

CLASSify: A Web-Based Tool for Machine Learning

Aaron D. Mullen, B. S.1, Samuel E. Armstrong, M. S.1, Jeff Talbert, Ph. D.1, V.K. Cody

Bumgardner, Ph. D.1,
1University of Kentucky, Lexington, KY, USA

Abstract

Machine learning classification problems are widespread in bioinformatics, but the technical knowledge required to

perform model training, optimization, and inference can prevent researchers from utilizing this technology. This

article presents an automated tool for machine learning classification problems to simplify the process of training

models and producing results while providing informative visualizations and insights into the data. This tool supports

both binary and multiclass classification problems, and it provides access to a variety of models and methods.

Synthetic data can be generated within the interface to fill missing values, balance class labels, or generate entirely

new datasets. It also provides support for feature evaluation and generates explainability scores to indicate which

features influence the output the most. We present CLASSify, an open-source tool for simplifying the user experience

of solving classification problems without the need for knowledge of machine learning.

Introduction

Classification problems are one of the most common types of problems in bioinformatics1,2. For example, patient data

may need to be analyzed to determine the presence of a particular disease, or researchers may want to use information

about cell or tissue samples to identify medical conditions. Being able to accurately classify patient data is crucial to

ensuring they receive the proper diagnosis and treatment. However, manually reviewing large amounts of data to

identify trends and compare patients is infeasible for larger datasets. Therefore, machine learning (ML) classification

methods are often used for these problems3.

The process of building and training an ML classification model can be overwhelming for medical professionals

without the technical expertise needed to create an effective model, due to the “black box” nature of many

classification models that makes them difficult to interpret on their own. Additionally, parameter tuning is difficult to

understand and can have a large impact on model results. CLASSify (Classification Learning Automated Software

System) solves these problems by providing an easy-to-use interface with options for automated feature evaluation

and parameter tuning that provides understandable results detailing the performance of selected models as well as

additional insights into the data.

In addition to providing models and performance metrics, CLASSify provides synthetic data generation. The ability

to generate realistic synthetic data is imperative in the medical field, as real data may be protected or imbalanced4,5.

Many diagnosis problems suffer from imbalanced class labels, where most patient or sample data consist of instances

without the observed condition. These types of datasets can be difficult for machine learning methods to accurately

learn and predict, so synthetic data can be used to introduce additional records that balance class labels and allow the

model to better understand the trends of the data.

CLASSify also provides results related to the importance of each feature to the models. These are described through

the Shapley Additive Explanations (SHAP) scores6, which provide values that represent how much each feature of a

dataset contributes to a certain prediction. Overall SHAP scores for the model can be obtained by averaging together

the SHAP scores for each row of data. These values are useful for gaining a better understanding of the data and the

relationships between variables that may not be obvious. For example, a high positive score indicates that the feature

contributes positively to the predictions, meaning that higher values of that feature influence the model to classify “1”

instead of “0” in a binary classification problem. A high negative score indicates the opposite, where higher feature

values lead to predictions closer to 0 than 1.

Finally, CLASSify creates several visualizations for an easier understanding of the results of the model and the

importance of each feature.

Other solutions have implemented machine learning models with a web interface to improve the ease with which users

can generate models and interpret results7,8. The work of Carney et al.7, called Teachable Machine, is the most similar,

but there are a few key differences. For one, Teachable Machine is meant for training and classifying images and

364

sounds, while CLASSify only works with tabular data. All information about the dataset is taken from the uploaded

CSV file rather than inputted manually by the user. Additionally, Teachable Machine was built for education, while

CLASSify is meant for use in clinical settings. In general, other interfaces have not implemented the robust support

for synthetic data generation, SHAP scores, or interpretable results that CLASSify provides, and many are commercial

solutions that come with a significant price tag.

Methods

CLASSify employs various well-established data processing techniques while integrating bespoke components to

enhance user-friendliness for non-specialists. Specifically, a web interface provides simple data ingestion and

informative visualizations, which are available for download. In addition to visualizations, results provided by each

model are available for closer inspection using an explainability algorithm (namely SHAP). Many machine learning

applications may lack an explainability option, a critical aspect, especially given the prevalence of complex black box

models presently available.

CLASSify provides support for both binary and multiclass classification. The ClearML9 platform is used to host the

models and distribute the training and predicting tasks efficiently. ClearML also stores datasets and visualization plots

generated by CLASSify.

Most models were implemented using the sklearn10 Python library. For binary classification, supported models include

Random Forest11, Gradient Boosting12, XGBoost13, Histogram-based Gradient Boosting12, Bagging Classifier14,

Multi-Layer Perceptron15, TabPFN16, SGD Classifier17, Logistic Regression18, and K-Nearest Neighbors19. The

XGBoost and TabPFN models were provided by the XGBoost20 and TabPFN21 libraries respectively.

Multiclassification works with Random Forest, Multi-Layer Perceptron, Logistic Regression, and K-Nearest

Neighbors. When training with CLASSify, any combination of these provided models can be chosen and results and

comparisons between all of them are produced.

Users can also choose to perform feature evaluation on any model, which tests various combinations of features to

find which produces the best performance. Users can define which features to use and how many features to include

in each iteration. With large numbers of features, testing every possible combination of features may become infeasible

to perform in a reasonable amount of time. However, SHAP scores can be provided at the end for each feature

regardless of whether the user chooses to test different feature combinations.

For training, users can provide a separate test set, and if they do not, the test set will be split from the dataset provided.

These are passed to each model for training and testing.

CLASSify also automatically performs parameter optimization with Optuna22. Default parameter ranges provided to

each model, such as the number of trees for a Random Forest or the size of the hidden layer for the Multi-Layer

Perceptron, are available. Users can manually input these parameter ranges for more control over the model, as

different ranges will be suitable for different datasets. Optuna will then optimize the model by trying different

parameter combinations within those ranges, intelligently learning which settings give the best results, and pruning

unpromising parameter choices. It runs for the specified number of iterations and returns the parameters that performed

the best on a validation set. Increasing the number of iterations is likely to always result in better performance at the

expense of time. Therefore, users have the choice of whether to value time or performance more heavily.

After the highest-performing iteration for each model is chosen, the tuned model is evaluated on the unseen test set,

and the results are stored. Once each model has produced results, the table of performance metrics, which includes

accuracy, AUC, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV), is

outputted to the user. For multiclassification, the kappa score is provided instead of sensitivity, specificity, NPV, and

PPV.

Synthetic data generation is also included and has three versions: fill in missing values, balance class labels, or

generate entirely new datasets. These synthetic methods require JSON metadata describing the datatype of each

feature. If the user does not provide this metadata themselves, it will be automatically generated.

The method to synthetically fill missing values is the Soft Impute23 function, provided by the fancyimpute24 library.

This method uses soft-threshold and single-value decomposition (SVD) to remove noise and create new data that

follows the trends of the original data. This means that missing data will be replaced with new data that follows closely

to the format and pattern that would be expected.

365

The processes used to generate entire new rows of data are provided by the Synthetic Data Vault (SDV)25 package.

This repository contains several different models for data generation, including Fast ML Preset26, CTGAN27,

CopulaGAN27, and TVAE27 synthesizers. All models have been incorporated into CLASSify, and the user can choose

which model is used for data generation.

Both balancing class labels and generating new datasets are slight modifications of the same process. Both use the

given SDV model to generate new rows of data following the trends and conditions set by the rest of the data. If the

user chooses to generate new data, a new dataset of the same size as the provided dataset is created, but with all class

labels automatically balanced. If the user only wants to bolster the existing data by balancing the class labels, the

system will simply generate the number of rows for each class as necessary to ensure a balanced dataset and append

those synthetic rows onto the original dataset. Therefore, the majority class label will maintain the same number of

rows, and any other class labels will be increased to match that value, resulting in a larger dataset.

The user can also choose whether to save these synthetic datasets. If not, they will only be used for model training and

testing before being discarded; otherwise, the newly created datasets and metadata objects will be downloaded for the

user. Synthetic metrics may also be downloaded, which indicate the quality of synthetic data generated for each

column.

SHAP scores were implemented with the Shap28 library. This library provides specific implementations for certain

types of models, such as tree-based models or linear models. CLASSify uses the appropriate functions for each model

to provide the most efficient performance. For any ML models that do not have specific SHAP explainers, a general

explainer was used. These explainers fit to the training set of the data and generate SHAP scores for each row and

feature. They are averaged across all rows to produce final SHAP scores. These scores are included as part of the final

report provided to the user. Because SHAP scores are not comparable between models, these scores are scaled and

converted to percentages to allow for a more intuitive understanding and comparison of scores between features and

models.

Visualizations are generated with matplotlib29 and seaborn30. These visualizations provide comparisons of accuracy

metrics between models and feature groupings through heatmaps and bar graphs, and visualizations of SHAP scores

are provided as well. These visuals are stored in ClearML and presented to the user through the web interface.

The web interface included with CLASSify aims to simplify machine learning training while providing abundant

training options. This interface employs a PHP31 backend to control data flow in, out, and through the training

pipelines. At a high level, a user can upload their tabular data, create a template in ClearML, and then execute a

distributed training job to connected ClearML agents. However, local training is also available if a user wishes to train

a model in a non-distributed fashion.

The user must first upload a dataset, which must follow a few formatting criteria (‘class’ and ‘index’ column labels

must be present, no strings other than ‘TRUE’ and ‘FALSE’). After uploading their dataset, the user will select from

many available options, including but not limited to multiclass training, model selection, and feature evaluation. Once

the desired options are selected and submitted, these options, along with the dataset, are transferred to a Python

backend for error checking. The Python backend also creates a template for the training job and sends it along with

the dataset to ClearML. When executing the distributed task, agents receive this template, which, until now, has yet

to begin training. The web interface gives users a list of available jobs, offering options to edit, delete, or submit a job.

When the Python function creating the template completes, a submit button will appear next to the dataset. Before

selecting this button, a user should have one or more ClearML agents running or have a local instance prepared. Once

clicked, the submit button adds the selected job to a queue defined in ClearML, which agents will enqueue and execute

a job. If the agent encounters any errors, it propagates them back to the web interface, allowing the user to view and

adjust them for subsequent jobs. After successful completion, the job propagates its results to the web interface,

presenting images, graphs, tabular results, and SHAP scores to the user. Results from all jobs are saved in a database

for future use or download until a user deletes the associated job.

Below, Images 1, 2, and 3 show screenshots of the website. On the page depicted in Image 1, users can view all of the

datasets they have uploaded. If they have completed training, this is where users can view the results on those datasets.

Otherwise, this is where users can access the preparation page, which is shown in Image 2. This is where users can

make choices about the training, such as whether to generate synthetic data and SHAP scores, which models to train,

and what parameters to use for each model. Users may choose to use default values for many of these options to ease

the process, but they may also customize these values if necessary, and hovering the cursor over any of the options

provides a more detailed explanation of the purpose and meaning of that option.

366

When viewing results, as shown in Image 3, users can see a variety of performance metrics, as well as SHAP scores

for each feature. On this page, users can download any synthetic data that was generated, as well as the models that

were trained, view output logs, and see visualizations.

Image 1. Screenshot of CLASSify datasets page.

Image 2. Screenshot of CLASSify page where users choose options and parameters before training.

367

Image 3. Screenshot of CLASSify results page.

Results

This section will justify the methods used in CLASSify by providing results comparisons on example datasets. While

the quality of these specific results is not the focus of this paper, they are included to demonstrate the kind of metrics

that are used in CLASSify and the range of different datasets and tasks that CLASSify can be used with.

All ten models were used for testing binary classification: Random Forest, Multilayer Perceptron Neural Network,

XGBoost, Histogram-based Gradient Boosting, Bagging, SGD Classifier, Logistic Regression, TabPFN, Gradient

Boosting, and K-Nearest Neighbors. These models were tested on ten separate binary classification datasets, five of

which are internal, and five of which are publicly available. These are briefly summarized in the table below (Table

1), which provides information on the size and class distribution of each dataset.

Dataset: 30

Day

AKI HEPAA Sepsis Soft Breast

Cancer32

Diabetes33 Heart34 In

Out35

Surgery36

Rows 2165 775 268 201 195 570 769 1000 4000 14000

% Positive 50% 17% 24% 46% 49% 37% 35% 13% 40% 25%

Table 1. Size and class distribution of each tested dataset.

These datasets have a variety of lengths, feature numbers, and class balances, allowing for a full picture of how well

CLASSify works on different types of datasets. While most of the results will focus on these datasets and results,

multiclassification was also tested with a separate, public dataset. Referred to as Cirrhosis37, this dataset has only 418

rows, many of which have missing data, with four separate possible classes, which are distributed 5%, 22%, 35%, and

38%. This dataset could only be tested with the four multiclass-supported models.

The datasets were tested in three different circumstances. First, parameter tuning was disabled, and each model was

tested on the default parameters. Then, parameter tuning was enabled, and each model was tested again for each

dataset. Finally, each dataset with synthetically balanced, and again tested with each model. All models’ results were

improved with parameter tuning for 100 iterations, and every dataset with a class disparity greater than 40%/60% had

improved results when synthetic balancing was implemented.

368

The best of these results are shown in more detail in

Figure 1. This graph uses the Area Under the ROC

Curve (AUC) to measure the usefulness of the model,

and the results for each model are averaged together

for each dataset. The percentage value given next to

each dataset name represents the percentage of

positive class values. Therefore, a lower percentage

represents a more imbalanced dataset.

A more detailed look at each specific model’s

performance is given in the tables below (Tables 2

and 3). The table on the left shows the average

performance of each model when parameter tuned

with Optuna. The table on the right shows the best

results on each example dataset.

Tables 2 and 3. Summary of model results.

The results depend heavily on the dataset, as some are naturally easier to predict than others due to aspects like class

balances and number of features. But in general, gradient boosting and bagging were found to be the best-performing

models, while the SGD Classifier and K-Nearest Neighbors were the worst-performing.

This same process was repeated with each dataset after it was synthetically balanced. As was discussed earlier, this

had little impact on the datasets that were already nearly balanced. The significantly imbalanced datasets saw only

positive changes in performance once synthetic class balancing was implemented.

A clearer comparison of different performance metrics between an original dataset and a synthetically balanced dataset

is shown below in Figure 2. This graph represents the average results of each model on the HEPAA dataset to showcase

the differences in metrics when the original dataset is imbalanced.

Dataset: Best Model: Best Performance:

Breast Cancer TabPFN 0.988

HEPAA Random Forest 0.872

Surgery XGBoost 0.843

Cirrhosis Neural Network 0.781

Sepsis K-Nearest Neighbors 0.778

Diabetes Neural Network 0.751

In Out Hist. Gradient Boosting 0.747

Soft Gradient Boosting 0.695

Heart Logistic Regression 0.688

30 Day Random Forest 0.647

AKI Logistic Regression 0.563

Model: Average AUC:

Gradient Boosting 0.727

Bagging 0.713

Logistic Regression 0.712

Random Forest 0.711

Histogram Gradient Boosting 0.701

TabPFN 0.701

XGBoost 0.699

Neural Network 0.695

K-Nearest Neighbors 0.668

SGD Classifier 0.641

Figure 1. AUC comparison for each dataset, with the results

of each model averaged together.

369

This graph demonstrates that the

results of the synthetically balanced

dataset are more consistent than

those of the original dataset. While

specificity and PPV may decrease,

sensitivity and NPV are increased,

meaning the model is balancing its

positive and negative predictions

better. However, the importance of

the tradeoff between specificity and

sensitivity depends on the specific

application and field, so CLASSify

should be fine-tuned and

interpreted appropriately for any

possible case.

Several metrics can be used to

determine the quality of synthetic

data. One is the measurement of column shapes, which gives a percentage to represent how similar the distributions

of values in columns are between original and synthetic data. A higher score for a column indicates that the distribution

of values in that column matches the distribution in the original dataset. An overall score for the dataset averages these

values for all columns.

Another measurement is the column pair trends, which measures how well synthetic data captures the relationships

and correlations between separate columns in the data. Finally, SDV provides an overall quality score to indicate how

similar the synthetic data is to the

original. The results for generating

a new, completely synthetic

dataset (AKI dataset) are shown in

Figure 3. These metrics are

compared for each of the four

synthetic generation models

(Tabular, CTGAN, Copulagan,

and TVAE). Figure 3 only shows

the results on a single dataset, but

further analysis has shown that

these trends are consistent across

all datasets. This shows that the

Tabular model is the most

successful at capturing the trends

and relationships of the original

data.

Additionally, each fully synthetic dataset was used to train each classification model, which was tested on each original

dataset to determine how useful each synthetic dataset was for training a model to predict real values. These results

were consistent with the accuracy scores given above. The tabular synthesizer model’s datasets performed the best,

while the CTGAN and CopulaGAN synthetic datasets were not as useful in predicting real values.

There is an additional option in CLASSify to only synthesize missing values in the data. This uses the “fancyimpute”24

module and is independent of the other synthesizer models, as those models did not have native support for imputing

missing values. To test the efficacy of this feature, results were compared between the AUC of each model on an

original dataset with a predefined test set, and a dataset where 20% of the feature values were randomly dropped and

synthetically filled, evaluated on the same test set. In general, performance was the same or slightly worse when the

dataset was synthetically filled. For example, on the HEPAA dataset, the average AUC for the original dataset, across

all models, was 0.794, while the average AUC for the same dataset when 20% of the values were synthetically filled

was 0.786. This shows that, while having a complete dataset is certainly preferable, CLASSify can function almost

just as well with missing data.

Figure 2. Comparison of performance metrics between original dataset and

synthetically balanced dataset.

Figure 3. Synthetic data quality metrics.

370

In addition to the final report

containing performance metrics

and SHAP scores for each model,

several visualizations are also

produced. One example of a

custom plot is shown here (Figure

4). This is a heatmap representing

different models and performance

metrics for a given dataset,

identifying the best-performing

models in each area.

Additionally, the SHAP library

provides visualizations for the

SHAP scores. CLASSify saves the

SHAP bee swarm plot, depicting

several features and their

positive/negative influence on the

class label predictions. Each dot

represents a separate row of data,

and their positions indicate how

much they contribute to the class

prediction. As an example of how

to interpret the plot shown in

Figure 5, the highest feature,

Weight, has the most impact on class predictions for the 30-Day example dataset. Because the positive class instances

are shown to have lower weight values, and the negative class instances have higher weight values, this indicates that

there is a negative correlation between the weight feature and the class label prediction.

With multiclassification, there are

fewer visualization options

available because certain metrics,

such as specificity, sensitivity,

NPV, and PPV are not calculated.

However, overall comparisons of

the models, as well as SHAP

beeswarm plots, are still

available.

Discussion

The results on the test datasets

show that different models

perform well under different

circumstances. In general, some

of the best-performing models are

the random forest, gradient boosting, and bagging classifiers. However, because CLASSify provides the option to

customize which models the user trains, it ensures that users can only focus on the models most relevant to their

problem.

There are other factors than just performance that may also influence which models are the best picks for different

situations. TabPFN, due to the complex methods used in its implementation, is not made for datasets with much more

than 1,000 samples in their training sets. Additionally, if time is a factor, then users may want to forgo training the

Multilayer Perceptron Neural Network, which takes the longest to train and parameter tune.

Figure 4. Example of provided visualization.

Figure 5. Beeswarm plot depicting SHAP scores for each feature of the

example dataset.

371

CLASSify also provides the ability to build multiple versions of a given model based on different feature

combinations. This is another way, apart from the SHAP scores, to evaluate the usefulness of different features and

optimize the performance of the model.

Synthetic data generation is also an important aspect of CLASSify, as especially in the medical field, there is a large

need for synthetic data to respect patient privacy. CLASSify allows users to save any generated data for use in other

areas. Synthetic class balancing was found to have a positive effect on model performance when the original class

labels were significantly imbalanced, and synthetically filling missing values was found to not have a significant effect

on model performance.

One warning about synthetic data generation involves the requirement of metadata for the given dataset. This metadata

describes the data types of each column in the form of a JSON. If a metadata file is not provided to CLASSify, it will

generate its own file to use by parsing the data itself. However, this process can make mistakes. For example, if a

particular column contains categorical data represented as numbers (i.e., integers 1 through 5 each represent a

category), this column will be interpreted as numerical integers rather than categories. In practice, this was found to

sometimes have negative effects on both the quality of synthetic data and the accuracy of predictions made from the

synthetic data. Therefore, it is best, whenever possible, to explicitly provide a metadata file to ensure that no columns

are misinterpreted.

Conclusion

These results show that CLASSify is a valuable tool for evaluating classification problems, generating synthetic data,

and drawing explainable conclusions about data features. CLASSify provides an open-source platform for performing

complex machine learning tasks without any advanced knowledge requirement. Those experienced in the field will be

able to customize complex parameters, while those without machine learning knowledge can use default settings and

rely on CLASSify’s automated parameter tuning. CLASSify provides many ways to compare the performances of

different models and feature combinations through tables and visualizations. It also allows the user to gain a better

understanding of the data itself by providing SHAP scores to indicate the relevance of different features.

While CLASSify was built and tested with the intention of use in a medical context, any tabular data can be used, so

a variety of applications for this technology can be imagined. Classification problems are common in a variety of

fields and CLASSify can handle generalized data. With its user-friendly interface and powerful backend, CLASSify

has the ability to transform complex machine learning requirements into dependable solutions.

References

1. Chen X, Wang M, Zhang H. The use of classification trees for bioinformatics. WIREs Data Mining and

Knowledge Discovery. 2011;1(1):55–63. doi:10.1002/widm.14

2. Kononenko I. Machine learning for medical diagnosis: History, state of the art and perspective. Artificial

Intelligence in Medicine. 2001;23(1):89–109. doi:10.1016/s0933-3657(01)00077-x

3. Komura D, Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Archive.

2019;475(2):131–8. doi:10.1007/s00428-019-02594-w

4. Dahmen J, Cook D. SynSys: A Synthetic Data Generation System for Healthcare Applications. Sensors.

2019;19(5):1181. doi:10.3390/s19051181

5. Hernandez M, Epelde G, Alberdi A, Cilla R, Rankin D. Synthetic Data Generation for Tabular Health

Records: A systematic review. Neurocomputing. 2022;493:28–45. doi:10.1016/j.neucom.2022.04.053

6. Štrumbelj E, Kononenko I. Explaining prediction models and individual predictions with feature

contributions. Knowledge and Information Systems. 2013;41(3):647–65. doi:10.1007/s10115-013-0679-x

7. Carney M, Webster B, Alvarado I, Phillips K, Howell N, Griffith J, et al. Teachable machine: Approachable

web-based tool for Exploring Machine Learning Classification. Extended Abstracts of the 2020 CHI

Conference on Human Factors in Computing Systems. 2020; doi:10.1145/3334480.3382839

8. 1. Rene L, Mario M, Laura O, Avantika L, Hernan DL. Bench-ML: A benchmarking web interface for

machine learning methods and models in genomics. 2023; doi:10.1101/2023.06.05.543750

9. The Continuous Machine Learning Company [Internet]. 2023 [cited 2023 Jul 12]. Available from:

https://clear.ml/

10. Learn [Internet]. [cited 2023 Jul 12]. Available from: https://scikit-learn.org/stable/

11. Breiman L. Random Forests. Machine Learning. 2001 Oct;45:5–32. doi:10.1023/A:1010933404324

12. Friedman JH. Stochastic gradient boosting. Computational Statistics & Data Analysis. 2002;38(4):367–78.

doi:10.1016/s0167-9473(01)00065-2

372

https://clear.ml/
https://scikit-learn.org/stable/

13. 1. Chen T, Guestrin C. XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 2016; doi:10.1145/2939672.2939785 Guryanov A. Histogram-

based algorithm for building gradient boosting ensembles of piecewise linear decision trees. Lecture Notes

in Computer Science. 2019;39–50. doi:10.1007/978-3-030-37334-4_4

14. Breiman L. Bagging predictors. Machine Learning. 1996;24(2):123–40. doi:10.1007/bf00058655

15. Hinton GE. Connectionist Learning Procedures. Artificial Intelligence. 1989;40(1–3):185–234.

doi:10.1016/0004-3702(89)90049-0

16. Hollman N, Müller S, Eggensperger K, Hutter F. TabPFN: A Transformer That Solves Small Tabular

Classification Problems in a Second. 2022; doi:10.48550/arXiv.2207.01848

17. Amari S. Backpropagation and stochastic gradient descent method. Neurocomputing. 1993;5(4–5):185–96.

doi:10.1016/0925-2312(93)90006-o

18. Introduction to the logistic regression model. Applied Logistic Regression. 2005;1–30.

doi:10.1002/0471722146.ch1

19. Peterson L. K-Nearest Neighbor. Scholarpedia. 2009;4(2):1883. doi:10.4249/scholarpedia.1883

20. Python API reference [Internet]. [cited 2023 Jul 12]. Available from:

https://xgboost.readthedocs.io/en/stable/python/python_api.html

21. Tabpfn [Internet]. [cited 2023 Jul 12]. Available from: https://pypi.org/project/tabpfn/

22. A hyperparameter optimization framework [Internet]. [cited 2023 Jul 28]. Available from:

https://optuna.org/

23. Mazumder R, Hastie T, Tibshirani R. Spectral Regularization Algorithms for Learning Large Incomplete

Matrices. Journal of Machine Learning Research. 2010 Jul 9;11.

24. Fancyimpute [Internet]. [cited 2023 Jul 12]. Available from: https://pypi.org/project/fancyimpute/

25. Welcome to the SDV! [Internet]. [cited 2023 Jul 12]. Available from: https://docs.sdv.dev/sdv/

26. Fast ML preset [Internet]. [cited 2023 Jul 12]. Available from: https://docs.sdv.dev/sdv/single-table-

data/modeling/synthesizers/fast-ml-preset

27. Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni K. Modeling tabular data using conditional gan

[Internet]. 2019 [cited 2023 Jul 12]. Available from: https://arxiv.org/abs/1907.00503

28. Welcome to the shap documentation [Internet]. [cited 2023 Jul 12]. Available from:

https://shap.readthedocs.io/en/latest/

29. Visualization with python [Internet]. [cited 2023 Jul 12]. Available from: https://matplotlib.org/

30. Statistical Data Visualization [Internet]. [cited 2023 Jul 17]. Available from: https://seaborn.pydata.org/

31. Bakken SS, Suraski Z, Schmid E. PHP Manual: Volume 1. iUniverse, Incorporated; 2000.

32. Mansy M. Breast cancer dataset [Internet]. 2023 [cited 2023 Jul 26]. Available from:

https://www.kaggle.com/datasets/mahmoudelmansy/breast-cancer-dataset

33. Rajendran S. Diabetes prediction [Internet]. 2022 [cited 2023 Jul 26]. Available from:

https://www.kaggle.com/datasets/cpluzshrijayan/diabetes-prediction

34. Murattademir. Heart disease - binary classification [Internet]. Kaggle; 2022 [cited 2023 Jul 26]. Available

from: https://www.kaggle.com/code/murattademir/heart-disease-binary-classification

35. Sadikin M. EHR dataset for Patient Treatment Classification [Internet]. Mendeley Data; 2020 [cited 2023 Jul

26]. Available from: https://data.mendeley.com/datasets/7kv3rctx7m/1

36. M D. Dataset surgical binary classification [Internet]. 2018 [cited 2023 Jul 26]. Available from:

https://www.kaggle.com/datasets/omnamahshivai/surgical-dataset-binary-classification

37. 1. Fedesoriano. Cirrhosis prediction dataset [Internet]. 2021 [cited 2023 Aug 25]. Available from:

https://www.kaggle.com/datasets/fedesoriano/cirrhosis-prediction-dataset

373

https://xgboost.readthedocs.io/en/stable/python/python_api.html
https://pypi.org/project/tabpfn/
https://optuna.org/
https://pypi.org/project/fancyimpute/
https://docs.sdv.dev/sdv/
https://docs.sdv.dev/sdv/single-table-data/modeling/synthesizers/fast-ml-preset
https://docs.sdv.dev/sdv/single-table-data/modeling/synthesizers/fast-ml-preset
https://arxiv.org/abs/1907.00503
https://shap.readthedocs.io/en/latest/
https://matplotlib.org/
https://seaborn.pydata.org/
https://www.kaggle.com/datasets/mahmoudelmansy/breast-cancer-dataset
https://www.kaggle.com/datasets/cpluzshrijayan/diabetes-prediction
https://www.kaggle.com/code/murattademir/heart-disease-binary-classification
https://data.mendeley.com/datasets/7kv3rctx7m/1
https://www.kaggle.com/datasets/omnamahshivai/surgical-dataset-binary-classification
https://www.kaggle.com/datasets/fedesoriano/cirrhosis-prediction-dataset?resource=download

