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Introduction
Nearly 800 million people have been diagnosed with COVID-19, and 7 million people have died. In the United 
States alone, there are currently more than 100 million survivors of COVID-19 (1). Symptoms of post-acute 
sequelae of COVID-19 (PASC) are dominated by neurological, cognitive, and psychiatric dysfunction (2–5). 

BACKGROUND. Survivors of pneumonia, including SARS-CoV-2 pneumonia, are at increased risk for 
cognitive dysfunction and dementia. In rodent models, cognitive dysfunction following pneumonia 
has been linked to the systemic release of lung-derived pro-inflammatory cytokines. Microglia are 
poised to respond to inflammatory signals from the circulation, and their dysfunction has been 
linked to cognitive impairment in murine models of dementia and in humans.

METHODS. We measured levels of 55 cytokines and chemokines in bronchoalveolar lavage fluid and 
plasma from 341 patients with respiratory failure and 13 healthy controls, including 93 unvaccinated 
patients with COVID-19 and 203 patients with other causes of pneumonia. We used flow cytometry 
to sort neuroimmune cells from postmortem brain tissue from 5 patients who died from COVID-19 
and 3 patients who died from other causes for single-cell RNA-sequencing.

RESULTS. Microglia from patients with COVID-19 exhibited a transcriptomic signature suggestive 
of their activation by circulating pro-inflammatory cytokines. Peak levels of pro-inflammatory 
cytokines were similar in patients with pneumonia irrespective of etiology, but cumulative cytokine 
exposure was higher in patients with COVID-19. Treatment with corticosteroids reduced expression 
of COVID-19–specific cytokines.

CONCLUSION. Prolonged lung inflammation results in sustained elevations in circulating cytokines 
in patients with SARS-CoV-2 pneumonia compared with those with pneumonia secondary to 
other pathogens. Microglia from patients with COVID-19 exhibit transcriptional responses to 
inflammatory cytokines. These findings support data from rodent models causally linking systemic 
inflammation with cognitive dysfunction in pneumonia and support further investigation into the 
role of microglia in pneumonia-related cognitive dysfunction.
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Cognitive impairment appears to be particularly common and long-lasting. A meta-analysis of world health 
records estimated that 2% of all symptomatic SARS-CoV-2 infections result in at least short-term cognitive 
impairment, with more than 50% of patients presenting to PASC centers reporting psychiatric symptoms and 
15% of patients with PASC reporting sustained symptoms 1 year after initial infection (6). An increased risk of  
dementia persists for at least 2 years after severe COVID-19 (3), similar to what is observed following pneumo-
nia secondary to other pathogens (7–9). These complications are more common in patients requiring intensive 
care unit (ICU) admission (10, 11).

Investigators have proposed several mechanisms to explain the cognitive dysfunction after COVID-19, 
many of  which are specific to SARS-CoV-2 (12–22). Nevertheless, prolonged cognitive dysfunction in sur-
vivors of  pneumonia or sepsis was recognized before the pandemic (4, 7–9, 23–26). In rodent models, 
circulating inflammatory cytokines enter the CNS and are sufficient to induce cognitive dysfunction (25, 
27–32). These findings suggest that cognitive decline in pneumonia survivors might result from exposure to 
lung-derived inflammatory cytokines independent of  the infecting pathogen. In support of  this hypothesis, 
rigorous studies of  clinical samples and autopsy tissues from patients who died from COVID-19 reveal that 
SARS-CoV-2 infection is limited to the lung epithelium and alveolar macrophages, and reliable evidence 
of  direct infection of  the CNS by SARS-CoV-2 is absent (7, 12, 14, 33–35). Indeed, careful studies of  the 
mechanisms underlying the loss of  taste and smell in patients with COVID-19 failed to find evidence of  
infection in olfactory neurons, instead implicating inflammatory signals from adjacent infected nasopha-
ryngeal epithelia (14, 35).

Microglia are the most abundant immune cell population in the CNS. As such, they are poised to 
respond to inflammatory signals originating from the circulation. Furthermore, a wealth of  evidence links 
dysfunction in microglia to cognitive dysfunction in rodent models and in humans (36–41). We and others 
have reported that the duration of  illness in patients with severe SARS-CoV-2 pneumonia is much longer 
than in patients with pneumonia secondary to other pathogens (33, 42–47). We found this is driven, in 
part, by pro-inflammatory circuits between infected alveolar macrophages and T cells recruited into the 
lung (33). We reasoned that if  CNS damage resulting from COVID-19 is the consequence of  prolonged 
exposure to circulating pro-inflammatory cytokines, microglia from patients with COVID-19 would exhibit 
a transcriptional signature of  cytokine-mediated activation (42).

Results
COVID-19 is associated with a transcriptional signature in microglia suggestive of  NF-κB activation and cell cycle 
arrest. We collected frontal lobe samples at autopsy from 5 patients who died following SARS-CoV-2 infec-
tion and 3 patients who died without respiratory failure or sepsis between March 2021 and April 2022. 
Clinical features of  these patients are included in Supplemental Table 1; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.178859DS1. We generated single-cell suspen-
sions of  these tissues and enriched them for live microglia, T cells, and other neuroimmune cells using flow 
cytometry sorting (Supplemental Figure 1A). We then performed single-cell RNA-sequencing (scRNA-
Seq) on these samples, identifying 65,767 cell passing quality control, predominantly heterogeneous popu-
lations of  microglia and CD8+ T cells (Figure 1, A–C). Cluster markers are listed in Supplemental Data 1.

We did not detect a single read of  any SARS-CoV-2 gene or the negative-sense genome scaffold 
required for replication (48) when we aligned our scRNA-Seq reads to a hybrid genome containing the 
human GRCh38.93 genome build and the wild-type ancestral SARS-CoV-2 strain (NC045512.2) (Supple-
mental Figure 1B). Investigators have also suggested that PASC may result from Epstein-Barr virus (EBV) 
reactivation (49). However, we did not detect a single read of  any EBV1 gene when we included a linear-
ized EBV1 genome (NC007605.1) in our hybrid genome (Supplemental Figure 1C).

The development and progression of  dementia have been associated with the accumulation of  microg-
lia with a distinct transcriptional phenotype defined by the expression of  genes including Apoe, Spp1, Lpl, 
and Cst7 in mice and APOE, SPP1, CD81, and APOC1 in humans, which are called disease-associated 
microglia (DAMs) or Alzheimer’s disease microglia, though similar states have also been observed during 
normal aging (38, 50, 51). We observed a population of  DAM-like microglia in all patients, indicative 
of  the advanced age of  and history of  neuropathology in some patients (Supplemental Table 1). Indeed, 
the fraction of  microglia expressing a DAM phenotype was highest in a patient in the cohort without 
COVID-19 who had an antemortem diagnosis of  dementia. The relative abundance of  this microglial state 
was indistinguishable between groups (Figure 1B).

https://doi.org/10.1172/jci.insight.178859
https://insight.jci.org/articles/view/178859#sd
https://doi.org/10.1172/jci.insight.178859DS1
https://insight.jci.org/articles/view/178859#sd
https://insight.jci.org/articles/view/178859#sd
https://insight.jci.org/articles/view/178859#sd
https://insight.jci.org/articles/view/178859#sd
https://insight.jci.org/articles/view/178859#sd
https://insight.jci.org/articles/view/178859#sd


3

C L I N I C A L  M E D I C I N E

JCI Insight 2024;9(8):e178859  https://doi.org/10.1172/jci.insight.178859

https://doi.org/10.1172/jci.insight.178859


4

C L I N I C A L  M E D I C I N E

JCI Insight 2024;9(8):e178859  https://doi.org/10.1172/jci.insight.178859

To determine whether microglia from patients with COVID-19 exhibited a transcriptional signature 
distinct from patients who died from other causes, we performed pseudobulk differential expression analy-
sis (DEA) on each major cell type cluster. This analysis revealed a pattern of  gene expression in microglia 
from patients with COVID-19 that included a nearly complete downregulation of  genes associated with 
cellular proliferation (MKI67, CENPF) and upregulation of  the cell cycle arrest marker CDKN1A (encoding 
p21). Although this pattern of  gene expression has been referred to as immunosenescence, it can also be 
seen in response to inflammation, and we did not detect significant upregulation of  other senescence-asso-
ciated genes (e.g., CDKN2A/p16 or SERPINE1/PAI-1; Figure 1, D and E). Complete DEA results are listed 
in Supplemental Data 2.

Cytokine exposure has been suggested to drive the long-lasting cognitive impairment resulting from 
severe pneumonia caused by other pathogens that lack neurotropism, including influenza A viruses and 
bacteria (4, 7–9, 23, 24). Some of  these cytokines, including TNF-α, IL-6, and IL-1β, can directly cross 
the blood-brain barrier and act on resident immune cells in the CNS, including microglia (27–29). We 
examined whether microglia isolated from patients who died after SARS-CoV-2 infection exhibited an 
elevated response to any of  these cytokines by comparing gene set enrichment using Molecular Signatures 
Database (MSigDB) Hallmark annotations (52). Through groupwise gene set enrichment analysis (GSEA) 
on pseudobulk data, we found that Hallmark TNF-α Signaling Via NF-κB (M5890) was the most signifi-
cantly enriched gene set among all Hallmark gene sets in MSigDB (q = 6.0 × 10–16; Figure 1F). We further 
found through patientwise gene module analysis that Hallmark TNF-α Signaling Via NF-κB (M5890) gene 
expression was significantly elevated in individuals who died after SARS-CoV-2 infection, suggesting that 
prolonged exposure to TNF-α or other NF-κB–activating cytokines may drive cell cycle arrest in these 
patients (q = 3.6 × 10–2, Mann-Whitney; Figure 1G). To verify existence of  this cell state in situ, we applied 
single-molecule FISH (smFISH) (RNAScope) to brain sections from the same patients to determine wheth-
er CDKN1A, CCL2, and IL1B were coexpressed in ionized calcium-binding adapter molecule 1–positive 
(IBA1+) microglia. We consistently observed cells coexpressing all 3 genes in IBA1+ microglia in samples 
from patients who died with COVID-19 that were absent in control samples (Figure 1H).

COVID-19 is associated with greater cumulative systemic exposure to inflammatory cytokines compared with other 
causes of  pneumonia. To determine if  the transcriptomic changes in microglia we observed in patients who 
died after SARS-CoV-2 infection could have resulted from exposure to unusually high levels of  inflamma-
tory cytokines, we performed multiplexed profiling of  72 cytokines, 55 of  which were of  sufficient quality 
for downstream analysis (Supplemental Figure 2). We analyzed serial plasma and alveolar samples collect-
ed by bronchoalveolar lavage (BAL) from 354 patients. These samples included patients with respiratory 
failure requiring mechanical ventilation for SARS-CoV-2 pneumonia (n = 93), pneumonia secondary to 
bacterial or fungal pathogens (n = 162), pneumonia resulting from other respiratory viruses (n = 41), condi-
tions requiring mechanical ventilation for reasons unrelated to pneumonia (n = 45), and healthy controls (n 
= 13). Samples collected from all patients with respiratory failure were collected as part of  an observational 
cohort study; samples from healthy controls were collected before the COVID-19 pandemic.

Comprehensive demographic data from these cohorts are available in Supplemental Table 2. Findings 
from this cohort have been previously reported (33, 53, 54). Patients with severe SARS-CoV-2 pneumonia 
were similar to other groups of  mechanically ventilated patients in age, sex, and severity of  illness as mea-
sured by the mean daily Sequential Organ Failure Assessment (SOFA; q ≥ 0.05, Mann-Whitney), Acute 
Physiology Score (APS; q ≥ 0.05, Mann-Whitney), and mortality (q ≥ 0.05; χ2 test of  proportions); however, 
patients with nonviral pneumonias (“Other Pneumonia”) were older (q = 2.6 × 10–2, Mann-Whitney) and 

Figure 1. Microglia exhibit distinct transcriptional responses in patients with COVID-19. (A) Uniform manifold approximation and projection (UMAP) of 
65,767 cells isolated from the frontal lobes of 8 patients postmortem. HSR, heat shock response; TCM, T central memory; TEM, T effector memory. (B) Rel-
ative abundance of microglial cell states as a percentage of total microglia. No significant differences are observed by diagnosis (q ≤ 0.05, Mann-Whitney). 
(C) Hierarchical clustering of mean marker gene expression by cell type and cell state by diagnosis. (D) MA plot of differentially expressed genes in total 
microglia in COVID-19 versus controls by pseudobulk differential expression analysis. Significantly upregulated genes are shown in red, and significant-
ly downregulated genes are shown in blue (q < 0.05, Wald test). Genes shown in gray are not significantly differentially expressed. (E) Callouts of key 
markers of cell division and cell cycle arrest from D. All genes shown are significantly differentially expressed (q < 0.05, Wald test). (F) Gene set enrichment 
of Hallmark TNF-α Signaling Via NF-κB (M5890) from pseudobulk differential expression analysis (q = 5.96 × 10–16, multilevel splitting Monte Carlo). (G) 
Median modular expression of Hallmark TNF-α Signaling Via NF-κB (M5890) by diagnosis. Points represent median expression in total microglia from 
each patient (q = 2.6 × 10–2, Mann-Whitney). (H) Representative images of combined immunofluorescence and smFISH (RNAScope) from human frontal 
lobe tissue sections showing cell cycle–arrested, pro-inflammatory microglia in patients with COVID-19 relative to controls. Images are pseudocolored by 
channel as follows: DAPI: blue, IBA1: green, IL1B: red, CCL2: cyan, CDKN1A: magenta.
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had higher SOFA scores (q = 1.3 × 10–3, Mann-Whitney) and APS scores (q = 4.3 × 10–2, Mann-Whitney). 
Patients with SARS-CoV-2 pneumonia were more likely to self-describe as Hispanic or Latino than all oth-
er groups (q < 0.05, χ2 test of  proportions) and had higher BMIs (q < 0.05, Mann-Whitney) compared with 
the rest of  the cohort. Despite similar severity of  illness on presentation and hospital mortality rate, the 
duration of  mechanical ventilation and ICU stay was 1.8- to 2.4-fold longer in patients with SARS-CoV-2 
pneumonia compared with all other groups of  mechanically ventilated patients (q < 0.05, Mann-Whitney; 
Supplemental Data 3). In accordance with our previous findings, analysis of  BAL fluid samples collected 
from all patients other than healthy controls revealed an elevated percentage of  lymphocytes from patients 
with COVID-19 relative to all other groups of  mechanically ventilated patients (q < 0.05, Mann-Whitney; 
Supplemental Data 3). A total of  187 in the cohort had BAL samples collected within 48 hours of  intuba-
tion (early). Severity of  illness scores and mortality rates were similar in patients with early BAL samples 
compared with the entire cohort of  mechanically ventilated patients (q ≥ 0.05, Mann-Whitney and q ≥ 
0.05, χ2 test of  proportions, respectively; Supplemental Data 4).

We proposed a model in which the relatively long clinical course of  patients with COVID-19 results 
from spatially restricted inflammatory circuits between alveolar macrophages harboring SARS-CoV-2 and 
activated T cells in the alveolar space (33, 42). This model has since been confirmed by other groups (55–
58). Enhanced transcription of  chemokines promoting chemotaxis of  monocytes and T cells, including 
CXCL10, CCL8, and CCL2, by monocyte-derived alveolar macrophages infected with or harboring SARS-
CoV-2 is key to this model. In support of  this model, samples collected within 48 hours of  intubation from 
patients with COVID-19 clustered distinctly from other patient groups, driven by CXCL10 and CCL8 in 
BAL samples and CXCL10 in plasma (Figure 2, A and B). Elevated concentrations of  CCL2 and CCL8 
were also observed in BAL samples from patients with COVID-19, relative to patients with pneumonia 
secondary to nonviral pathogens (q < 0.05, Mann-Whitney; Figure 2, C and D). Indeed, concentrations of  
CXCL10 were significantly higher in the first 48 hours of  intubation in both BAL fluid and plasma from 
patients with COVID-19, relative to all other groups (q < 0.05, Mann-Whitney), and CXCL10 protein 
levels, alone, on initial BAL (AUROC = 0.88, P = 1.8 × 10–5) and plasma draw (AUROC = 0.83, P = 1.1 × 
10–5) were highly predictive of  COVID-19 status (Supplemental Figure 2, G and H). Levels of  CCL2 and 
CCL8 in BAL fluid as well as CXCL10 in plasma samples collected during the first 48 hours of  intubation 
were higher in patients with COVID-19 relative to all other groups, with the exception of  patients with 
other viral pneumonias (q < 0.05, Mann-Whitney; Figure 2, C and D).

Arguing against an unusually severe inflammatory response or “cytokine storm” in patients with 
COVID-19, the concentrations of  other BAL fluid cytokines in samples collected during the first 48 hours of  
intubation, including CXCL1, IFN-γ, IL-1β, IL-6, IL-8, and TNF-α, were higher in patients with pneumonia 
relative to healthy controls but were largely similar between groups of  mechanically ventilated patients (com-
plete comparisons are included in Supplemental Data 7). A similar pattern was observed in the plasma of  
patients with COVID-19 compared with patients with other causes of  pneumonia and respiratory failure (Fig-
ure 2D) (21, 22). Consistent with previous findings, the concentrations of  IL-1β, IL-6, and TNF-α were higher 
in all groups of  mechanically ventilated patients compared with healthy controls (Figure 2, C and D) (21).

We wondered whether the roughly 2-fold increase in the duration of  illness in patients with COVID-19 
might result in a higher cumulative exposure to pro-inflammatory cytokines. As the peak levels of  inflam-
matory cytokines did not differ between patients with COVID-19 compared with similarly ill patients with 
pneumonia secondary to other pathogens, cumulative exposure could only be higher if  the levels of  inflam-
matory cytokines did not normalize over the course of  the illness. We therefore performed geometric inte-
gration of  cytokine expression over the ICU course, yielding a single value corresponding to an estimate of  
cumulative exposure to a given cytokine during the ICU stay (Figure 3E). Strikingly, samples originating 
from patients with COVID-19 — particularly patients with unfavorable outcomes — clustered together 
and were defined by greater cumulative exposure to pro-inflammatory cytokines in both BAL fluid and 
plasma (Figure 3, A and B). Among the many cytokines with significantly greater cumulative exposure in 
COVID-19 were CXCL10, CCL8, CCL2, IL-6, and TNF-α (Figure 3, C and D; q < 0.05, Mann-Whitney).

Levels of  T cell and monocyte chemoattractants are lower in patients with severe COVID-19 who receive corticosteroid 
treatment. Prior to publication of  the RECOVERY Collaborative study demonstrating efficacy of  dexameth-
asone treatment in patients with severe COVID-19 (59), there was clinical equipoise concerning the prescrip-
tion of  systemic corticosteroids as a therapy for these patients. We took advantage of  the inconsistent use 
of  corticosteroids before this trial to examine their effect on cytokine expression in BAL fluid and plasma.  
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We performed unbiased comparison of  the concentrations of  all 55 analytes as a function of  steroid treat-
ment. In BAL fluid, only the levels of  CCL8, CXCL10, and CCL7 were significantly lower, and the levels of  
IL-10 were higher, in patients with COVID-19 after they received corticosteroids compared with those who 
did not receive corticosteroids (q < 0.05, Mann-Whitney). In plasma, only the concentrations of  CXCL10 and 

Figure 2. COVID-19 is distinguished from pneumonias of similar severity by expression of T cell and myeloid cell chemokines. (A) Hierarchical 
clustering of 41 cytokines showing significant variability by diagnosis (q < 0.05, Kruskal-Wallis) from 187 BAL samples collected in the first 48 hours 
of intubation from 183 patients with an early BAL. (B) Hierarchical clustering of 25 cytokines showing significant variability by diagnosis (q < 0.05, 
Kruskal-Wallis) from 137 early plasma samples from 134 patients. (C) Expression of COVID-19–defining T lymphocyte and monocyte chemokines and 
key pro-inflammatory cytokines from 479 BAL samples collected throughout the duration of mechanical ventilation from 332 patients. (D) Expression 
of COVID-19–defining T lymphocyte and monocyte chemokines and key pro-inflammatory cytokines from 396 plasma samples collected throughout 
the duration of mechanical ventilation from 262 patients.
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CCL7 were significantly lower, and IL-10 was significantly higher, after patients received corticosteroids (q < 
0.05, Mann-Whitney). Notably, while these cytokines were detected in all groups of  intubated patients, dif-
ferences in the concentration of  these cytokines as a function of  corticosteroid treatment were only observed 
in patients with COVID-19 (q ≥ 0.05, Mann-Whitney; Figure 4A), despite these patients receiving an equiv-
alent hydrocortisone-equivalent dose of  corticosteroids throughout their ICU stay as compared to similarly 
ill patient cohorts (q ≥ 0.05, Mann-Whitney; Supplemental Figure 3). In previously published scRNA-Seq 
data of  BAL fluid from this cohort, the expression of  CXCL10, CCL2, CCL7, and CCL8 was highest in mono-
cyte-derived alveolar macrophages harboring SARS-CoV-2 (33).

Circulating cytokines in patients with COVID-19 originate from the alveolar space. We reasoned that if  plasma 
cytokines in patients with SARS-CoV-2 originated from the alveolar space, we should observe a correla-
tion between the concentration of  BAL fluid cytokines and the concentration of  plasma cytokines. When 
comparing all analytes for all paired BAL and plasma samples, we observed a significant, nonlinear cor-
relation (P = 0.49, P < 2.2 × 10–16, Spearman rank correlation). Correlations were particularly strong for 
key cytokine markers of  SARS-CoV-2 infection, including CXCL10 (P = 0.55, q = 2.1 × 10–25, Spearman 
rank correlation), CCL2 (P = 0.52, q = 3.1 × 10–22, Spearman rank correlation), CCL8 (P = 0.41, q = 1.6 × 
10–5, Spearman rank correlation), and IL-6 (P = 0.38, q = 5.3 × 10–11, Spearman rank correlation). We also 
compared the concentrations of  inflammatory cytokines in paired BAL fluid and plasma samples. Despite 
the 10- to 100-fold dilution of  alveolar fluid by the BAL procedure (60), measured concentrations of  many 
inflammatory cytokines in BAL fluid, including IL-6, IL-1β, CCL2, and CCL8, exceeded the concentrations 
in plasma, while the levels of  CXCL10 and TNF-α were similar (Figure 4B). These data suggest the alveolus 
is the major contributor to pro-inflammatory cytokine levels in plasma during COVID-19 and are consistent 
with the known tropism of  SARS-CoV-2 for the respiratory epithelium and alveolar macrophages (61).

We then used previously published scRNA-Seq data from BAL fluid obtained from 10 patients in this 
cohort to identify candidate cells in the lung that might be the source of  inflammatory cytokines (33). 
Monocyte-derived alveolar macrophages expressed high levels of  CXCL10, CCL8, CCL2, CCL3, and IL1RN. 
Surprisingly, while IL-6 concentrations were higher in BAL fluid from patients with COVID-19, and these 
concentrations were strongly correlated with plasma concentrations, we did not identify cells expressing 
IL6 in BAL fluid, suggesting this cytokine is produced by cells in the lung parenchyma that are not sampled 
by the BAL procedure (Figure 4C).

Discussion
Neurologic and psychiatric symptoms are among the most common complaints in patients with PASC (2–
5). Even more concerning, survivors of  severe pneumonia, particularly the elderly, are at an increased risk 
of  dementia for years after hospitalization (7–9). Although some studies have suggested these symptoms 
result from direct infection of  the CNS by SARS-CoV-2, rigorous studies of  clinical samples and autopsy 
tissues from patients who died from COVID-19 reveal that SARS-CoV-2 infection is limited to the airway 
epithelium and alveolar macrophages (5, 12, 13, 33, 62, 63). In instances when SARS-CoV-2 was detected 
in the brain, it was limited to the hypothalamus, which is anatomically adjacent to the nasopharynx and has 
a relatively permeable blood-brain barrier, raising the question of  artifactual contamination during tissue 
processing (17). In flow cytometry–sorted immune cells from the cortex of  a small cohort of  patients who 
died after a diagnosis of  COVID-19, we did not detect direct CNS infection with SARS-CoV-2 or reactiva-
tion of  EBV1. Instead, we saw a transcriptional phenotype in microglia that included downregulation of  
genes associated with proliferation, upregulation of  CDKN1A, and higher expression of  inflammatory genes 
associated with signaling through TNF-α. Consistent with this finding, cumulative exposure to TNF-α and 
other cytokines originating from the lungs of  patients with COVID-19 was higher relative to patients with 

Figure 3. Cumulative but not peak exposure to pro-inflammatory cytokines is higher in patients with severe SARS-CoV-2 pneumonia compared with 
patients with severe pneumonia secondary to other pathogens. (A) Hierarchical clustering of cumulative exposure to 44 BAL cytokines showing signif-
icant variability by diagnosis (q < 0.05, Kruskal-Wallis) from 327 patients estimated by geometric integration of the levels of 479 BAL samples collected 
throughout the duration of mechanical ventilation. LTAC, long-term acute care. (B) Hierarchical clustering of cumulative exposure to 51 plasma cytokines 
showing significant variability by diagnosis (q < 0.05, Kruskal-Wallis) from 258 patients estimated by geometric integration of the levels of 396 plasma 
samples collected throughout the duration of mechanical ventilation. (C) Cumulative expression of selected pro-inflammatory cytokines in BAL fluid from 
A. (D) Cumulative expression of selected pro-inflammatory cytokines in plasma from B. (E) Schematic for calculation of cumulative exposure for each 
cytokine assayed for each patient throughout the course of mechanical ventilation by geometric integration. BAL samples from 3 patients and plasma 
samples from 2 patients receiving long-term mechanical ventilation were excluded from these analyses.
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pneumonia from other pathogens. As microglial inflammation has been demonstrated to reduce neuronal 
plasticity, synapse density, and memory formation (25, 26, 64–66), these changes may partly explain deficits 
in executive function observed in COVID-19 survivors (2, 10).

Whether the cognitive changes and increased rates of  dementia observed in patients with 
COVID-19 are more severe or frequent than those observed in survivors of  pneumonia secondary to 

Figure 4. Corticosteroid treatment is associated with reductions in T cell and myeloid cell chemokine expression predominantly in monocyte-derived 
alveolar macrophages. (A) Box plots of cytokine expression for all BAL fluid and plasma cytokines exhibiting significantly altered expression (q < 0.05, 
Mann-Whitney) following corticosteroid treatment. Lightly shaded boxes represent cytokine expression values prior to corticosteroid treatment, and 
darkly shaded boxes represent expression values after corticosteroid treatment. (B) Paired comparisons of cytokine expression in BAL and plasma for all 
paired samples (paired Mann-Whitney). (C) Deconvolution of “bulk” cytokine expression in BAL fluid by scRNA-Seq of cells isolated from BAL fluid. Mean 
cytokine gene expression for each cell type detected in scRNA-Seq data (33) (black points) is overlaid on bulk cytokine expression by multiplexed cytokine 
array (filled bars) to identify cell type contributors to cytokine expression. MoAM, monocyte-derived alveolar macrophage; TRAM, tissue-resident alveolar 
macrophage; Treg, CD4+ regulatory T cell; iNKT, invariant natural killer T cell.
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other pathogens is unknown (7–9). Consistent with another report, we found the levels of  inflammato-
ry cytokines originating in the lung at the time of  peak illness severity (within 48 hours of  intubation 
for respiratory failure) were similar in patients with COVID-19 compared with patients with pneumo-
nia secondary to other pathogens (67). We took advantage of  serial sampling in our cohort to show 
that the levels of  lung-derived inflammatory cytokines remain elevated in patients with COVID-19 
over the course of  their ICU stay. As we and others have reported, the duration of  critical illness is 
twice as long in patients with COVID-19 compared with patients with pneumonia secondary to oth-
er pathogens (33, 42–47). The data reported here show that patients with COVID-19 have a higher 
cumulative systemic exposure to lung-derived inflammatory cytokines during their illness and suggest 
a “cytokine monsoon” rather than “cytokine storm” might drive more severe or prolonged post-acute 
sequelae of  infection in COVID-19 survivors through prolonged activation of  NF-κB.

Using data obtained from the analysis of  alveolar samples, we developed a model that explains the 
long duration of  illness in patients with COVID-19, which has been confirmed by other groups (55–58) 
and has been suggested to contribute to downstream pathology even after apparent recovery (68). Key 
to this model is the presence of  self-sustaining inflammatory circuits between alveolar macrophages 
harboring or infected with SARS-CoV-2 and activated T cells in the alveolar space that are maintained 
by the release of  CXCL10, CCL8, and CCL2. Our findings support this model by showing alveolar and 
plasma levels of  these cytokines differentiate patients with COVID-19 from patients infected with other 
pathogens. Moreover, we found that corticosteroids, which are effective in SARS-CoV-2 but are not 
universally effective in all causes of  pneumonia, were associated with lower levels of  these inflammato-
ry cytokines in the lung and plasma, possibly by targeting their expression from alveolar macrophages 
harboring SARS-CoV-2 (59, 69).

Our study has limitations. Most importantly, while our sampling of  alveolar fluid and plasma 
includes the largest cohort of  patients reported to date, our analysis of  cortical tissue includes only 
a single anatomical region, intentionally heavily enriched for microglia over other immune and non-
immune cell populations, from a small group of  patients in whom cytokine exposure was inferred 
rather than directly measured. These samples also originate from a cohort distinct from that used for 
cytokine measurements. It is therefore possible that microglial phenotypes that develop in a minority 
of  patients were missed in our analysis or that our small cohort represents outliers. Additionally, other 
brain regions may demonstrate distinct patterns of  resident immune cell activation. Second, while our 
data suggest the transcriptomic changes in microglia we observe in patients with COVID-19 are induced 
by TNF-α and other cytokines, we cannot infer causality from these observational data. As an alter-
native hypothesis, tissue hypoxia resulting from COVID-19–induced vascular injury could account for 
inflammatory activation of  microglia through HIF-1α (31, 70–73), or cognitive dysfunction may result 
from other lung-derived damage-associated molecular patterns, neurotoxic agents, or pro-inflammatory 
molecules (74–76). Third, the administration of  corticosteroids in our observational cohort was not 
randomized and did not include a placebo control. We therefore cannot conclude the differences in 
cytokine expression we observed are causally linked to steroid administration. Fourth, as our scRNA-
Seq data from BAL fluid do not effectively capture all lung cell types, we cannot determine if  alveolar 
macrophages are the primary contributors to the expression of  chemokines that attract and activate 
T cells and monocytes. Finally, all samples were collected between March 2021 and April 2022, after 
which novel mutant strains of  SARS-CoV-2 continued to arise. We therefore cannot determine whether 
our findings are directly applicable to SARS-CoV-2 strains dominant after April 2022.

Methods
Sex as a biological variable. Patients of  both biological sexes were included in all arms of  this study. Sex was 
not explicitly modeled as a biological variable because of  limited statistical power.

Human participants (BAL and plasma collection). Patients at least 18 years of  age with suspicion of  
pneumonia based on clinical criteria (including but not limited to fever, radiographic infiltrate, and respi-
ratory secretions) were screened for enrollment into the SCRIPT study. Inability to safely obtain BAL or 
nonbronchoscopic BAL (NBBAL) were considered exclusion criteria (77). In our center, patients with 
respiratory failure are intubated based on the judgment of  bedside clinicians for worsening hypoxemia, 
hypercapnia, or work of  breathing refractory to high-flow oxygen or noninvasive ventilation modes. All 
patients were admitted to Northwestern Memorial Hospital in Chicago between June 15, 2018, and 
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September 29, 2021. Bronchoscopy was most commonly performed as part of  routine clinical care to 
guide antimicrobial therapy, with paired blood draws for plasma for most samples. Procedures for patient 
care are outlined (33). Pneumonia category adjudication was performed by 5 critical care physicians 
using a published protocol (78). Clinical laboratory data were obtained from the Northwestern Medicine 
Enterprise Data Warehouse using Structured Query Language. APS and SOFA scores were generated 
from the electronic health record using previously validated programming. Anonymized clinical data 
from this cohort are available on Physionet (https://doi.org/10.13026/5phr-4r89) (53, 54). A complete 
list of  the investigators involved in this study is available in Supplemental Data 5. Strain information for 
patients with COVID-19 is available in the Supplemental Data 6.

NBBAL and BAL procedures (Northwestern University). Consent was obtained from patients or legal deci-
sion makers for the bronchoscopic procedures. Bronchoscopic BAL was performed in intubated ICU 
patients with flexible, single-use Ambu aScope (Ambu) devices. Patients were given sedation and topical 
anesthetic at the physician proceduralist’s discretion. Vital signs were monitored continuously throughout 
the procedure. The bronchoscope was wedged in the segment of  interest based on available chest imaging 
or intraprocedure observations; aliquots of  30 cc of  normal saline at a time, generally 90–120 cc total, were 
instilled and aspirated back. The fluid returned following the first aliquot was routinely discarded. Sam-
ples were split (if  sufficient return volume was available) and sent for clinical studies, and an aliquot was 
reserved for research. A similar procedure was applied to NBBAL; however, NBBAL was performed with 
directional but not visual guidance and as usual procedural care by a respiratory therapist rather than a pul-
monologist (77). In most cases the early bronchoscopy was performed immediately after intubation (77).

BAL procedures (Duke University healthy controls). Bronchoscopic BAL was performed in patients in the 
bronchoscopy suite or in the ICU. Patients were given sedation and topical anesthesia at the discretion of  
the physician performing the bronchoscopy. The most involved bronchopulmonary segment was identified 
based on clinician based on review of  the chest CT scan, and 90–120 mL of  saline was instilled into the 
segment of  interest and aspirated back, with the first 5 cc of  return discarded.

Plasma collection. Patient whole blood was collected in lithium heparin tubes on the same day BAL or 
NBBAL procedures were performed. The cellular fraction was spun down for 10 minutes at 1,690g at 4°C, 
and the plasma fraction was removed and stored at –80°C prior to multiplexed cytokine analysis.

Human brain autopsy. During routine brain autopsy, sections of  the frontal cortex were removed by 
dissection and placed in sufficient precooled HypoThermosol solution (BioLife Solutions 101104) to cover. 
Postmortem interval for all samples is reported in Supplemental Table 1. Under aseptic conditions, any 
remaining arachnoid mater was removed on ice and discarded. Samples were then divided into 2 sections. 
The minor section was fixed in ice-cold fresh 4% formaldehyde (Electron Microscopy Sciences 15714) 
in 1× PBS for 48–72 hours, before being transferred to 1× PBS (Corning 21-040-CM) + 0.01% sodium 
azide (MilliporeSigma S2002) indefinitely. The major section was chopped into approximately 3 mm strips, 
stored at 4°C in HypoThermosol FRS (BioLife Solutions 101102), and processed for flow cytometry sort-
ing as described below 0–48 hours later.

Human brain tissue processing and isolation of  single-cell suspension. Free-floating sections were placed 
on ice and rinsed briefly with 1× HBSS (Thermo Fisher Scientific 21023CM) and strained. Tissues were 
then chopped thoroughly in 1 mL ice-cold digest buffer consisting of  1× Papain Dissociation System 
(Thermo Fisher Scientific NC9212788; 1 vial dissolved in 5 mL HBSS to yield 20 U of  papain/mL in 1 
mM l-cysteine with 0.5 mM EDTA) and 1 mg/mL DNase I (Roche 10104159001) with curved scissors. 
Chopped tissue was then transferred to gentleMACS C-tubes (Miltenyi Biotec 130-093-237) and mixed 
with 1 mL HBSS. Samples were then mechanically dissociated using a gentleMACS Octo Dissociator 
using the stock program “m_brain_03_01.” Samples were then shaken at 200 rpm, 37°C, for 30 minutes, 
followed by a second round of  mechanical dissociation. Digestion was then stopped by mixing samples 
with 18 mL ice-cold, sterile-filtered 1% BSA (MilliporeSigma SLBW2268) in 1× HBSS. Cell suspensions 
were then mashed through a 70 μm filter with 3 × 10 mL ice-cold 1% BSA in HBSS into a fresh 50 mL 
conical tube. The resulting single-cell suspension was then pelleted at 400g for 10 minutes at 4°C and 
resuspended in 25 mL RT 30% Percoll (MilliporeSigma GE17-0891-01) in 1× HBSS without calcium or 
magnesium (Gibco 14185-052). The resultant suspension was then slowly layered on top of  5 mL 70% 
Percoll in 1× HBSS without calcium or magnesium. Density centrifugation was performed at 600g, brake 
0, and acceleration 4 for 30 minutes at room temperature (RT). Myelin and debris were removed using 
a vacuum apparatus, and 5–10 mL of  the cell-containing interphase was transferred to a fresh 50 mL 
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conical tube, discarding the RBC/debris pellet. The purified cell suspension was then diluted 3:1 in ice-
cold 1× HBSS and pelleted at 400g for 5 minutes at 4°C. Cells were then resuspended in 15 mL ice-cold 
1× HBSS and again pelleted at 400g for 5 minutes at 4°C and resuspended in 500 μL ice-cold MACS 
buffer (Miltenyi Biotec 130-091-221). A 10 μL aliquot was then mixed with 10 μL 2× AOPI (Nexcelom 
NC1412892) and counted using a Cellometer K2. Remaining cells were then pelleted at 400g for 5 min-
utes at 4°C and resuspended at 1 × 106 cells/mL in ice-cold BamBanker medium (Bulldog Bio BB02). 
Cell suspensions were aliquoted at 2.5 × 105 to 5.0 × 105 cells and frozen directly at –80°C until sorting.

Cryorecovery and flow cytometry sorting of  human microglia. Frozen human brain single-cell suspensions 
were thawed rapidly in a 37°C water bath with swirling and transferred to fresh 50 mL conical tubes. Cell 
suspensions were then diluted slowly with prewarmed RPMI 1640 (Thermo Fisher Scientific MT10041CV) 
+ 5% FBS (Gibco 26140079), 50 μL every 5 seconds with agitation until 1.5 mL, 100 μL every 5 seconds 
with agitation until 5 mL total volume. The resultant suspension was then filtered through a 70 μm strainer 
and washed with 500 μL RPMI + 5% FBS and spun down at 400g for 10 minutes at RT. Cells were then 
resuspended in 50 μL ice-cold 1:10 human TruStain FcX (BioLegend 422302) in MACS buffer and incu-
bated for at least 5 minutes on ice. A 2 μL aliquot was then counted on a Cellometer K2 as above. Samples 
were then mixed with 50 μL antibody cocktail/1 × 106 cells (minimum 50 μL; see cocktail below) and 
incubated at 4°C in the dark for 30 minutes. Cells were then diluted with 900 μL ice-cold MACS buffer 
and pelleted at 400g for 5 minutes at 4°C and resuspended in 400 μL ice-cold MACS buffer. Immediately 
before sorting, suspensions were filtered through a 70 μm filter and rinsed with 100–600 μL MACS buffer. 
SYTOX stain (Invitrogen S34860) was then added at 1 μL, and the suspension was mixed thoroughly. Cells 
were then sorted into PBS + 4% BSA (MilliporeSigma A1595-50ML) in DNA low-bind tubes (Eppendorf  
022431005) using a FACSAria SORP (BD Biosciences) in a BioProtect IV-LE-Bio Containment Hood 
with a 100 μm nozzle. For scRNA-Seq, cells were sorted as singlet, nondebris, live (SYTOX–), CD56–, 
CD15–, CD45+, HLA-DR+ events. Microglia were further subdivided as (CD14/CD3/CD19)– events for 
flow cytometry. Full antibody information is provided in Supplemental Table 3.

ScRNA-Seq. Sorted cells were diluted to 1.5 mL with BamBanker medium and immediately pelleted 
at 400g for 5 minutes at 4°C. Cells were then resuspended in PBS + 4% BSA at ~1 × 106 cells/mL. Cell 
concentrations and viability were confirmed using a Cellometer K2 as above. Libraries were then generated 
using the 10x Genomics 5’ V2 kit, according to manufacturer’s instructions (CG000331 Rev A), using a 10x 
Genomics Chromium Controller. After quality checks, scRNA-Seq libraries were pooled and sequenced on 
a NovaSeq 6000 instrument using an S1 flow cell (Illumina 20028319).

ScRNA-Seq analysis and processing. Data were processed using the Cell Ranger 7.0.1 pipeline (10x 
Genomics) with intronic reads disabled. To enable detection of  viral RNA, reads were aligned to a custom 
hybrid genome containing GRCh38.93 and SARS-CoV-2 (NC_045512.2). An additional negative-strand 
transcript spanning the entirety of  the SARS-CoV-2 genome was then added to the GTF and GFF files 
to enable detection of  SARS-CoV-2 replication as described (33). Samples were genetically demultiplexed 
using the supplied “common_variants_grch38.vcf ” reference, stripped of  genetically defined doublet cells. 
Putative heterotypic doublets were then flagged for removal using scrublet 0.2.3 with manual thresholding 
of  doublet scores, before removal using custom scripts in R (79). Detection and removal of  empty drop-
lets were then performed using cellbender 0.2.0 using GPU optimization with a 40 GB Tesla A100 GPU 
(80). Where applicable, expected cell numbers were determined using the 10x Genomics 5’ V2 kit manual. 
Thresholding of  initial filtering and preprocessing was performed using Seurat 4.2.1 (81), followed by inte-
gration using SCVI within SCVItools 0.14.3 (82), and reimported into Seurat for all clustering, dimensional 
reduction, and all downstream high-level analysis using built-in Seurat functions and custom scripts in R. 
All manipulations in Seurat were performed with the aid of  tidyseurat 0.5.3 (83). Normalization was per-
formed using SCTransform 0.3.5 (84), and clustering was performed using the Leiden algorithm. Default 
parameters were otherwise used unless directly specified (85). Cluster markers for Figure 1C were chosen 
as follows. First, the top 5 markers (as determined by average log2 fold-change) for each named cluster 
were identified in an unbiased manner using the FindAllMarkers() function in Seurat with only.pos set to 
TRUE. For readability, uninformative markers or methodological artifacts were manually removed, includ-
ing genes matching the regular expression “-RP[LS]|-MT-|-EEF|-SH3,” as well as MALAT1, NEAT1, 
AHNAK, SNHG29, ITM2B, HMGN2, ARL6IP1, SYNE2, and APOC2. The following genes were then man-
ually included based on well-defined cell type and state markers as well as the results of  the pseudobulk 
DEA: AIF1, TMEM119, P2RY12, CD3E, CD8A, CD19, JCHAIN, CDKN1A.
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Pseudobulk DEA. Pseudobulk analysis was performed using the “bulkDEA” function in the “Seurat_
pseudobulk_DEA.R” script in the NUPulmonary/utils repository. Briefly, raw counts (object@assays$RNA@
counts) were aggregated by sum by patient and major cell type (e.g., microglia, CD8+ T cells) and passed from 
Seurat to DESeq2 1.34.0 (86) with relevant metadata. DEA was performed by group, i.e., COVID-19 versus 
control. Size factor estimation, dispersion fitting, and Wald tests were performed using the DESeq function 
in DESeq2. “Parametric” and “local” models of dispersion were compared visually for goodness of fit, and 
the most reasonable fit was chosen. Results were then extracted using the results function with α set to 0.05. 
Default parameters were used unless otherwise specified. In all plots of pseudobulk gene counts, P values 
shown are FDR-corrected P values directly from DESeq2 analysis. For GSEA, the fgsea 1.20.0 package was 
used (87). Hallmark gene set lists were downloaded from the MSigDB 7.5.1. Enrichment analysis was then 
performed for all gene sets simultaneously using the “fgseaMultilevel” method using gene-level Wald statistics 
as rankings and default parameters.

Multiplexed cytokine assays. For in-house assays, cytokine levels in matched BAL fluid and plasma collected 
from patients were measured using the multiplexed human cytokine/chemokine magnetic bead kits from Mil-
liporeSigma (HCYTMAG-60K-PX41 and HCYP2MAG-62K) according to manufacturer’s protocol (HCY-
TOMAG-60K Rev. 18-MAY-2017). Briefly, frozen BAL and plasma samples were thawed, then spun at 500 rcf  
for 5 minutes to clarify, and 25 μL of sample was added to 25 μL of premixed magnetic beads in the provided 
96-well plate, incubated at 4°C for 4 hours, washed, and sequentially labeled with 25 μL of detection antibodies 
followed by 25 μL of streptavidin-phycoerythrin prior to analysis using a Luminex 200 system. Raw MFI, bead 
counts, and standard concentrations were exported and analyzed as described below. Remaining assays were 
performed by Eve Technologies (Calgary, Alberta, Canada). Samples were thawed and aliquoted at 100 μL, 
frozen and shipped to the contact research organization on dry ice. The Human Cytokine/Chemokine 71-Plex 
Discovery Assay (HD71) was then performed on each sample. Custom outputs contained raw MFI values, 
standard curve concentrations, and bead counts for processing as described below.

Multiplexed cytokine assay processing and analysis. Processing and high-level analysis were performed 
using custom scripts in R 4.1.1, which are included in the GitHub repository for this publication. Raw 
MFI values, bead counts, and standard concentrations were first stripped from the data output from either 
Exponent (in-house assays; Luminex) or bespoke output from Eve Technologies (Calgary, Alberta, Cana-
da). MFI measurements with fewer than 50 bead counts were discarded. Standard curves for each cytokine 
were then fit for each assay run using self-starting 5-parameter logistic (5PL) models using drc 3.2-0 (88). 
Cutoffs for curves with low predictive value were then determined empirically using histograms’ MFI val-
ues versus standard concentrations to identify a bimodal distribution cutoff. For in-house assays, all values 
calculated using standard curves with MFI < 50 at 100 pg/mL were discarded. For Eve Technologies 
assays, all values calculated using standard curves with MFI < 50 at 10 pg/mL were discarded. Experi-
mental values for each cytokine were then predicted using the ED function in drc with “absolute” value 
prediction. In rare cases where a 5PL model could not be hit for an individual cytokine assay combination, 
these values were excluded (Supplemental Figure 4). Values below the lower asymptote of  the model were 
set to a concentration of  0 pg/mL. Values above the upper asymptote were set to the value of  the upper 
asymptote. Technical replicates (including those across assays) were collapsed by mean with NA values 
excluded. Analytes showing poor dynamic range were excluded from further analysis. For calculations of  
cumulative exposure (AUC) by ICU day, a piecewise linear function was first fit for each patient for each 
analyte for all measurements during the patient’s stay using the approxfun function in R stats 4.1.1 using 
the “linear” method with n = 100. Initial measurements were carried out an additional day to represent 
the time of  admission to first measurement, and final measurements were carried out an additional day to 
represent time until discharge or cessation of  measurement. In rare cases where an initial measurement was 
missing, values were imputed by setting the initial measurement (day = 0) to the first measurement for the 
analyte/patient pair. Geometric integration was then performed using the integrate function using the day 
of  first measurement as the lower bound and the final day of  measurement + 1 as the upper bound. Default 
parameters were used unless otherwise specified.

Machine learning prediction of  COVID-19 status. Initial BAL and plasma samples (n = 1/patient) were 
collected for all patients with a BAL or plasma draw within the first 48 hours of  intubation. For healthy 
control samples, the first sample of  each type was used. Data sets were then split 75%/25% train/test 
at random. A GLM-based logistic regression classification model with binary outcome (“COVID-19” 
or “Other”) was then fit using tidymodels 1.1.0 in R (89, 90).
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Bulk cytokine deconvolution. Raw scRNA-Seq counts from Grant et al. (NCBI GEO GSE155249) (33) 
were imported as an H5AD object using SCANPY 1.9.1 (91). Genes were then filtered to the union between 
genes detected by scRNA-Seq (counts > 0) and analytes analyzed in multiplexed cytokine assays. Expres-
sion of  each analyte-encoding gene was then summarized by mean using pandas 1.5.1 (92) and numpy 
1.23.4 (93) and exported as a CSV file for further analysis in R 4.1.1 using the environment described here-
in. For correlations between protein expression by multiplexed cytokine assay and cell type– and cell state–
specific scRNA-Seq counts, exact Spearman correlations were performed using cor.test in R stats 4.1.1.

Single-molecule FISH and immunofluorescence. Fixed human postmortem frontal lobe sections were collect-
ed as described above and transferred to sterile-filtered 20% sucrose in PBS for 24–48 hours at 4°C until fully 
equilibrated. This procedure was then repeated with 10% sucrose + 50% Scigen Tissue-Plus O.C.T. Com-
pound (Thermo Fisher Scientific 23-730-571). Equilibrated samples were then embedded in 100% Scigen 
Tissue-Plus O.C.T. Compound and frozen on dry ice before being stored at –80°C indefinitely. Tissue sec-
tioning and pretreatment were performed according to manufacturer’s instructions using the “Fixed-frozen 
tissue sample preparation and pretreatment” protocol from the RNAScope Multiplex Fluorescent Reagent 
Kit v2 User manual (ACD 323100-USM/Rev Date: 02272019) and using the RNAscope H2O2 and Protease 
Reagents kit (ACD 322381) and RNA-Protein Co-Detection Ancillary Kit (ACD 323180). Tissues were 
sectioned using a Cryocut 1800 cryostat (Reichert Jung) at 14 μm. Sections were transferred directly to RT 
Bond 380 microslides (Matsunami 0380W). Samples were boiled in ACD codetection target retrieval buffer 
for 5 minutes. All downstream steps were performed according to the RNAscope Multiplex Fluorescent 
v2 Assay combined with Immunofluorescence - Integrated Co-Detection Workflow (MK 51-150/Rev B/ 
Effective Date: 02/11/2021). For IBA1 staining, sections were stained with an anti-IBA1 antibody at a 1:50 
dilution (Abcam ab178847) for 1–2 hours at RT followed by 3 washes in PBS + 0.1% Tween 20 (PBS-T; 
MilliporeSigma P7949-100ML). Primary antibody was then fixed to the tissue for 30 minutes in 4% para-
formaldehyde for 30 minutes at RT followed by 3 washes with PBS-T. Staining by smFISH and mounting 
were performed as described in the RNAscope 4-plex Ancillary Kit for Multiplex Fluorescent Reagent Kit 
v2 protocol (ACD 323120-TN/Rev A/Draft Date 12172019) using the RNAscope Multiplex Fluorescent 
Detection Reagents kit v2 (ACD 323110) and RNAscope 4-Plex Ancillary Kit for Multiplex Fluorescent Kit 
v2 (ACD 323120). Sections were stained with probes against CCL2 (channel 1; ACD 423811) conjugated 
to Opal 690 (Akoya FP1497001KT), CDKN1A (channel 2; ACD 311401-C2) conjugated to Opal Polar-
is 780 (Akoya FP1501001KT), and IL1B (channel 4; ACD 310361-C4) conjugated to Opal 620 (Akoya 
FP1495001KT). Expression of  IBA1 was then visualized using a secondary antibody against rabbit IgG 
conjugated to Alexa Fluor 488 (Life Technologies A21206) at a 1:500 dilution in Co-Detection Antibody 
Diluent for 30 minutes at RT. Autofluorescence was quenched by treatment with 1× TrueBlack stain (Bio-
tium 23007) in 70% ethanol for 30 seconds followed by 3 washes in PBS. Samples were then counterstained 
with ACD DAPI solution for 1 minute followed by 1 wash in PBS. Sections were mounted with Prolong 
Gold mountant (Thermo Fisher Scientific P36930) using VWR No. 1.5 coverglass (VWR 48393-195). Full 
antibody information is provided in Supplemental Table 3.

RNAscope imaging and image processing. Slides from human brain sections were prepared as described above 
and imaged with a 60× Plan Apo oil immersion objective (NA 1.4) on a Nikon ECLIPSE Ti2 wide-field 
inverted microscope equipped with a Photometrics Iris 15 camera at the Northwestern University Center for 
Advanced Microscopy & Nikon Imaging Center. DAPI, Alexa Fluor 488, Opal 620, Opal 690, and Opal Polar-
is 780 were captured using a filter set for DAPI (Chroma 49000), EGFP (Chroma 49002), DSRed (Chroma 
49005), Cy5 (Chroma 49006), and Cy7 (Nikon 96377), respectively, using LED illumination. Z-stacks were 
acquired for all images shown at 0.3 μm per optical section. Image processing was then performed using a cus-
tom macro in FIJI/ImageJ version 2.9.0/1.54b (94, 95). Raw ND2 files were imported using the Bio-Formats 
plugin without rescaling and split by channel. Each channel was then flattened using a maximum Z projection. 
Background subtraction was then performed individually on each channel using the “Rolling Ball” algorithm 
individually for each channel using the “Subtract Background” function with a radius of 20 for all RNAScope 
targets, 50 for DAPI/DNA, and 100 for IBA1. Individual channels were then rescaled with the same LUT. 
Channels were then merged and pseudocolored using the “Merge Channels” function, converted into an RGB 
color TIFF, and exported. Individual channels were then inverted and exported as 16-bit TIFFs.

Statistics. Statistical analysis was performed using R 4.1.1 with tidyverse version 1.3.1 (96). For all com-
parisons, normality was first assessed using a Shapiro-Wilk test and manual examination of  distributions. 
For parameters that exhibited a clear lack of  normality, nonparametric tests were used. In cases of  multiple 
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testing, P values were corrected using FDR correction. Adjusted P values less than 0.05 were considered 
significant. Two-sided statistical tests were performed in all cases. Plotting was using ggplot 2.3.4.0 unless 
otherwise noted (97). Heatmaps were generated using ComplexHeatmap 2.10.0 with clustering using 
Ward’s Method (D2) with Euclidean distance as the distance metric (98). Figure layouts were generated 
using patchwork 1.1.2 and edited in Adobe Illustrator 2023. In all box plots, box limits represent the inter-
quartile range (IQR) with a center line at the median. Whiskers represent the largest point within 1.5× 
IQR. All points are overlaid. Outlier points are included in these overlaid points but not shown explicitly.

Study approval. All human research was approved by the Northwestern University Institutional Review 
Board (IRB) and the Duke University IRB. Samples from patients with COVID-19, viral pneumonia, or 
other pneumonia and from nonpneumonia controls were collected from participants enrolled in SCRIPT 
study STU00204868. Data from this cohort have been published previously and are available from dbGAP 
(phs002300.v1.p1) (33, 53, 54). All participants or their legal surrogates provided informed consent. Healthy 
volunteers were enrolled in the studies Pro00088966 and Pro00100375 at Duke University. Brain autopsy 
was performed at Northwestern Memorial Hospital, as approved under IRB STU212579 and CSRC-1661.

Data availability. The complete scRNA-Seq data set, including raw FASTQ files, raw and normalized 
counts, and all relevant metadata, is available through GEO at GSE259276 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE259276). Supporting Data Values are available as an Excel file. An inter-
active version of  Figure 1A with all gene expression data and relevant metadata is available at https://
nupulmonary.org/covid-19/human_microglia/?ds=human_microglia_COVID-19.

The complete code used to process data and generate all figures is available at https://github.com/
NUPulmonary/2023_Grant_Poor (commit ID 8b56b58). Scripts used for data processing are available at 
https://github.com/NUPulmonary/utils (commit ID bf1c984).
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