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Abstract

Immunohistochemistry (IHC) is a well-established and commonly used staining method for 

clinical diagnosis and biomedical research. In most IHC images, the target protein is conjugated 

with a specific antibody and stained by Diaminobenzidine (DAB), resulting in a brown coloration, 

while hematoxylin serves as a blue counterstain for cell nuclei. The protein expression level is 

quantified through the H-score, calculated from DAB staining intensity within the target cell 

region. Traditionally, this process requires evaluation by two expert pathologists, which is both 

time-consuming and subjective.

To enhance the efficiency and accuracy of this process, we have developed an automatic algorithm 

for quantifying the H-score of IHC images. To characterize protein expression in specific cell 

regions, a deep learning model for region recognition was trained based on hematoxylin staining 

only, achieving pixel accuracy for each class ranging from 0.92 to 0.99. Within the desired area, 

the algorithm categorizes DAB intensity of each pixel as negative, weak, moderate, or strong 

staining and calculates the final H-score based on the percentage of each intensity category.

Overall, this algorithm takes an IHC image as input and directly outputs the H-score within a few 

seconds, significantly enhancing the speed of IHC image analysis. This automated tool provides 

H-score quantification with precision and consistency comparable to experienced pathologists but 

at a significantly reduced cost during IHC diagnostic workups. It holds significant potential to 

advance biomedical research reliant on IHC staining for protein expression quantification.
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INTRODUCTION

Immunohistochemistry (IHC)-stained tissue imaging is the most common approach to 

characterize the expression of a specific protein across tissues. Initially, the target protein 

fixed on the IHC slide is recognized by a specific antibody, forming an antigen-antibody 

complex and is then visualized through a colored histochemical reaction with reporter 

molecules such as Diaminobenzidine (DAB)1,2. Additionally, a counterstain, typically 

hematoxylin, is applied to contrast the staining of the target protein. Due to its essential 

role in demonstrating the distribution and expression of protein biomarkers within tissue 

sections, IHC staining has become a routine method in basic research and diagnostic 

pathological examination3–5.

In IHC images, DAB intensity serves as an indicator of protein expression and can be 

effectively quantified using the H-score. The H-score is a reliable metric calculated as 

follows: (1 × percentage of weak staining) + (2 × percentage of moderate staining) + (3 × 

percentage of strong staining) within the target region, ranging from 0 to 3006. IHC staining 

and H-score provide superior protein detection capabilities compared to other methods 
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(e.g., western blot) because they can measure protein expression levels within specific cell 

regions, which is especially valuable for quantifying proteins within specific types of cells 

of interest. The H-score calculation has been widely employed to establish links between 

proteins and tumors, playing crucial roles in diagnosis, prognosis, and therapeutic decision-

making7–13. For example, over 60% of non-small cell lung cancer (NSCLC) patients exhibit 

overexpression of epidermal growth factor receptor (EGFR)14, and a higher EGFR H-score 

is strongly associated with shorter overall survival15. Similarly, breast cancer patients can be 

stratified into different treatment groups based on the expression levels of estrogen receptor 

(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) 

measured by the H-scores16.

Traditionally, the H-score is manually determined by proficient pathologists, involving the 

differentiation of diverse cell regions based on morphological features, categorization of 

DAB intensity within the tumor region, and calculation of the final H-score. This process 

demands a significant amount of time, attention, and specialized pathology expertise. 

Furthermore, the results obtained are not consistently reproducible even among experienced 

pathologists, mainly due to subjectivity in several aspects: 1) Human eyes tend to focus 

on tumor cells with intense DAB staining while disregarding other tumor cells; 2) The 

classification of DAB intensity into four categories, including negative, weak, moderate, and 

strong staining, lacks definitive criteria; 3) The percentage of each DAB intensity category 

is roughly estimated rather than accurately measured; 4) Heavy workload may also interfere 

with pathologists’ attention to details. All of these factors hinder the adoption of the H-score 

as a quantitative prognostic indicator in clinical practice17,18. Therefore, an automated 

analysis tool is highly desired to assist pathologists in evaluating the H-score efficiently and 

objectively.

Over the past decade, several studies19–27 have developed automated algorithms for the 

quantitative assessment of IHC images. However, significant efforts are still needed to 

improve quantification accuracy and efficiency. The algorithms developed before 201019–

21 required hand annotations or fluorescent tags to locate the tumor region, demanding 

extra time and effort from pathologists. With the advancements in artificial intelligence, 

it has become feasible to automatically separate different regions, allowing the H-score 

analysis to focus on the identified tumor region. However, previous models22–26 were 

trained using original IHC images containing both hematoxylin staining and DAB staining. 

If the majority of tumor cells are strongly stained by DAB in the prepared training and 

validation sets, the trained model may ignore tumor cells with weak staining, leading to a 

higher H-score than the actual value, and vice versa. Additionally, as for the categorization 

of regions, former models segmented the whole image into either two categories: tumor and 

non-tumor22,23,26, or three categories: tumor, stroma, and background24,25. This ambiguous 

classification diminishes the recognition capability of the developed models. Consequently, 

other common cell regions whose morphological characteristics were not learned by the 

model during the training process, such as necrosis or lymphocyte regions, may be 

predicted as tumor regions and mistakenly involved in H-score calculation. Furthermore, 

these algorithms are challenging to generalize due to their restrictions to the subcellular 

localization of the protein. Some of these algorithms22,23,25,26 are exclusively designed for 

the H-score analysis of nuclear proteins (e.g., ER/PR), while others22,24,25 are designed 

Wen et al. Page 3

Mod Pathol. Author manuscript; available in PMC 2024 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for cytoplasmic or membrane proteins (e.g., EGFR/HER2). Moreover, most papers22–

25,28 heavily rely on existing software from vendors (e.g., Leica, QuPath29) for region 

recognition, color deconvolution, and intensity measurement, necessitating pathologists to 

navigate multiple software programs, resulting in a time-consuming process that generates 

numerous intermediate files. Most importantly, many of these algorithms are not publicly 

accessible, significantly limiting the application of automatic H-score evaluation.

In this paper, we present an automatic algorithm for H-score quantification of IHC images. 

The main advantages of this developed method are fast processing, unbiased prediction, 

and consistent classification. The workflow is summarized in Figure 1. Initially, color 

deconvolution [30] of the original IHC images was performed to separate hematoxylin 

staining from DAB staining. Based solely on hematoxylin staining, a UNet-MobileNet 

model30,31 was trained to recognize the most common cell regions, including tumor regions, 

stroma regions, necrosis regions, lymphocyte regions, and background. DAB staining 

usually only appears in part of the cell, as the target protein is expressed on a specific cell 

structure such as the nucleus, cytoplasm, or cell membrane. Including unwanted structures 

in the calculation can lead to erroneous H-scores, reducing model accuracy. Therefore, it 

is imperative to separate different structures inside the cell and exclusively quantify DAB 

intensity within the target cell structure. In our method, the cell nuclei were segmented based 

on hematoxylin staining, enabling the separation of the nuclei and the cytoplasm of the 

target cells, with one of them considered the target area for a specific protein. Each pixel 

within the target area was classified as negatively, weakly, moderately, or strongly stained 

by comparing its DAB intensity to predefined standards. The final H-score was calculated 

as a weighted average of the percentages of weak staining (weight = 1), moderate staining 

(weight = 2), and strong staining (weight = 3) within the target area. Finally, a user-friendly 

website for automatic H-score quantification of IHC images was developed to make the 

algorithm publicly accessible (Supplementary Figure 1).

The main contributions of this paper are: First, we developed an innovative automated 

algorithm that can be easily adapted for the H-score quantification of nuclear proteins, 

cytoplasmic proteins, and membrane proteins. Second, we trained a deep learning model to 

identify the most common cell regions on IHC images based solely on hematoxylin staining, 

thereby eliminating any interference from DAB staining. Third, we incorporated a step 

to generate the nuclei mask based on hematoxylin staining, allowing subsequent H-score 

quantification to exclusively focus on the desired cell structure. Fourth, we designed a 

calibration approach that significantly enhances the agreement between pathologist H-scores 

and machine H-scores for membrane proteins. Fifth, we built a user-friendly website to 

promote the widespread utilization of this algorithm.

METHODS

Dataset

Our H-score quantification algorithm was developed using one development dataset and 

validated through two independent validation datasets.
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Development dataset—For the development set, three tissue microarray (TMA) samples 

from each of 498 non-small cell lung cancer (NSCLC) patients were collected and 

underwent IHC staining with an antibody specific for eukaryotic translation initiation factor 

5B (eIF5B). IHC analysis was performed on a Dako Autostainer Link 48 system. Briefly, 

the slides were baked for 20 minutes at 60°C, then de-paraffinized and hydrated before 

the antigen retrieval step. Heat-induced antigen retrieval was performed at pH9 for 20 

minutes in a Dako PT Link. The tissue was incubated with a peroxidase block and then 

an antibody incubation (1:200 dilution) for 20 minutes. The staining was visualized using 

the EnVision FLEX visualization system. The IHC images of these samples were captured 

at 10× magnification by a whole slide scanner and cropped into small image patches, with 

each containing one whole TMA core. Only the IHC image patches, where the tumor region 

occupied more than 15% of the tissue section, were selected for algorithm development, 

similar to the H-score analysis by pathologists. A total of 927 IHC images were included in 

this study.

Independent validation dataset 1—The first validation set comprised tissue 

samples from 69 pancreatic cancer patients. Paraffin-embedded human pancreatic ductal 

adenocarcinoma (PDAC) samples were provided by the Tissue Management Shared 

Resource within the Simmons Comprehensive Cancer Center at the University of Texas 

Southwestern Medical Center. An AKT serine/threonine kinase 3 (AKT3) antibody was first 

optimized by the core using the Dako autostainer, and the dilution of 1:200 was selected 

based on limited background staining. Then, all of these samples underwent automated 

IHC staining using the AKT3 antibody at the optimized concentration. Images of these 

slides were captured at 10× magnification using a Hamamatsu Nanozoomer whole slide 

scanner. Subsequently, the tissue images within the annotated malignant region, identified 

by a board-certified pathologist (L.J.), were continuously cropped into small image patches 

(1024×1024 pixels) for automatic H-score quantification.

Independent validation dataset 2—The second validation set consisted of 87 breast 

cancer TMA samples. The TMA slides were prepared from formalin-fixed, paraffin-

embedded (FFPE) de-identified breast cancer tissue sections mounted on positively charged 

slides. These samples were processed for IHC staining at a CLIA-licensed clinical 

laboratory with the human epidermal growth factor receptor 2 (HER2) antibody by FDA-

approved companion diagnostic assay and instrumentation. IHC images of these samples 

were captured at 10× magnification using an Aperio AT2 whole slide scanner, with each 

image encompassing a complete TMA core for H-score quantification.

Manual H-score assessment of varied sets

Development set—For the development set, two board-certified pathologists (B.M.E. 

and E.V.D.) were invited to independently assess the H-score of eIF5B in NSCLC tumor 

cells on IHC images. They categorized these tumor cells into four groups (negative, weak, 

moderate, and strong) based on the expression level of eIF5B within cell cytoplasm. Then, 

they calculated the H-score as a weighted average of the percentages of weak staining 

(weight = 1), moderate staining (weight = 2), and strong staining (weight = 3).
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Independent validation set 1—For the first validation set, a board-certified pathologist 

(L.J.) evaluated the H-score of AKT3 on IHC images of PDAC using the similar method. 

She categorized tumor cells into four groups (negative, weak, moderate, and strong), 

according to the expression level of AKT3 throughout the entire cell region (including 

nucleus, cytoplasm, and membrane). The H-score was then calculated using the formula: 

H-score = (1×percentage of weak staining) + (2×percentage of moderate staining) + 

(3×percentage of strong staining).

Independent validation set 2—For the second validation set, a board-certified 

subspecialty breast pathologist (Y.F.) classified tumor cells on IHC images of breast cancer 

based on the membrane expression level and staining pattern of HER2 as follows: 1) 

score 0: no staining observed or incomplete faint/barely perceptible membrane staining of 

≤10% tumor cells; 2) score 1+: incomplete faint/barely perceptible membrane staining of 

>10% tumor cells; 3) score 2+: weak to moderate complete membrane staining of >10% 

tumor cells or intense complete membrane staining of ≤10% tumor cells; 4) score 3+: 

intense complete membrane staining of >10% tumor cells, according to ASCO-CAP clinical 

practice guidelines. The H-score was then determined by: (1×percentage of 1+ tumor cells) 

+ (2×percentage of 2+ tumor cells) + (3×percentage of 3+ tumor cells).

Separation of hematoxylin staining and DAB staining through color deconvolution

Original IHC images are composed of red, green, and blue (RGB) channels, which are 

contributed by both hematoxylin staining and DAB staining. To separate the hematoxylin 

signal and the DAB signal, color deconvolution was applied to the original IHC images32. 

The intensity of individual RGB channels was initially transformed to the optical density 

(OD) by the formula: ODC=−log10(IC/I0,C), where subscript C indicates one of three 

channels, IC indicates the intensity detected in this channel, and I0, C indicates the intensity 

of light entering the specimen, which was 255 in our case. Next, with the OD value 

for each channel, hematoxylin staining and DAB staining were quantified by reversing 

matrix multiplication: [ODR ODG ODB] = [SHematoxylin SDAB SBackground][Stain Matrix], 

where [Stain Matrix] is a 3×3 matrix with each row depicting a specific stain and each 

column depicting the OD value detected in individual RGB channels for each stain alone, 
0.65 0.70 0.29
0.27 0.57 0.78
0.75 0.08 0.65

. In the following analysis, the isolated signal of hematoxylin staining would 

be utilized for region recognition and nuclei segmentation, and the isolated signal of DAB 

staining would be used to quantify the protein expression level.

Region recognition of IHC images using a UNet-MobileNet model

Preparation of training, validation, and testing sets—Sixty-six IHC images 

(1024×1024 pixels) were randomly extracted from the development set and processed 

by color deconvolution for hematoxylin staining. Using the original IHC image and 

hematoxylin staining as references, the ground truth mask (based on pathology knowledge) 

for each image was manually labeled according to histological characteristics, where every 

pixel was specified to one of five classes: tumor region, stroma region, necrosis region, 

lymphocyte region, and background. The accuracy of these annotations was confirmed by 
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two experienced board-certified pathologists (B.M.E. and E.V.D.). These prepared images 

were then randomly divided into training, validation, and testing sets in the proportion of 

8:1:1.

Training process—To save computational cost, we trained a model combining U-

Net backbone30 with depth-wise separable filters from MobileNet31 on the images of 

hematoxylin staining. Several additional steps were applied to the training set at the pre-

processing stage, in order to reduce the batch effect of images from different sources 

and improve our model’s ability to generalize. First, pixel intensity on each image was 

globally normalized to a variable in the range of 0 to 1 and underwent random shifting 

by linear transformation. Second, random image augmentations such as flip and projective 

transformations were applied to all images in the training set and their masks in step. These 

processed images were then fed into the neural network to be trained for 100 epochs with 

a learning rate of 0.001. In other words, the learning algorithm worked through the entire 

training set 100 times and updated internal model parameters to improve the prediction 

accuracy. During the training process, the differences between the ground truth and the 

prediction were measured by a loss function based on the dice coefficient. As there was no 

significant change in the loss value at the end of the training process, the model trained at 

the 100th epoch was selected and used in subsequent analysis.

Evaluation of model performance—With the developed UNet-MobileNet model, 

the class of every pixel on the image could be automatically determined. To visualize 

the classification result, the input image was labeled with different colors according to 

the predicted classes. Pathologists (B.M.E. and E.V.D.) qualitatively assessed the model 

performance by examining the prediction results of the testing images. The pixel accuracy 

for each class was calculated to measure the model’s accuracy quantitatively. To assess 

the model’s stability, the model was applied to IHC images that had been processed with 

the white patch algorithm33 to various degrees. Furthermore, the model’s efficiency was 

evaluated by the analysis time for a single image.

Segmentation of nuclear region by hematoxylin intensity

Segmentation by Otsu’s thresholding—Cell nuclei were automatically segmented 

by comparing hematoxylin intensity to a threshold obtained using Otsu’s thresholding34 

(selecting a cutoff value to minimize the intra-class intensity variance and maximize the 

inter-class intensity variance). We eliminated tiny objects smaller than 10 pixels. We then 

removed dark holes smaller than 10 pixels within the identified nuclear region, to avoid 

uneven staining and improve the robustness of the segmentation results.

Segmentation by an ISC-GAN model—The ISC-GAN model has demonstrated high 

accuracy in segmenting and classifying cell nuclei on IHC images35. In our study, the 

10× IHC images were upscaled to 40× magnification and subsequently cropped into small 

image patches (512×512 pixels) for ISC-GAN prediction. All the nuclei masks predicted 

for the small image patches, derived from the same IHC image, were arranged according to 

spatial relationships, forming a large composite nuclei mask. This composite mask was then 

downscaled to 10× magnification for subsequent H-score analysis.
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Comparison between Otsu’s thresholding results and ISC-GAN results—After 

generating nuclei masks for all the IHC images in the development set using Otsu’s 

thresholding or the ISC-GAN model, the Structural Similarity Index Measure (SSIM)36 

was calculated to compare their corresponding nuclear density maps.

Determination of thresholds for DAB intensity classification

To classify DAB intensity into four ordinal categories: negative staining, weak staining, 

moderate staining, and strong staining, three threshold values are needed. Their initial values 

were set through a rough estimation based on DAB intensity from color deconvolution. By 

comparing corresponding DAB intensity with the primary thresholds, each pixel on IHC 

images was classified and labeled with different colors respectively (negative staining – 

white, weak staining – yellow, moderate staining – orange, strong staining – red). Two 

board-certified pathologists (B.M.E. and E.V.D.) confirmed these heat maps and adjusted the 

threshold values accordingly. The final determined thresholds would be utilized for future 

H-score analysis.

Automatic H-score quantification of IHC images

Color deconvolution was first applied to the original IHC image to separate hematoxylin 

staining and DAB staining. Based on hematoxylin staining alone, the trained UNet-

MobileNet model would recognize and segment five different regions: tumor region, 

stroma region, necrosis region, lymphocyte region, and background. Meanwhile, Otsu’s 

thresholding or the ISC-GAN model was also used on hematoxylin staining to isolate all 

nuclei appearing on the image. With this information, nuclear region and cytoplasmic region 

of the target cells were identified respectively. Among these regions, the target area would 

be determined based on the distribution of a specific protein (cytoplasmic region for eIF5B, 

all regions for AKT3, cytoplasmic region for HER2). The DAB intensity of each pixel 

within the target area was classified as negative staining, weak staining, moderate staining, 

or strong staining according to the predefined classification standard. The final H-score 

was calculated by: H-score = (1×percentage of weak staining) + (2×percentage of moderate 

staining) + (3×percentage of strong staining).

Calibration of H-scores for membrane protein

For IHC images with negative or weak staining for membrane protein, it can be 

challenging for automatic algorithms to specifically target the membrane region for H-score 

quantification. Additionally, when IHC images stained for membrane protein, the staining 

intensity showing in cytoplasmic region changes in accordance with the protein expression 

level (Supplementary Figure 2). Therefore, in our algorithm, all pixels within non-nuclear 

region (i.e., cytoplasmic region) were included in H-score quantification for membrane 

protein. However, this approach may result in lower H-scores measured by our algorithm 

(machine H-scores) than those measured by pathologists (pathologist H-scores). To address 

this issue, we calibrated the membrane H-scores output from our algorithm. For this 

purpose, one point with the pathologist H-score between 200–250 and one point with the 

pathologist H-score between 250–300 were randomly selected from the 87 samples in the 

second validation set. For each selected point, the calibration parameter was calculated 
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as follows: calibration parameter = pathologist H-score ÷ machine H-score. The average 

of these two calibration parameters was then used to calibrate the remaining 85 points 

in the second validation set: calibrated machine H-score = machine H-score × calibration 

parameter. The calibrated machine H-scores were capped at 300. This process was repeated 

100 times, and the pathologist H-scores and calibrated machine H-scores were compared 

in each iteration. The mean correlation coefficient, slope, and intercept obtained from these 

100 iterations were calculated and used to represent the calibration effect. Besides, for each 

point, its calibrated machine H-score would be recorded during the iteration when it was not 

involved in calculating the calibration parameter. The mean and standard deviation for each 

point were calculated based on these recorded H-scores and utilized to create a scatter plot 

with error bar.

RESULTS

The UNet-MobileNet model for recognizing five different regions based on hematoxylin 
staining

After applying the trained UNet-MobileNet model to hematoxylin staining of IHC images, 

five different regions were identified, including tumor region, stroma region, necrosis region, 

lymphocyte region, and background. Examples of region recognition results are shown 

in Figure 2 and Supplementary Figures 3–5. The model’s accuracy was confirmed at 

the pixel level. In the validation set, the pixel accuracy for tumor region, stroma region, 

necrosis region, lymphocyte region, and background was 0.93, 0.93, 0.97, 0.98, and 0.99, 

respectively. Moreover, in the testing set, the pixel accuracy for these five regions was 

0.92, 0.93, 0.96, 0.97, and 0.99, respectively. For IHC images with varying degrees of 

white balancing, the UNet-MobileNet model demonstrated stable performance for region 

recognition, particularly in identifying tumor region, as shown in Supplementary Figure 6. 

This stability could be beneficial in making reliable H-score predictions for IHC images 

from diverse sources. As for the analysis speed of this developed model, region recognition 

of a single image could be accomplished in less than a second. In sum, our UNet-MobileNet 

model was able to accurately and efficiently segment five different regions based on 

hematoxylin staining.

Separation of nuclear region and cytoplasmic region of the target cells

Based on hematoxylin intensity from color deconvolution, a threshold was automatically 

determined to isolate nuclei from background by Otsu’s thresholding. With this selected 

threshold value and morphological processing, we could identify nuclei on IHC images and 

separate nuclear region from cytoplasmic region of the target cells. For the development set, 

since we are interested in the expression level of eIF5B inside tumor cells and eIF5B is 

only expressed in cytoplasm, tumor cytoplasm was the target area for H-score quantification. 

Figure 3 and Supplementary Figure 7 show some examples of the identified nuclei and 

tumor cytoplasm. In addition to Otsu’s thresholding, the ISC-GAN model—a state-of-the-art 

deep learning approach—was also employed for nuclear segmentation of IHC images, as 

illustrated in Supplementary Figure 8. The segmentation outcomes from both methods 

demonstrated a high degree of similarity, with a median SSIM of 0.88 (Supplementary 
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Figure 9). Given that Otsu’s thresholding demands substantially less time and computational 

resources, it was chosen as the preferred method for future H-score analysis.

Classification standard for DAB intensity

After confirming with two pathologists (B.M.E. and E.V.D.), the thresholds for classifying 

DAB staining were set at 0.2, 0.4, and 1, respectively, based on the intensity from color 

deconvolution. Therefore, pixels with DAB intensity lower than 0.2 would be classified as 

negatively stained, between 0.2 and 0.4 as weakly stained, between 0.4 and 1 as moderately 

stained, and higher than 1 as strongly stained. With this classification standard, the intensity 

category of any pixel on IHC images could be determined consistently. Heat maps were 

drawn to demonstrate the distribution of each DAB intensity category on the whole IHC 

images, as shown in Figure 4.

Comparison between H-scores by pathologists and by the automated algorithm for the 
development set

To measure the expression level of eIF5B in tumor regions, the H-score of each IHC 

image in the development set was quantified by two experienced board-certified pathologists 

(B.M.E. and E.V.D.) independently and by our developed algorithm. A scatter plot was 

drawn to show the relationship between the mean H-score produced by two pathologists and 

the H-score calculated by our algorithm of the same IHC image (Figure 5A). The Pearson 

correlation coefficient between the H-scores measured by these two methods was 0.83. For 

reference, the distribution of H-scores assessed by these two pathologists is displayed in 

Figure 5B (with a Pearson correlation coefficient of 0.84). Next, to compare the stability 

of manual H-score quantification and automatic H-score quantification, the coefficient of 

variation (CV) was calculated based on the H-scores for the IHC images from the same 

patient, by the formula: coefficient of variation (CV)=standard deviation / (median+1). 

The lower the CV of the H-scores from the same patient, the more stable the method is. 

As shown in Figure 5C, the cumulative distribution function (CDF) of CVs generated by 

our algorithm was very close to that produced by pathologists, indicating similar stability 

between these two methods. In conclusion, these results demonstrated that our developed 

algorithm could perform as well as proficient pathologists in H-score quantification.

Comparison between H-scores by pathologists and by the automated algorithm for the 
independent validation sets

For the first validation set, the expression level of AKT3 in pancreatic tumor cells on 

each IHC image was quantified as a H-score by a pathologist (L.J.) and by our algorithm 

independently. The scatter plot in Figure 6A depicts the correlation between pathologist 

H-scores and machine H-scores for these 69 pancreatic cancer tissue samples (correlation 

coefficient: 0.78, slope: 0.44, intercept: 71.31). Regarding the second validation set, the 

expression level of HER2 in breast tumor cells was assessed by a pathologist (Y.F.) and 

by our algorithm independently. The H-scores generated by these two methods exhibited 

a correlation coefficient of 0.98, while the slope and intercept were 0.62 and −0.39, 

respectively (Figure 6B). After calibration, the mean correlation coefficient remained 

the same, but there was a significant improvement in the mean slope and intercept, 

which became 0.94 and −0.34, respectively. The scatter plot with error bar in Figure 6C 
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demonstrates the stability of this calibration approach. The mean calibration parameter over 

the 100 iterations was 1.55 and would be utilized for future calibration.

Website for H-score quantification of IHC images

To facilitate the research community’s use of this developed method, we built a 

website for automatic H-score quantification (AHSQ): https://lce.biohpc.swmed.edu/ahsq/ 

(Supplementary Figure 1). After the user selects the target cell region (tumor, stroma, 

necrosis, or lymphocyte) and the target cell structure (cytoplasm, nucleus, or all), this online 

tool takes a 10× IHC image (in .png or .tif file format) as input and directly outputs the 

H-score measured in the target area. For reference purposes, the results of the intermediate 

steps are also displayed on the page, including the predicted result of different regions, the 

identified target area, and the heat map for DAB intensity classification within the identified 

target area. The thresholds for classifying DAB intensity are initially set at 0.2, 0.4, and 

1 by default. These threshold values were established in collaboration with pathologists 

(B.M.E. and E.V.D.). Considering that these values might not be suitable for all studies, 

our website allows users the flexibility to adjust them. The heat map for DAB intensity 

classification could visually assist users in determining the thresholds desirable for their 

specific application.

DISCUSSION

In this manuscript, we delineated the development and testing of a new method for 

accurately quantifying IHC staining through the calculation of the H-score. There are several 

new developments in this method. First, it is the first study to train a deep learning model 

for region recognition solely based on hematoxylin staining rather than on original IHC 

images, to avoid interference by DAB staining. Second, separating subcellular structures 

allows the H-score analysis to focus on the desired area and improves the compatibility 

of the developed algorithm with studies on nuclear proteins, cytoplasmic proteins, and 

membrane proteins. Third, the classification of DAB intensity is determined by definitive 

criteria and intuitively visualized by heat maps, thus providing the users with details of the 

computational process. Fourth, by working closely with experienced pathologists during the 

development process, we increased the credibility and reliability of our algorithm. Fifth, 

a website hosting our algorithm was created, enabling clinicians and researchers to use 

this automatic H-score quantification tool conveniently. With all of these improvements, 

we can accomplish H-score analysis for diverse proteins using a single software program, 

which takes an original IHC image as input and immediately outputs the calculated H-score, 

together with the predicted result of region recognition, the mask for the target area, and 

the heat map for DAB intensity classification inside the target area as references. This 

newly developed algorithm overcomes the shortcomings of prior algorithms and promisingly 

contributes to the high-throughput H-score quantification. It makes H-score analysis more 

reliable and accessible, benefiting both pathologists and biomedical researchers. The logic 

of this algorithm can also be integrated into the implementation of other software (e.g., 

QuPath29, HALO) for H-score quantification.
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During the implementation, we noticed that the H-score measured by our automated 

algorithm tended to be lower than that assessed by pathologists (Figure 5A). This is due to 

machines having a superior capability to discern minuscule differences in staining intensity 

without interference by neighboring pixels. As shown in Supplementary Figure 10, the 

H-scores of these three IHC images given by pathologists were all nearly 300. However, 

according to the heat maps of DAB intensity classification within the tumor cytoplasm, there 

were some pixels in the target area that were weakly stained or moderately stained, which 

were better depicted by the H-scores output from our automated algorithm (161.54, 207.66, 

and 237.89). Thus, our developed algorithm could be a powerful tool to assist pathologists in 

performing accurate and efficient H-score quantification in a fraction of the time.

Finally, this automatic H-score quantification tool also has some limitations. First, the 

UNet-MobileNet model for region recognition was trained on non-small cell lung cancer 

(NSCLC) patient samples. However, for tumor cells deriving from different cell types 

(i.e., sarcomas, gliomas, lymphomas), the morphological characteristics may have less in 

common. If the performance of our model on other tumor samples is not satisfactory, a 

more comprehensive training set will be desired to integrate more images of different tumor 

types. Second, in this project, we have introduced an automated approach for calibrating H-

scores, particularly for membrane proteins. While our approach has demonstrated favorable 

performance on our dataset, notably enhancing concordance between pathologist H-scores 

and machine-generated H-scores, it is important to acknowledge that its effectiveness can be 

influenced by the selection of calibration data points. Going forward, there is a need for the 

development of a more robust and standardized method to alleviate potential variability in 

the calibration process. Third, for calculating the H-score, the intensity of DAB staining was 

classified into four categories, including negative staining, weak staining, moderate staining, 

and strong staining, in order to mimic the current practice by pathologists. However, in 

theory, continuous values should carry more information than categorical values37. It would 

be more reasonable and objective to define a score determined directly from the continuous 

values of DAB intensity to characterize the protein expression. This way, the DAB intensity 

classification step can be eliminated from the analysis, since the classification step relies on 

the subjectively defined thresholds and may cause some loss of precision.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of Automatic H-score Quantification for IHC Images.
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Figure 2. 
Examples of Region Recognition by the UNet-MobileNet Model Based on Hematoxylin 

Staining in IHC Images.
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Figure 3. 
Examples of Nuclei Masks Generated by Otsu’s Thresholding for Hematoxylin Staining in 

IHC Images, Along with Corresponding Tumor Cytoplasm Masks.
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Figure 4. 
Examples of Heat Maps Depicting the Distribution of DAB Intensity Categories Across 

Entire IHC Images, Determined by Selected Threshold Values.
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Figure 5. Comparison Between Manually and Automatically Calculated H-scores for the 
Development Set.
(A) Scatter plot demonstrating the correlation between the H-scores obtained through 

manual quantification by pathologists and those generated by our developed algorithm for 

the same IHC image. The black line represents the identity line, while the orange line is 

the regression line with a slope of 0.73 (95% CI: [0.70, 0.76]) and an intercept of −1.86 

(95% CI: [−9.25, 5.52]). (We observed that the machine H-score tended to be lower than 

the pathologist H-score for the same IHC image, as explained in the discussion section.) 

(B) Scatter plot illustrating the correlation between the H-scores measured by two different 

pathologists for the same IHC image. The black line represents the identity line, while 

the orange line is the regression line with a slope of 0.62 (95% CI: [0.60, 0.65]) and an 

intercept of 98.75 (95% CI: [92.89, 104.60]). (C) Cumulative distribution function (CDF) of 

the coefficient of variation of H-scores for the IHC images assessed by pathologists or our 

algorithm from the same patient.
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Figure 6. Comparison Between Manually and Automatically Calculated H-scores for Two 
Independent Validation Sets.
(A) Scatter plot depicting the correlation between pathologist H-scores and machine H-

scores of AKT3 for the 69 pancreatic cancer tissue samples in the first validation set. The 

black line represents the identity line, while the orange line is the regression line with a 

slope of 0.44 (95% CI: [0.36, 0.53]) and an intercept of 71.31 (95% CI: [51.48, 91.15]). (B) 

Scatter plot illustrating the correlation between pathologist H-scores and machine H-scores 

of HER2 for the 87 breast cancer tissue samples in the second validation set. The black 

line represents the identity line, while the orange line is the regression line with a slope of 

0.62 (95% CI: [0.60, 0.65]) and an intercept of −0.39 (95% CI: [−4.27, 3.49]). (C) Scatter 

plot with error bars displaying the mean and standard deviation of the calibrated machine 

H-score for each tissue sample in the second validation set over 100 iterations. The black 

line represents the identity line.
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