP): This condition posits that the model’s predicted score should be independent of group
membership, and it can be formally expressed as:

P {f(x) > 0|s = a} = P {f(x) > 0|s = b} . (DP)

Demographic Parity, in essence, focuses on ensuring that different groups receive similar treatment, irrespective of their
attributes. While it provides a straightforward and intuitive notion of fairness, it may not always be the most suitable
choice, especially when there are substantial disparities in the prevalence of outcomes among groups. In addition, we
derive the difference of DP (DDP) as a fairness measurement

|P {f(x) > 0|s = a} − P {f(x) > 0|s = b}| . (DDP)

Equalized Odds (EO): This condition asserts that the model’s output should be uncorrelated with group membership,
conditioned on the label being positive. In other words, it stipulates that the true positive rate should be the same across
all groups, and it can be mathematically formulated as follows:

P {f(x) > 0|y = 1, s = a} = P {f(x) > 0|y = 1, s = b} . (EO)

Equalized Odds goes a step further by ensuring that not only are groups treated equally in terms of predicted outcomes,
but also in terms of predictive accuracy. It aims to eliminate disparities in false positives and false negatives among
different groups. However, achieving Equalized Odds can be challenging, especially when the prevalence of positive
cases varies significantly between groups. The difference of EO (DEO) is derived as

|P {f(x) > 0|y = 1, s = a} − P {f(x) > 0|y = 1, s = b}| . (DEO)

Fair Empirical Risk Minimization

Fair Risk Minimization (FRM) [5] endeavors to minimize risk while adhering to a fairness constraint. Specifically,
FRM formulates the problem as follows:

min L(f) : f ∈ F subj. to |La,+(f)− Lb,+(f)| ≤ ϵ, and ϵ ∈ [0, 1]. (1)

Here, ϵ ∈ [0, 1] represents the acceptable level of unfairness and La,+(f), Lb,+(f) are defined in Definition 1.

However, since the groundtruth distribution µ is typically unknown, deterministic risks are replaced with their empirical
counterparts called Fair ERM (FERM). Thus, Problem (1) becomes:

min L̂(f) : f ∈ F subj. to
∣∣∣L̂a,+(f)− L̂b,+(f)

∣∣∣ ≤ ϵ̂, and ϵ̂ ∈ [0, 1]. (FERM)

FERM aims to make the risk of different groups with respect to the positive class equal or closely related. However,
when L̂a,+ and L̂b,+ differ significantly, enforcing strict fairness can harm the overall performance. To address this
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issue, we incorporate the ratio of the prevalence (proportion of positive samples) between two groups, known as prior
knowledge, into the fairness constraint. However, when considering this prior knowledge, we no longer consider the
condition on the positive class. For instance, even if females have a higher risk of developing AD than males in ADNI
data, the sensitivity (true positive rate) can be the same for both genders. Given an equal number of males and females
with AD, we expect our fair classifier to correctly classify the same number of females and males, resulting in an
equivalent true positive rate for both genders. On the other hand, when dealing with individuals whose disease status is
not revealed, we hope the classifier predicts a higher positive rate for females, providing them with more opportunities
for treatment. This higher positive rate can be guided by the ratio of prevalence between the two groups. We denote this
prior knowledge as π, calculated as follows:

π =
na,+/na

nb,+/nb
. (2)

With this prior knowledge, our PFERM (Prior-knowledge-guided FERM) can be formulated as follows:

min L̂(f) : f ∈ F subj. to
∣∣∣L̂a(f)− π × L̂b(f)

∣∣∣ ≤ ϵ̂, ϵ̂ ∈ [0, 1], and π =
na,+/na

nb,+/nb
. (PFERM)

Note that (PFERM) is a challenging nonconvex, nonsmooth problem, and it is more convenient to solve a convex
relaxation problem. Thus, we replace the hard loss in the risk with a convex loss function ℓc (e.g., the Hinge loss
ℓc = max{0, ℓl} where ℓl is a linear loss) and the hard loss in the constraint with the linear loss ℓl. This way, we can
solve the convex PFERM problem as follows:

min L̂c(f) : f ∈ F subj. to
∣∣∣L̂a

l (f)− π × L̂b
l (f)

∣∣∣ ≤ ϵ̂, ϵ̂ ∈ [0, 1], and π =
na,+/na

nb,+/nb
.

Proposed Method

We assume that the underlying space of models for our PFERM is a reproducing kernel Hilbert space (RKHS). We
denote κ : X × X → R as a positive definite kernel and ϕ : X → H as an induced feature mapping, such that
κ(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ for all x,x′ ∈ X , where H represents the Hilbert space of square summable sequences.
Functions in the RKHS can be parametrized as follows:

f(x) = ⟨w, ϕ(x)⟩ , x ∈ X , (3)

where w ∈ H is a vector of parameters. For simplicity, we omit the bias term here, but it can be handled by adding an
extra feature with a constant value of 1; see [5] for further discussions on (3).

Let ug be the barycenter in the feature space for group g ∈ {a, b}, defined as:

ug =
1

ng

∑
i∈Ig

ϕ(xi), (4)

where Ig = {i ∈ [n] : si = g}.

Using (4), we can express the constraint in (PFERM) as | ⟨w,ua − π × ub⟩ | ≤ ϵ. In practice, we solve the Tikhonov
regularization problem:

min
w∈H

n∑
i=1

ℓ(⟨w, ϕ(xi)⟩ , yi) + γ∥w∥2 subj. to | ⟨w,u⟩ | ≤ ϵ, (5)

where u = ua − π × ub, and γ is a positive trade-off parameter controlling model complexity.

When ϵ = 0, the constraint in Eq. (5) reduces to an orthogonality constraint, which has a geometric interpretation. It
requires the vector w to be orthogonal to the vector formed by the difference between the scaled barycenters of the
input samples in the two groups.
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Table 1: Statistics of four benchmark datasets including Adult, Credit, Diabetes and Student.

Dataset Sample Size Number of Features Number of Females Number of Males π
Adult 45222 13 14695 30527 0.3635
Credit 30000 23 18112 11888 0.8597

Diabetes 520 16 192 328 2.0105
Student 395 30 208 187 0.8736

Table 2: Statistics of three ADNI data including AV45, FDG and VBM.

Dataset Binary
Classification Task

Sample
Size

Number of
Features

Number of
Females

Number of
Males π

AV45
CN vs. MCI 686 119 346 340 0.8821
CN vs. AD 417 119 217 200 0.7865
MCI vs. AD 547 119 257 290 0.9629

FDG
CN vs. MCI 799 119 368 431 0.8668
CN vs. AD 498 119 236 262 0.7504
MCI vs. AD 663 119 278 385 0.9361

VBM
CN vs. MCI 815 119 374 441 0.8583
CN vs. AD 520 119 244 276 0.7285
MCI vs. AD 683 119 282 401 0.9159

By the representer theorem [9], the solution to Problem (5) is a linear combination of the feature vectors ϕ(x1), . . . , ϕ(xn)
and the vector u. In our case, u itself is a linear combination of the feature vectors. Therefore, w is a linear
combination of the input points, i.e., w =

∑n
i=1 αiϕ(xi). The corresponding prediction function is given by

f(x) =
∑n

i=1 αiκ(xi,x). Let K be the Gram matrix, and the vector of coefficients α can be found by solving:

min
α∈Rn

n∑
i=1

ℓ

 n∑
j=1

Kijαj , yi

+ γ

n∑
i,j=1

αiαjKij subj. to

∣∣∣∣∣∣
n∑

i=1

αi

 1

na

∑
j∈Ia

Kij −
π

nb

∑
j∈Ib

Kij

∣∣∣∣∣∣ ≤ ϵ. (6)

To enhance the algorithm’s flexibility, we introduce a trade-off parameter λ ∈ [0, 1] to control the incorporation of prior
knowledge. If λ = 0, it implies full utilization of prior knowledge, and if λ = 1, it will change back to Eq. (6).

min
α∈Rn

n∑
i=1

ℓ

 n∑
j=1

Kijαj , yi

+ γ

n∑
i,j=1

αiαjKij subj. to

∣∣∣∣∣∣
n∑

i=1

αi

 1

na

∑
j∈Ia

Kij −
(1− λ)π + λ

nb

∑
j∈Ib

Kij

∣∣∣∣∣∣ ≤ ϵ.

Experiments

Datasets and Settings

In our experiment, we use ten synthetic datasets, four benchmark datasets, and three AD datasets.

The synthetic datasets are generated by multivariate Gaussian distributions with specific means and variances. Each
sample is a two-dimensional vector following these distributions:

xa,+ ∼ N ([−1,−1], diag([0.8, 0.8])), xa,− ∼ N ([1, 1], diag([0.8, 0.8])),

xb,+ ∼ N ([0.5,−0.5], diag([0.5, 0.5])), xb,− ∼ N ([0.5, 0.5], diag([0.5, 0.5])).

Here, xa,+ represents a sample from group a and the positive class. Similar interpretations apply to the other sample
notations. “diag([0.8,0.8])” denotes transforming the vector [0.8, 0.8] into a 2-by-2 diagonal matrix with a diagonal
of [0.8,0.8]. In group a, we set the number of negative samples to be 200, while the number of positive samples is
π × 200. In group b, the number of positive samples is set to be 200, and the number of negative samples is π × 200.
This ensures that na,+/na

nb,+/nb = π. We generate ten synthetic datasets by varying π as an integer from 1 to 10.
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Four benchmark datasets were gathered from different sources including Kaggle and the University of California Irvine
Machine Learning Repository. Their detailed statistics are summarized in Table 1.

• The Adult dataset (https://archive.ics.uci.edu/dataset/2/adult) originally comprises 45,222 samples. However,
the code allows for generating a smaller version of the data containing 14,289 samples. This dataset contains
demographic information of adults in the United States to determine whether a person makes over 50K a year.
Therefore, the binary target variable is income (≤50K = 0, >50K = 1). Some of the 13 predictor variables include
occupation, workclass, race, among others.

• The Credit dataset (https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients) looks at customers’
default payments in Taiwan. The binary target variable is default payment next month (Yes = 1, No = 0), with
23 predictor variables such as marriage, education, BILL AMT1, defined as the amount of bill statement in
September, among others. The original dataset has 30,000 samples but in order to reduce running time, 5% of the
data was used which yields 1,500 samples.

• The Student dataset (https://archive.ics.uci.edu/dataset/320/student+performance) provides data on student
achievement in Mathematics in secondary education of two Portuguese schools. The target variable is G3 which
is the final year grade (issued at the 3rd period). Two predictor variables included in the original dataset, G1 and
G2, which are first and second period grades respectively, have strong correlations with G3. For that reason, they
were omitted as explanatory variables. Furthermore, given that the final grade G3 is numeric and ranges from 0
to 20, to create a binary classification problem, students with grades between 0 and 10 inclusive were labeled 0
and students with grades between 11 to 20 inclusive were labeled 1. Some of the 30 predictor variables include
school, address, freetime, among other variables.

• The Diabetes dataset (https://www.kaggle.com/datasets/alakaaay/diabetes-uci-dataset) contains data collected
using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh. The dataset has a
binary target named class (Positive = 1, Negative = 0) indicating whether a patient has diabetes. The 16 predictor
variables include sudden weight loss, Alopecia, Obesity, among others.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu) is a comprehensive
repository tailored for facilitating Alzheimer’s disease research [10, 11]. Within the scope of this investigation, three
distinct imaging modalities are utilized: AV45, indicative of amyloid deposition [12]; FDG, reflective of glucose
metabolism [13]; and VBM, representing gray matter concentration [14]. Three modalities contain 1,650, 1,960,
and 2,018 samples, respectively. Each modality presents 119 distinct features. Subjects from the ADNI cohort are
categorized into three diagnostic groups: Alzheimer’s Disease (AD), Mild Cognitive Impairment (MCI), and Cognitively
Normal (CN). Subsequently, this study focuses on three binary classification tasks, including CN vs. MCI, CN vs. AD,
and MCI vs. AD classifications [15, 16]. Their detailed statistics are summarized in Table 2.

All datasets include a binary predictor variable referred to as either Sex or Gender, which is used as the sensitive
feature to divide the subjects into two groups. As part of the pre-processing stage, for ADNI and the other benchmark
datasets, the values of the target variable are modified so that 0 becomes -1 and 1 remains 1. Essentially, our target
variables all have the value of -1 for Negative and 1 for Positive. Moreover, the features or predictor variables are
standardized using scikit-learn [17]’s StandardScaler. Splitting the data into training and testing sets is also
performed using scikit-learn through train test split with test size=0.2 and stratify=target. The
trade-off hyperparameter λ is grid searched in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. We use five different
seeds to split the data and report the average and standard deviation results.

The measures used in our experiments are Accuracy (ACC), DEO (defined in Eq. (DEO)) and DDP (defined in Eq.
(DDP)) scores. To demonstrate the effectiveness of our PFERM, we choose SVMs and FERM [5] as our baselines.

Ethical Consideration

In conducting our research, we have diligently adhered to stringent ethical standards, recognizing the paramount
importance of ethical considerations in academic research, especially when it involves data analysis. The datasets
employed in our study were carefully selected from well-established, public sources, recognized for their adherence to
ethical principles including, but not limited to, privacy, consent, and data integrity. These datasets are widely accepted in
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(a) λ = 0.0 (b) λ = 0.3 (c) λ = 0.6 (d) λ = 0.9

Figure 2: Accuracy versus π.

the scientific community and are known for being gathered and shared in compliance with ethical guidelines, ensuring
that individual privacy is respected and that data is used responsibly and transparently. Additionally, our methodology
was designed to avoid any potential misuse of data, strictly focusing on the analytical objectives without infringing on
individual rights or data confidentiality. We ensured that all data handling, processing, and analysis were conducted
in accordance with the highest ethical standards, maintaining the integrity of the data subjects and respecting the
ethical guidelines established by our academic and scientific community. This commitment to ethical research practices
underpins our entire study, reflecting our dedication to responsible and conscientious scientific inquiry.

Results on Synthetic Data

We have 10 synthetic datasets with π values ranging from 1 to 10. To illustrate the performance variation across
different π values, we present the results for all π values in a single figure. Figures 2, 3, and 4 show the ACC, DEO,
and DDP results, respectively. To demonstrate the impact of the trade-off parameter λ, we report results for various λ
values selected from [0.0, 0.3, 0.6, 0.9]. Notably, when λ = 0.0, it signifies full utilization of prior knowledge. As λ
increases, the influence of prior knowledge decreases, and at λ = 1.0, no prior knowledge is incorporated, reverting
PFERM to FERM. Figure 2 reveals that our PFERM consistently achieves higher accuracy than FERM across all cases.
Specifically, when λ = 0.0, which signifies full consideration of prior knowledge, PFERM exhibits performance nearly
on par with SVMs. Achieving superior accuracy to SVMs is challenging, given that we impose a fairness constraint
atop SVMs, which typically compromises accuracy performance.

As λ increases, we can see that the accuracy of PFERM also decreases but it is still better than FERM. An interesting
phenomenon is that the accuracy does not decrease monotonically as λ increases. For example, when λ = 0.9, the
accuracy increases when π becomes larger than 6. This indicates that even a small amount of prior knowledge can
change the final situation if the disparity of prevalence between different groups is sufficiently large.

Figure 3 and Figure 4 give similar results. All three curves start from a similar point because the data is balanced when
π = 1. SVMs can have a good performance under fairness measurements. When π becomes larger than 1, the data
will be imbalanced and SVMs will increase its DEO and DDP, which means it cannot give a fair prediction. FERM
gives good and steady DEO and DDP results when π increases. Our PFERM can provide better DEO and DDP results
than SVMs. We can see that when π becomes larger, the performance of PFERM also becomes worse. However, in
reality, the ratio of the prevalence of one group to another group will not get too big such as larger than 5. According to
the statistics in the seven real datasets, π is usually between 1 to 2 (you can take the reciprocal if it is smaller than 1
because we consider the ratio within a pair and the algorithm is symmetric). From Figure 3 and Figure 4 we can see
that the fairness performance of PFERM is very close to FERM when π is small and we can even narrow the gap by
fine-tuning λ.

Results on Real Data

To further demonstrate the effectiveness of the proposed method, we conduct the experiments on seven real datasets
including four benchmark datasets and three ADNI datasets shown in Table 3 and Table 4. We report the best results
with the help of fine-tuning λ. In Table 3 for each dataset and each metric, our PFERM outperforms the baselines 5
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(a) λ = 0.0 (b) λ = 0.3 (c) λ = 0.6 (d) λ = 0.9

Figure 3: DEO versus π.

(a) λ = 0.0 (b) λ = 0.3 (c) λ = 0.6 (d) λ = 0.9

Figure 4: DDP versus π.

times out of 12 cases and achieve the second best performance for all the remaining cases. In Table 4, our PFERM
outperforms the baseline 15 times out of total 27 cases and get the second place 8 times for the remaining 12 cases.
These results demonstrate the effectiveness of the proposed method where our method can preserve fairness without
compromising accuracy. It is worthy to emphasize that we do not need to let our PFERM outperform both SVMs and
FERM. It would be sufficient if we can let PFERM perform in between them so that we can have an option for a better
decision.

Conclusion and Discussion

We studied prior knowledge for fairness in supervised machine learning, addressing fairness while maintaining classifier
accuracy. This Prior-knowledge-guided Fair ERM (PFERM) framework strikes a balance by incorporating prevalence
ratio information into fairness constraints within the ERM framework. Empirical results confirm its effectiveness in
preserving fairness without compromising accuracy.

Our PFERM framework has far-reaching implications in diverse sectors where fairness and accuracy in machine
learning are critical. In healthcare, PFERM can enhance the fairness of diagnostic and treatment models, particularly
benefiting groups historically underrepresented in medical research. In finance, it could revolutionize credit scoring
and loan processing, ensuring equitable decisions across different socioeconomic groups. In the realm of social media,
PFERM promises to make content recommendation and advertising algorithms fairer, reducing biases against specific
user demographics. These examples highlight the framework’s potential to foster ethical AI practices, enhancing trust
in automated systems. Crucially, PFERM’s adaptability in integrating various types of prior knowledge opens the door
for its application in numerous other fields, potentially transforming the landscape of fair decision-making in AI.

While PFERM offers groundbreaking advancements in fairness-centric machine learning, it’s crucial to address
its potential limitations and computational challenges. The framework’s effectiveness hinges on the accuracy and
representativeness of the prior knowledge used. Misguided or biased prior information can inadvertently introduce
new biases, defeating the purpose of fairness. The complexity of tuning PFERM’s parameters also poses a challenge,
necessitating a delicate balance between fairness and accuracy. This is especially critical in scenarios with highly
imbalanced data or uncertain prevalence ratios. Moreover, computational challenges arise when applying PFERM to
large-scale datasets. The framework’s scalability and efficiency can be affected by the size and complexity of data,
requiring innovative strategies for optimization. Developing more efficient algorithms, employing parallel computing
techniques, and leveraging cloud-based resources are potential avenues to enhance PFERM’s scalability. Acknowledging
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Table 3: Mean±Std of Accuracy, DEO and DDP results comparisons for Adult, Credit, Diabetes and Student datasets.
The best and the second best results for each dataset and each metric are bold and underlined, respectively.

Dataset λ Value Method Measurement
ACC DEO DDP

Adult 0.7
SVM 0.8241±0.0063 0.1847±0.1178 0.1581±0.0429

FERM 0.8166±0.0062 0.1521±0.0428 0.0845±0.0421
PFERM 0.8218±0.0053 0.0391±0.0261 0.1131±0.0143

Credit 0.6
SVM 0.8200±0.0141 0.0644±0.0184 0.0313±0.0135

FERM 0.8260±0.0139 0.0615±0.0423 0.0372±0.0163
PFERM 0.8267±0.0158 0.0589±0.0446 0.0281±0.0112

Diabetes 0.4
SVM 0.9731±0.0094 0.0232±0.0343 0.4188±0.0332

FERM 0.8019±0.0289 0.1845±0.0726 0.0927±0.0348
PFERM 0.8269±0.0385 0.1147±0.0746 0.1475±0.1033

Student 0.6
SVM 0.6329±0.0615 0.1554±0.1651 0.1852±0.0994

FERM 0.6380±0.0728 0.1496±0.1022 0.1272±0.0811
PFERM 0.6380±0.0728 0.1523±0.1001 0.1292±0.0787

these limitations and challenges is key, as it guides the careful application of PFERM and informs future advancements,
aiming to make the framework more robust and versatile in various applications.
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