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Introduction
Childhood-onset essential hypertension (COEH) is a relatively uncommon clinical entity characterized by 
elevated blood pressures that exceed the 95th percentile for height, age, and sex, without a known (second-
ary) etiology, in individuals below 18 years of  age (1). COEH has an estimated prevalence of  2.1% across 
ethnic groups in the United States (2). Epidemiological studies show that common contributors to essential 

Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that 
manifests in childhood or adolescence and, in the United States, disproportionately affects children 
of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, 
high heritability, and skewed ancestral demography suggest the potential to identify rare genetic 
variation segregating in a Mendelian manner among affected individuals and thereby implicate 
genes important to disease pathogenesis. However, no COEH genes have been reported to date. 
Here, we identify recessive segregation of rare and putatively damaging missense variation in the 
spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular 
candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By 
leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and 
publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these 
COEH individuals occurred more often than expected by chance and that this class of biallelic rare 
variation was significantly enriched among individuals of African genetic ancestry. Using in vitro 
shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial 
decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological 
inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide 
insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for 
precision therapeutics in the future.

https://insight.jci.org
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hypertension in adults (e.g., diabetes and socioeconomic factors) are much less commonly observed among 
COEH children, emphasizing the potential contribution of  congenital and genetic factors (3). At the same 
time, COEH confers an increased risk of  hypertension in adulthood along with its attendant comorbidities, 
including stroke, myocardial infarction, and renal disease (4–6). Although COEH affects all ethnic groups, 
it has been shown to disproportionately affect individuals self-identifying as African American (7–9), who 
comprise as much as 43% of  COEH cohorts (8).

COEH is demographically and clinically distinct from secondary and syndromic forms of  childhood 
hypertension, which are the most common causes of  hypertension in children. Secondary causes of  hyper-
tension typically result from structural or functional congenital abnormalities of  the kidney or vascula-
ture, particularly among premature infants. These defects typically present in the neonatal, infantile, or 
early childhood period, often with clinical features that extend beyond elevated blood pressure (8, 10–13). 
COEH also differs strikingly from the adult form of  essential hypertension, which is markedly more com-
mon (~50%), has a strong environmental component, and has been shown to be polygenic, with hundreds 
to thousands of  common variants collectively contributing to the disease risk (14, 15). In contrast, COEH 
has a higher estimated heritability than adult-onset essential hypertension (~84%) (16–18), and associated 
environmental risk factors are less commonly observed. Despite this, the current therapeutic recommenda-
tions for adult essential hypertension and COEH are essentially the same, highlighting the dearth of  infor-
mation regarding the molecular pathophysiology in pediatric patients. Unlike genetic studies of  adult-onset 
hypertension, genetic studies of  COEH have consisted of  small cohorts focused on common variants in 
candidate genes identified from adult-onset studies (19–23). In most cases, these studies have failed to 
demonstrate an underlying genetic cause.

Given the comparatively low prevalence of  COEH, its high heritability, and the higher genetic 
burden anticipated of  childhood-onset disorders, we hypothesized that a subset of  COEH cases might 
result from the contribution of  rare protein-damaging variants segregating in a Mendelian fashion. Oth-
er early-onset “adult” diseases, including early-onset Parkinson’s disease (MIM#600116), Alzheimer’s 
disease (MIM#606889), and diabetes mellitus (MIM#125850), also demonstrate this type of  inheri-
tance. Identifying such genes in COEH could provide valuable insight into the underlying pathophysi-
ology and potentially inform efforts at early diagnosis and intervention.

To explore this hypothesis, we undertook exome sequencing (ES) in an extensively well-phenotyped 
COEH cohort (8). We sought to identify rare, putatively protein-damaging single nucleotide variants 
(SNVs) and small indels in 16 probands with early-onset COEH but without a strong family history of  
hypertension. We then leveraged familial segregation, public and in-house sequencing databases, and func-
tional studies of  vascular stiffness to identify a putative new COEH gene.

Results
Spectrin repeat containing nuclear envelope protein 1 (SYNE1) compound heterozygous, rare, predicted damaging, mis-
sense variants are observed in COEH families. ES was undertaken in 2 groups: group 1 contained 16 families 
from whom 27 individuals (16 probands, 3 affected siblings, and 8 unaffected family members) were studied 
by ES. Group 1 individuals were considered to have a higher likelihood of  an underlying genetic etiology 
for their COEH based on observations of  an earlier age of  onset (median age at diagnosis of  10 years), with 
either a COEH-affected sibling or a pedigree consistent with an apparently sporadic trait (i.e., no hyperten-
sion in either parent). Group 2 consisted of  62 individuals in 48 families (48 probands and 14 unaffected 
nuclear family members) and was primarily used as a secondary cohort to identify any additional individuals 
with predisposing variants in high-priority candidate genes from group 1 analyses. All 64 probands and 3 
affected siblings had clinically confirmed COEH (8).

Our initial analysis focused on identifying rare, nonsynonymous SNVs and small insertions/deletions 
(indels) in group 1 samples and assessing their familial segregation (Methods). We began by investigating 
autosomal recessive (AR) and de novo autosomal dominant hypothesized modes of  disease inheritance, as 
these patterns were most consistent with the proband pedigrees (affected siblings and/or unaffected parents). 
Although we searched the entire ES space (Methods), only 1 gene had multiple SNVs segregating with dis-
ease. Specifically, we identified 6 rare, predicted damaging variants in spectrin repeat containing nuclear enve-
lope protein 1 (SYNE1) in trans (compound heterozygous) in 4 COEH-affected individuals (4/19 affected indi-
viduals, ~21%) that segregated with disease in the 3 unrelated families (Figure 1A and Supplemental Table 
3; supplemental material available online with this article; https://doi.org/10.1172/jci.insight.172152DS1). 

https://doi.org/10.1172/jci.insight.172152
https://insight.jci.org/articles/view/172152#sd
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Notably, SYNE1 was also among our priority list of  1,310 genes implicated in hypertension (Supplemental 
Table 1). These SYNE1 variants were orthogonally validated and had their segregation verified in available 
relatives using di-deoxy Sanger sequencing (Methods and Supplemental Figure 1).

Variants identified in our group 1 cohort were rare in current population databases (mean minor allele 
frequency [MAF] in Genome Aggregation Database [gnomAD] v3.1.2 0.0008; highest MAF 0.0037), 
putatively protein damaging (median damage prediction proportion > 0.5), and highly conserved (median 
conservation prediction proportion > 0.8) (Supplemental Table 3 and Methods). All variants were found 
within the spectrin repeat domain of  SYNE1 (Figure 1C), and at least 1 of  the 2 biallelic variants in affected 
individuals directly affected a spectrin repeat motif. From the remaining 48 group 2 probands, 4 rare, pre-
dicted damaging missense variants were identified in 2 unrelated individuals, with each proband carrying 
2 variants (Supplemental Table 3). The lack of  availability of  full trio data for group 2 families made it 
challenging to definitively assess the phase (in cis or in trans) of  these potentially qualifying variants; we 
therefore opted to focus on the segregating variants observed in group 1.

Clinically, individuals with biallelic, rare SYNE1 variants had little evidence of  the typical comorbid 
features associated with COEH. The exceptions to this were 1 proband (PH10433) whose body mass index 
(BMI) was in the overweight category and another (PH10237) who had both insulin resistance and left 
ventricular hypertrophy (Figure 1B and Supplemental Table 3). All 3 probands were diagnosed before age 
15, and had stage 2 hypertension, requiring either a calcium channel blocker (PH10433 and PH10149) or 
an angiotensin-converting enzyme inhibitor (PH10237) (Figure 1B). From the medical history and physical 
examination, none of  these 3 probands had clinical evidence of  neurological, muscular, or skeletal disease 
or a history of  heart attack or stroke (Supplemental Table 3).

Rare, biallelic SYNE1 variation is enriched among individuals with COEH. SYNE1 is a large gene, comprising 
515,716 nucleotides and 146 exons at its longest transcript; thus, rare SYNE1 variation is not uncommon in 
ES data. To provide additional confidence for the specificity of  our observations and verify that our result 
was not simply the result of  chance variation in a large gene, we used public and in-house databases to 
assess the frequency of  biallelic SYNE1 variation in cohorts that were not enriched for COEH. As neither 
family nor phase information was readily available in gnomAD, we chose to calculate the probability of  
identifying 2 rare variants in trans from the frequency distribution of  rare (MAF < 0.01), missense SYNE1 
variants for each population ancestry group (Methods). When we compared these values with the pro-
portion of  unrelated probands with confirmed SYNE1 biallelic variation (group 1 = 3/16, 18.8%; COEH 
cohort = 3/64, 4%), group 1 and COEH cohort individuals had significantly higher proportions of  putative 
SYNE1 damaging variation (group 1 or COEH vs. ancestry groups P < 0.01), and this was true regardless 
of  population ancestry (Figure 2).

To achieve a more accurate estimation of  biallelic variation and assess the impact of  differences in 
sequencing platform and bioinformatic pipelines between our data and gnomAD, we also evaluated SYNE1 
biallelic variation in a data set of  1,700 parent-proband trio-ES from the Baylor-Hopkins Center for Men-
delian Genomics (BHCMG) cohort (Methods). We identified 20 of  1,700 probands (1.2%) with rare, pre-
dicted damaging, compound heterozygous, missense variants in the spectrin repeat domain of  SYNE1. Of  
these probands, only 1 individual reported mixed African ancestry, described as both African/Caribbean 
and European; the remainder of  reported ancestries were European or Asian. This frequency was signifi-
cantly lower than observed in our group 1 individuals (P < 0.01, Fisher’s exact test) and lower, though not 
significantly so, for the combined COEH cohort (Figure 2). These data suggest that rare, putatively pro-
tein-damaging, missense variation in trans in SYNE1 is enriched in our COEH cohort.

Next, we queried the Baylor Genetics (BG) cohort using a reverse genetics approach to explore 
blood pressure in carriers of  rare, putatively damaging, compound heterozygous variants in the spec-
trin domain of  SYNE1 who were not in our COEH cohort (Supplemental Figure 3, Methods, and 
Supplemental Table 4). None of  the recruited individuals met clinical criteria for a diagnosis of  hyper-
tension, though, as a group, the median diastolic blood pressures were above the 50th percentile. 
BG cohort individuals were of  similar age (median ages of  9.9 for the COEH cohort and 11.5 at last 
measurement of  the BG cohort) but were generally shorter (median height percentiles BG 14.5, range 
1–46; and COEH 33, range 24–88), heavier (median BMI percentiles: BG — 96, range 2–98; COEH — 
63), and of  self-reported European ancestry. Unlike in our COEH cohort, blood pressures in the BG 
cohort were single measurements done at routine (nonhypertensive) clinic visits and were not obtained 
using recommendations from the Fourth Report (1).

https://doi.org/10.1172/jci.insight.172152
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Last, we sought to use the All of Us (AoU) database to further contextualize our variant findings, as AoU 
includes more than 18,000 individuals with pediatric electronic health records (EHRs) (Methods). To do so, we 
assessed the proportion of individuals with EHR-derived COEH carrying SYNE1 damaging variants. We iden-
tified 104 cases that met criteria for an International Classification of Diseases–based (ICD-based) diagnosis 
of childhood hypertension and had data from short-read whole-genome sequencing (srWGS). We then created 
a control group of 10,939 individuals with srWGS data but without a hypertension diagnosis in their EHRs. 
Consistent with previous studies, we found participants with genetically predicted (per AoU) African and Lati-
no/admixed American ancestries to be the most represented among COEH cases, each accounting for 35% 
of cases (Supplemental Table 5A). We first queried the numbers of carriers of our 6 candidate variants in both 
cases and controls. Out of the 104 cases, we found 2 individuals each carrying a different variant (Supplemental 
Table 5B). In the controls, the carrier rate was approximately 0.3% for each of the 6 candidate variants. For all 
AoU participants with srWGS data, the reported MAF ranged from 0.006% to 0.3% (Supplemental Table 5B), 
making the 6 candidate variants extremely unlikely to be seen in the 104 cases. When we considered the entire 
spectrin repeat domain, none of the cases or controls carried a loss-of-function variant, and the proportion of  
cases that were heterozygous for rare, putatively damaging, missense variants was slightly higher than, but not 
significantly different than, that observed among the 10,939 controls (cases 24%; controls 21%; P = 0.5, χ2 test). 
Four cases (3.8%) had more than 1 SYNE1 damaging variant, compared to 3.1% (343/10,939) of controls (P = 
0.6, χ2 test), though the phase of these variants could not be determined (Supplemental Table 5C).

Rare, damaging SYNE1 missense variation is more common among individuals with African genetic ancestry. 
COEH is known to have a higher incidence and prevalence among individuals self-identifying as African 
American (2, 9). Remarkably, every individual harboring compound heterozygous SYNE1 variants in the 
COEH cohort self-reported being of  African descent. This observation was consistent with individuals’ 
genetic ancestry, ascertained via principal component analysis (PCA; Figure 3A and Methods). This obser-
vation raises the intriguing hypothesis that ancestry-enriched variation may play a role in the heightened 
prevalence of  COEH among individuals of  African descent.

Figure 1. Rare, predicted damaging SYNE1 variants in COEH probands. (A) Pedigrees and variant segregation in affected families. n, multiple 
individuals of unknown or mixed sexes. (B) Variant position, annotation, in silico predictions, and frequencies as well as main clinical features of 
probands. Chromosome position (Chr) is relative to the hg19 human genome reference. Dam., damaging prediction proportion; CADD, Combined 
Annotation-Dependent Depletion; Cons., conservation prediction proportion; Hom., number of homozygotes reported; HTN, hypertension; BMI, 
body mass index; LDL, low-density lipoprotein; LVH, left ventricular hypertension; Med, medications; Aml, amlodipine; Lis, lisinopril. (C) Locations 
of impacted SYNE1 (Nesprin-1) amino acid residues. KASH, Klarsicht, ANC-1, Syne homology.

https://doi.org/10.1172/jci.insight.172152
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To evaluate this further, we first examined the mean allele frequencies of  the 6 putative COEH 
variants found in our COEH families. In gnomAD, each of  these variants had a significantly higher 
mean MAF in the African population group (Figure 3B). We then calculated the mean MAF of  all rare 
(MAF < 0.01), missense, and putatively damaging (CADD score > 12) SYNE1 variants in gnomAD. 
The mean frequencies of  rare variants in SYNE1 were highest among individuals of  reported African 
ancestry and significantly higher than other ancestry groups available for comparison (Figure 3C). 
This relatively increased frequency of  gnomAD rare variants was not observed in either of  2 other 
linker of  nucleoskeleton and cytoskeleton (LINC) complex genes — lamin A/C (LMNA) and SUN 
domain-containing protein 1 (SUN1) (Supplemental Figure 4) — and is not known to be a general 
feature of  African ancestry populations.

Decreased SYNE1 expression leads to increased vascular smooth muscle cellular stiffness that can be rescued by 
fasudil. SYNE1 is highly expressed in cardiac, skeletal, and vascular smooth muscle tissues (24), and com-
mon variants near SYNE1 have been associated with pulse pressure and mean arterial pressure in 2 large 
GWAS of  hypertension. Therefore, aberrant expression of  SYNE1 is a strong candidate to affect vascular 
integrity (25, 26). We hypothesized that recessive inheritance of  a putatively damaging variation might 
lead to reduced functionality of  the resulting SYNE1 protein, Nesprin-1, which could affect vascular stiff-
ness and lead to hypertension. To evaluate this contention, we used atomic force microscopy (AFM) — 
the gold standard for measuring the elasticity of  living cells — to compare the elasticity of  control (wild-
type) vascular smooth muscle cells (VSMCs) versus VSMCs with decreased SYNE1 expression as a result 
of  RNA interference knockdown (KD) of  SYNE1 (Methods) (27). We found that the mean expression of  
SYNE1 in SYNE1-KD VSMCs was 2-fold lower than in control cells (Supplemental Table 6), and this was 
accompanied by a visible increase in cell striation (Figure 4, A–C) and increased roughness (Figure 4D) in 
SYNE1-KD VSMCs. Quantitatively, SYNE1-KD VSMCs had significantly more stiffness (lower elasticity) 
(P = 0.003) than control VSMCs (Figure 4E and Supplemental Table 7) (28).

Increased RhoA/Rho-associated protein kinase (ROCK) activity has been noted to inhibit vascular 
stiffness in SYNE1 loss-of-function models (29). Ablation of  LINC genes, such as LMNA and SYNE1, 
in immortalized human myoblasts reduces expression of  ROCK and MYH9 (29) and thereby reduces 
ROCK phosphorylation, ultimately resulting in increased stress fiber accumulation and contraction in 
VSMCs (30). We thus hypothesized that fasudil, a pharmaceutical agent (HA-1077) that selectively inhib-
its ROCK (31) and has been approved for clinical use in Japan and China (32), could ameliorate the effect 
of  SYNE1 KD in VSMCs. To assess the effect of  fasudil in our in vitro model, we treated both control and 
SYNE1-KD cells with fasudil and measured cellular elasticity with AFM. Fasudil-treated SYNE1-KD cells 
(SYNE1 FA) had a significantly lower mean elasticity score than SYNE1-KD cells (P = 3 × 10–7) that was 
also comparable to that from control cells (P = 0.16) (Figure 4E and Supplemental Table 7).

Figure 2. Comparison of biallelic SYNE1 missense proportions. Statistical comparisons were performed using a binomial 
test. **P < 0.01; ***P < 0.001. Group1, group 1 of COEH cohort (n = 16 probands); COEH, full COEH cohort (n = 64 probands); 
BHCMG, Baylor-Hopkins Center for Mendelian Genomics; AFR, gnomAD self-reported African samples; GEN, gnomAD 
combined samples; NFE, gnomAD self-reported non-Finnish European.

https://doi.org/10.1172/jci.insight.172152
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Discussion
Hypertension in children is difficult to definitively diagnose and, historically, was not as closely evaluated or fol-
lowed-up in routine pediatric visits as recommended. Thus, large cohorts of patients with COEH or of families 
with multiple affected members are unusual, and genetic studies of “nonsyndromic” COEH are uncommon in 
the literature. Perhaps as a result, to the best of our knowledge, there are no other genes definitively implicated in 
COEH. Here we report genetic, physiological, and biophysical experimental evidence supporting the contention 
of a role for SYNE1 in the development of early-onset hypertension. We identified 6 population-rare, putatively 
damaging, missense variants in SYNE1 segregating in a compound heterozygous manner in approximately 20% 
of individuals with COEH. All affected individuals were young children and adolescents and had no evidence 
of a known genetic syndrome. We show that the number of compound heterozygous SYNE1 variants in our 
cohort significantly deviates from observed and theoretical expectations (Figure 2) and that this variation is 
enriched among individuals of African genetic ancestry. Finally, we provide biophysical experimental support 
for the functional role of reduced SYNE1 in the vascular stiffness phenotype seen in hypertension.

Given the challenges of  identifying children with true COEH, our study population represents a 
uniquely large and comprehensively characterized cohort. Compound heterozygous, putatively damaging, 
missense SYNE1 variants were found among individuals who were largely devoid of  associated comorbidi-
ties (obesity, insulin resistance) and diagnosed before age 15. These individuals did not have a strong family 
history of  adult-onset hypertension or overt evidence of  an underlying syndrome. This profile, wherein 
individuals with the most extreme or most atypical phenotypes have strong evidence for a genetic contribu-
tion to disease, is consistent with early-onset forms of  other adult diseases.

In our cohort, putatively damaging, compound heterozygous SYNE1 variants were observed in 
individuals self-reporting as African American, which comprise 47% of  our COEH cohort, and rare 
variation in this gene appears to occur more frequently among individuals of  African genetic ancestry. 

Figure 3. Population ancestry studies. (A) Principal component analysis 
(PCA) of ES-derived genetic ancestry for “super-populations” (super_
pop) from the 1000 Genomes Project (AFR, African; EAS, East Asian; 
SAS, South Asian; EUR, European; AMR, Latino/Admixed American) 
and COEH. n = 64 (probands with SYNE1 variants are labeled). (B) Mean 
minor allele frequencies (MAFs) among gnomAD populations of 6 
putative disease variants identified in COEH. *P < 0.05. (C) MAFs of all 
SYNE1 rare and damaging missense variants in gnomAD. ***P < 0.001; 
**P < 0.01. Ethnicity abbreviations are per gnomAD: AFR, African; AMR, 
Latino/Admixed American; ASJ, Ashkenazi Jewish; EAS, East Asian; 
FIN, Finnish European; NFE, non-Finnish European; SAS, South Asian. 
Statistical significance in B and C was determined by 1-way ANOVA.

https://doi.org/10.1172/jci.insight.172152
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The prevalence and incidence of  essential hypertension in adults are higher among individuals iden-
tifying as African American, and this phenomenon has been associated with an increased incidence 
of  lifestyle and environmental risk factors in this group. Compared with other ethnic groups, the inci-
dence of  COEH among self-identifying African Americans appears to be independent of  classical 
environmental risk factors (3, 8). Our observations suggest a role for rare SYNE1 variation in the 
increased predisposition for COEH among Americans of  African ancestry and bolster the expanding 
recognition that African genomes can inform human migration and health (33).

The SYNE1 protein — Nesprin-1 — is a large protein comprising 3 primary domains: the spectrin 
repeat domain, the calponin homology domain, and the KASH domain. Spectrin repeats are abundant in 
the primary isoform of  SYNE1 expressed in smooth muscle vascular cells, whereas the KASH domain is 
expressed only among isoforms found in neural tissue. Biallelic, loss-of-function SYNE1 variants in the cal-
ponin homology and KASH domains have been implicated in AR spinocerebellar ataxia-8 (MIM#610743) 
and arthrogryposis syndrome arthrogryposis multiplex congenita 3, myogenic type (MIM#618484), where-
as rare missense and rare truncating SYNE1 variants within the spectrin repeat domain have been impli-
cated in an autosomal dominant form of  Emery-Dreifuss muscular dystrophy (MIM#612998) (34, 35). 
Identified variants in our cohort all occurred within the spectrin repeat domain that makes up the majority 
of  Nesprin-1, and all probands had at least 1 of  their biallelic variants directly affecting a spectrin repeat 
motif. These results are consistent with a model of  allelic heterogeneity among SYNE1-related rare disease 

Figure 4. SYNE1 functional studies. Low- (A) and higher (B) magnification scans to 130 and 30 μm (x-y), respectively, showing detailed topography of 
control and SYNE1-KD cells from atomic force microscopy imaging. (C) Height images (60 μm2 scans) were used to evaluate roughness within a 20 μm 
(x-y) measuring box to define a specific area of analysis (400 nm2) in each cell. (D) Roughness estimates between SYNE1-KD cells and control (wild-type) 
cells (n = 2 each), quantifying presumed actin filament formation. (E) Comparison of stiffness (measured as Young’s modulus) in control (wild-type) 
cells, SYNE1-KD cells, and both wild-type and SYNE1-KD cells treated with fasudil. Box plots show the interquartile range, median (line), and minimum 
and maximum (whiskers). Statistical comparisons were performed using 1-way ANOVA. ***P < 0.001.

https://doi.org/10.1172/jci.insight.172152
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traits, where the specific motifs and domains affected, alongside allele-specific gene dosage, e.g., biallelic 
versus monoallelic, contribute to downstream clinical consequences.

Murine knockouts of  Syne1 have been used to explore the role of  SYNE1 in cardiac and skeletal muscular 
disease (36, 37). The International Mouse Phenotyping Consortium (38) reported that Syne1-knockout mice 
exhibit an incompletely penetrant preweaning lethality, but none of  these models had blood pressure assess-
ments. Mouse models may not always accurately recapitulate a human disease trait, especially as complete 
loss of  function may not model human biallelic variant combinations. Nesprin-1 was originally isolated and 
characterized in a search for novel markers for VSMC differentiation (39), and it functions within the LINC 
complex (29, 40). The LINC complex scaffolds the nucleus and interacts with the cytoskeleton directly, influ-
encing muscle cell nuclear morphology (29), mechanotransduction (41), and muscle cell elasticity (41). Genes 
encoding LINC complex proteins are also implicated in the development of  Emery-Dreifuss muscular dystro-
phy (29, 42–44), and rare variants in LINC complex genes have been implicated in congenital cardiovascular 
diseases, including thoracic aortic disease and dilated cardiomyopathy (45–47). Taken together, these observa-
tions further support the contention for SYNE1 variation as a molecular contributor to COEH.

Individuals with comparable SYNE1 variation in the BG cohort did not have definitive evidence of  
COEH, suggesting that biallelic SYNE1 variation may show incomplete penetrance in COEH. It is possi-
ble that other genetic or environmental factors (e.g., salt intake), including ancestry- or age-specific ones, 
may be needed for disease manifestation (48). Similarly, it may be that filtering variants solely based on 
bioinformatics features does not ensure a like-to-like match in pathogenic potential. It is also worth noting 
that individuals in the BG cohort were of  self-reported European ancestry, and the assessments of  blood 
pressure were limited to isolated, outpatient, automated and manual measurements. ES in these individuals 
was undertaken as part of  an evaluation for rare Mendelian diseases, including developmental delay and 
congenital abnormalities, which is partly reflected in the wide range of  BMI and height centiles in this group. 
Therefore, we cannot dismiss the potential for these individuals to develop hypertension later or to still have 
underlying, undiagnosed hypertension. We also note that in the context of  Mendelian diseases the inability 
to replicate findings does not necessarily constitute rebuttal evidence, as candidates might be private or spe-
cific to an environment or population. This is a particular consideration for populations of  African ancestry, 
who have deep ancestral histories with variable exposures over time and a high level of  genetic diversity (33).

The demographics of  the 104 cases identified in AoU matched those noted in previous COEH studies 
(~35% among individuals of  genetically predicted African and Latin/admixed American ancestry, respec-
tively) (49), though we did not observe a statistically significant difference between COEH cases and nonhy-
pertensive controls in the proportion of  individuals with putative deleterious SYNE1. As a caution against 
extrapolating too much from these observations, however, we note that the pediatric EHR controls are gener-
ally younger adults (presently) and are likely to include undiagnosed or unreported hypertensive individuals; 
only 17% had an adult diagnosis of  hypertension, compared with the reported approximately 50% globally 
(15) and across the full AoU cohort. Our preliminary foray in AoU also illustrates the challenges in using 
EHR data for childhood-onset diseases and traits, especially those with variable age of  onset and progression.

Our cell-based functional assay showed that reduced expression of  SYNE1 in VSMCs leads to increased 
cell stiffness, which may correlate with increased vascular stiffness and resistance. There is a scarcity of  data 
in the literature to establish a presumed pathophysiologic mechanism of COEH; speculatively, in the context 
of  presumed large-effect Mendelian inherited variants, reduced SYNE1 expression in our probands could be 
associated with sufficient vascular stiffness and downstream vascular resistance to overwhelm the endogenous 
regulatory mechanisms (e.g., vasodilation, reduced renin secretion) designed to correct increased vascular 
resistance. Alternatively, the increased vascular resistance presumably induced by higher vascular stiffness 
could reduce perfusion to effector organs, including the kidney, which could activate the renin/angiotensin/
aldosterone pathway, leading to a worsening of  vasoconstriction with excess sympathetic tone and aldoste-
rone secretion, as seen in renovascular hypertension (50). This latter potential emphasizes the need for future 
studies to also assess the metabolic changes associated with vascular stiffness in the context of  COEH.

We have identified biallelic, rare variation within SYNE1 among young children with COEH. The 
likely damaging nature of  these variants paired with the observed effect of  SYNE1 KD in vascular in vitro 
models suggests that aberrant production of  SYNE1 may ultimately lead to increased total peripheral resis-
tance and subsequently hypertension. Our data also allude to a potential loss-of-function model in COEH 
individuals with compound heterozygous SYNE1 missense variation. Aside from the identification of  a 
strong COEH candidate gene, our data are a starting point for considerations of  clinical sequencing among 
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individuals with COEH and provide a framework for genetic studies of  COEH cohorts, which could collec-
tively herald new paradigms for diagnosis and treatment in the future.

Methods
Sex as a biological variable. Recruitment of human participants for this study included both sexes without dis-
crimination. Sex was not used as a separate biological variable, as each family unit is expected to demonstrate 
independent Mendelian segregation of variants on autosomal chromosomes, to which the analysis was limited.

Human participant recruitment and phenotyping. The details of  the cohort have been reported (3, 8). Brief-
ly, 423 individuals were referred to a pediatric hypertension clinic at McGovern Medical School at The 
University of  Texas Health Science Center at Houston (UTHealth), Texas Medical Center. Participant 
ages ranged from 0 to 19 years. Hypertensive status was confirmed by use of  manual auscultation with a 
mercury sphygmomanometer in all COEH probands. All individuals underwent 24-hour ambulatory blood 
pressure monitoring to assess systolic and diastolic blood pressure levels per diagnostic recommendations 
from the Fourth Report (1, 8). Hypertension was assessed based on the individual’s height, age, and sex and 
was reported as systolic and diastolic blood pressure percentiles. As recommended by the Fourth Report, 
gestational age, blood and urine tests, renal ultrasound and magnetic resonance imaging, echocardiogram, 
and a sleep study in obese individuals were used to rule out secondary forms of  hypertension. Renin, aldo-
sterone, and angiotensin levels were also used to assess potential secondary/monogenic forms. From this 
previously established cohort, blood, urine, and DNA were obtained from 64 probands and 300 affected 
and unaffected family members.

ES. ES was carried out at the Human Genome Sequencing Center (HGSC) at Baylor College of  Med-
icine (BCM) in 2 separate phases, corresponding to 2 groups — group 1 contained 16 families and 27 
individuals (16 probands, 3 affected siblings, and 8 unaffected family members) and represented the pro-
bands with early disease onset and no history of  COEH in preceding generations; group 2 consisted of  the 
remainder of  the cohort (48 probands). The SeqCap EZ HGSC VCRome 3 capture library, developed by 
Roche NimbleGen, was used to capture approximately 23,585 protein-coding genes (including exons and 
intronic flanking sequences) and 189,028 nonoverlapping exons. The average depth of  coverage of  sequenc-
ing was ~100×–120×, with 95% of  the human exome covered at >20×. Resulting FASTQ files were aligned 
to the hg19 build of  the human genome using Burrows-Wheeler Aligner with variant call files (VCFs) ren-
dered using the Mercury pipeline, which is an automated pipeline for the processing of  FASTQs, including 
quality control, mapping, exclusion of  sequencing artifacts, and variant calling using Atlas2 (51–54).

Annotation and quality control. VCFs were annotated using Variant Tools 2.7.0 and Varcards (55, 56). 
VCF tools version 4.0 was used to impose a depth of  coverage filter of  >10× and a “PASS” filter to exclude 
low-quality sites (57). The HGSC’s parameters for PASS notation include a Q30 score distribution > 80%, 
PASS filter > 60%, and PhiX control error rate < 2%. A size cutoff  of  15 bp was used when evaluating 
small indels. An allelic ratio cutoff  of  >4:10 was used when evaluating all variants.

The database for human nonsynonymous SNPs and their functional predictions were used to identify 
likely loss-of-function and missense variant alleles and to exclude synonymous variants (58). Eight func-
tional prediction algorithms were used to characterize missense variants: Sorting Intolerant From Tolerant 
(SIFT), likelihood ratio test (LRT), MutationTaster, Mutation Assessor, Polymorphism Phenotyping v2 
(Polyphen2), Functional Analysis through Hidden Markov Models (FATHMM), Protein Variation Effect 
Analyzer (Provean), and CADD (59–72). We then determined a damage prediction proportion for each vari-
ant that reflected the proportion of  algorithms for which a given variant was denoted as putatively damaging, 
which included denotations of  “damaging,” “possibly damaging,” “probably damaging,” “disease causing,” 
“deleterious,” and “medium,” and CADD scores > 12. Genomic Evolutionary Rate Profiling (GERP), phy-
logenetic p-values (phyloP), SIte-specific PHYlogenetic analysis (SiPhy), and PHylogenetic Analysis with 
Space/Time models (phastcons) were also used to assess evolutionary conservation of  a particular variant 
across species. By convention, strong conservation was determined by scores >12 for SiPhy, >4.4 for GERP, 
>1.6 for phyloP, and >0.5 for phastcons (73–77). Each variant was then given a final “conservation predic-
tion proportion,” the proportion of  conservation algorithms supporting strong evolutionary conservation.

Prioritization of  candidate variants. Following VCF annotation, candidate variants were identified by 
using gnomAD data to exclude variants with MAF > 0.01. gnomAD (version 2) is a publicly available 
data set that includes variant data from 15,708 genomes and 125,748 exomes (78). Most pedigrees exam-
ined were supportive of  either an AR or de novo dominant disease model, and a model of  full penetrance 
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of  candidate variants was used. De novo variants were reviewed in families with available sequencing 
data from both parents and were considered when present in the proband and none of  the parents. The 
Kinship-based INference for Genome-wide association studies (79) was used to confirm paternity and/or 
maternity within each family.

A list of  1,310 genes associated with various forms of  hypertension was compiled from Model organ-
ism Aggregated Resources for Rare Variant ExpLoration, GWAS catalog, OMIM, and publications impli-
cating genes in monogenic forms of  secondary hypertension and vascular diseases (Supplemental Table 1) 
(10, 11, 80–85). This gene list was used to further prioritize candidate variants.

BHCMG. The BHCMG exome variant database was used as both a sequencing and non-COEH con-
trol cohort to assess the frequency and segregation of  candidate variants sequenced on the same platform. 
The BHCMG database at BCM consists of  10,244 exomes including 1,700 parent-child trios (at the time 
of  analysis). Individuals within this cohort are all suspected to have Mendelian disease traits and were 
sequenced at the HGSC using similar library capture, sequencing platform, and annotation software (86, 
87). We compared the difference in the proportion of  individuals with rare, predicted damaging, missense 
SYNE1 biallelic variation (in trans) between the COEH and BHCMG cohorts. To make the analysis true 
to the variants identified in our COEH cohort, all variants satisfied a damage proportion and conservation 
proportion score of  ≥0.25 and ≥0.5, respectively.

Probability assessment of  biallelic variation in gnomAD. We compared the proportion of  individuals 
with rare, predicted damaging, missense SYNE1 biallelic variation (in trans) identified in group 1 and 
group 2 in the COEH cohort to the probability of  observing rare, damaging, missense SYNE1 biallelic 
variation (in trans) in gnomAD. To make the analysis consistent with variants identified in our COEH 
cohort, included variants had to have a damage proportion and conservation proportion score of  ≥0.25 
and ≥0.5, respectively, and impact the spectrin repeat domain of  the resulting protein. Significance was 
denoted by P < 0.05. The proportion of  SYNE1 biallelic variation (in trans) in gnomAD was estimated 
by assessing the probability of  any individual having at least 1 rare, missense variant in SYNE1. We 
then used this parameter as the starting point to simulate mating of  2 individuals where both are hetero-
zygous for at least 1 rare missense variant in SYNE1 and both variants are passed to 1 offspring under 
an assumption of  Hardy-Weinberg equilibrium and an outbred population. We squared the values of  
the probability of  each parent having at least 1 rare missense mutation and multiplied this by 0.25 (see 
equation below) to give the probability of  having in trans variation in SYNE1. This result produced prob-
abilities for biallelic, rare SYNE1 variation for all (combined) ancestries and for each individual ancestry 
group in gnomAD. P = (0.25) (B2) B = (A) (1 – A) A = (1 – f1)…(1 – fn)

P represents the probability of  biallelic inheritance, A represents the product of  the frequencies (f) of  the 
reference (major allele) for all rare variants (n) within the gene, B represents the product of  the cumulative 
variant frequencies across the gene in question, and f represents the frequency of  a given rare variant (with 
MAF < 1%) in the gene in question.

BG cohort. We identified individuals with rare and damaging missense variants in SYNE1 using available 
trio data from the BG cohort. A subset of  the sequence data in the BG cohort is from individuals being 
evaluated for suspected Mendelian/genetic disorders at the Pediatric and Adult Genetics clinics at BCM 
and Texas Children’s Hospital. To make the analysis comparable, we limited inclusion criteria to individu-
als with biallelic variants, where both variants satisfied a damage proportion and conservation proportion 
score of  ≥0.25 and ≥0.5, respectively. Individuals with the appropriate genotypes were then invited through 
their Texas Children’s Hospital/BCM physicians to have their blood pressure measurements, age, and height 
included in the study after provision of  informed consent. Blood pressure measurements were taken from 
the EHRs and primarily reflected single standard-of-care measurements taken manually or via automated 
cuff  at the time of  outpatient clinic visits. As is customary with individuals referred for diagnostic testing 
to BG, the primary referring physicians for most individuals were neurologists or medical geneticists (88).

AoU database initiative. We attempted to utilize the AoU Research Program initiative (89, 90) to explore 
the potential for using large-scale databases for COEH, as AoU includes approximately 18,870 individuals 
with available pediatric EHR data. From the AoU database, we constructed a cohort of  cases and controls. 
We defined cases of  COEH as participants with an ICD-based diagnosis of  hypertension (ICD10CM: 
35207668) before the age of  18 years and excluded from those participants with no recorded blood pressure 
measurements, with no srWGS data, and with history of  a potential secondary etiology of  hypertension 
before the diagnosis (this includes kidney disease, pregnancy within 3 months prior to the diagnosis, and 
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intake of  medications that can potentially increase blood pressure). The control group was made of  indi-
viduals with available srWGS data and no record of  childhood hypertension in their pediatric EHR or 
diagnosis of  hypertension as adults. We then performed a gene burden test, considering rare (MAF < 1% in 
gnomAD) and damaging variants (loss of  function and deleterious missense) occurring within the spectrin 
repeat domain of  SYNE1, and compared proportions between cases and controls.

Assessment of  genetic ancestry. COEH probands with compound heterozygous variants in SYNE1 
were genotyped on the Infinium H3Africa Consortium Array v2. Multidimensional scaling was used to 
assess the ethnicity of  COEH individuals and compare them with super-population ancestries in the 1000 
Genomes phase III data (91), which were downloaded from https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/. The downloaded.vcf  files were converted into PLINK 1 binary format, filtering out 
the non–A-T and non–G-C SNPs. A set of  SNPs with MAF > 0.20 were selected from the merged COEH 
cohort ES data and the 1000 Genomes data set (N = 82,508). Linkage disequilibrium pruning (--indep 50 5 
1.1) implemented in PLINK (92) v1.9 was used on the selected SNPs prior to the PCA.

Database comparison of  allele frequencies across ethnic groups. All rare (MAF < 0.01) and damaging 
(CADD score > 12) missense gnomAD variants collected till March 2022 were acquired through PopViz 
(https://hgidsoft.rockefeller.edu/PopViz/), a web-based program designed to aggregate and visualize 
gnomAD data (93). Protein domain architecture information was acquired from SMART web resource 
(http://smart.embl-heidelberg.de/) (94, 95). Rare, damaging variants located on the SYNE1 domain 
were used for the comparison. The remaining variants were then stratified by ethnic group, and allele 
frequencies across groups were compared in a pairwise manner.

Validation of  candidate variants. Candidate variants were validated using di-deoxy Sanger sequencing of  
PCR-generated amplicons of  200–300 bp. Amplicon primers were generated in silico using Primer Plus and 
purchased from MilliporeSigma (Supplemental Table 2). Amplification was performed on a DNA Engine 
Tetrad 2 thermocycler (Bio-Rad) (96). To investigate variant segregation, validated candidate variants were 
genotyped using di-deoxy Sanger sequencing from whole-blood DNA of  available family members who 
had not previously undergone ES. Genotypes of  validated variants were called and visually confirmed from 
Sanger chromatograms using Sequencher 5.4.6 (Gene Codes Corporation) (Supplemental Figure 1).

Culture of  VSMCs. VSMCs were acquired from Coriell Institute for Medical Research, catalog number 
AG11548. This cell line was derived from the iliac artery of  a 17-year-old cadaveric donor without known 
COEH or hypertension. VSMCs were at 36 passages when acquired. Cells were initially grown in colla-
gen-treated 60 mm dishes (Corning catalog 354401), then transferred to 100 mm Corning Biocoat Gelatin 
Cellware (catalog 354653). At 50% confluence, cells were then transferred to T-75 gelatin-coated flasks. 
Vasculife basal medium (Part LM-0002) was used for nourishment.

Cell preparation for live elasticity measurements. We prepared 60 mm Petri dishes coated with Rat Tail Col-
lagen I (Thermo Fisher Scientific, A1048301, at a concentration of  50 μg/mL) for AFM live-cell scanning. 
Cells were cultured to a 50% confluence and probed in cell culture medium.

Cell preparation for roughness analysis. Cells were seeded in collagen-coated (50 μg/mL) 60 mm polysty-
rene plates to 50% confluence and incubated for 24–48 hours at 37°C in a 5% CO2 atmosphere. Media were 
removed and cells were fixed with 2 mL of paraformaldehyde 4% for 15 minutes before scanning (see scan-
ning method in the paragraph below). All cell culture work was performed by the Tissue Culture Core at 
BCM, which is a clinical translational core laboratory for the Department of  Molecular and Human Genetics.

AFM scanning. AFM was conducted in the Atomic Force Microscopy Facility at the UTHealth. 
Data were collected using a BioScope II Atomic Force Microscope (Bruker) integrated with a Nikon 
TE2000-E inverted optical microscope. Force curves from at least 15 randomly chosen cells per treat-
ment were registered using Novascan colloidal AFM probes. These probes consisted of  a 5 μm diam-
eter borosilicate glass particle attached to the edge of  a silicon nitride V-shaped cantilever with a 
nominal spring constant of  0.24 N/m. The cantilever was calibrated for its laser sensitivity using the 
thermal oscillation method before each experiment. Indentation curves were captured using 4 μm 
ramp sizes, corresponding to an indentation depth of  approximately 40 nm, a scan rate of  0.5 Hz, 
and a trigger threshold with a maximum load of  10 nN. Young’s modulus was calculated in live cells 
following the Hertz model (spherical indenter radius = 2.5 μm) with a Poisson’s ratio of  0.5, using 
the NanoScope Analysis software (version 1.5, 2015, Bruker). The mean levels of  elasticity measure-
ments were compared between control VSMCs (control cells), SYNE1-KD VSMCs, and SYNE1 FA 
cells. Topographical images were taken on cells fixed with 4% paraformaldehyde and scanned in PBS.  
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The structure of  the cell membrane was determined using contact mode operated in liquid to a scan 
rate of  0.7 Hz. Images were captured to a scan size ranging from 30 to 130 μm (x-y). Random cells 
were selected, with the aid of  optical microscopy (original magnification, 20×). Fixed cells were 
scanned in PBS using MLCT cantilevers (fo = 4–10 kHz, k = 0.01 N/m, ROC = 20 nm) from Bruker. 
The roughness of  the cell membrane was determined by isolating an area (20 × 20 μm) in the cyto-
plasm, away from the cell nucleus in the 60 μm (x-y) scan, and comparing the same area (400 nm2) in 
all the cell conditions (Figure 4C). Topographical roughness was calculated as the “arithmetic average 
of  the absolute values of  the surface height deviations measured from the mean plane” as defined in 
the NanoScope Analysis software (version 1.5, 2015, Bruker).

Lentiviral infection and SYNE1 KD. RNA interference using shRNA was used to reduce SYNE1 transcrip-
tion using a pGIPZ lentiviral vector from Dharmacon. In brief, lentivirus was packaged in HEK293T cells 
integrated into the vector system purchased from Dharmacon using pGIPZ control and SYNE1 shRNA 
clones. Viruses were collected 48 hours posttransfection. Cells were plated at approximately 30% density 
in 6-well plates the day before infection, and the media were changed 24 hours after infection. Cells were 
then treated with puromycin (2 μg/mL) for 3 days before further analysis. Successful infection was assessed 
qualitatively via GFP fluorescence using confocal microscopy (Supplemental Figure 2). Control cells were 
infected with lentivirus encoding the empty vector (without shRNA targets). Lentiviral packaging and 
infection were conducted at the Cell-Based Assay Screening Service core at BCM.

SYNE1 KD was confirmed via quantitative reverse transcriptase PCR. RNA extraction of  VSMCs 
was done using the RNeasy Mini Kit (QIAGEN). Extractions were conducted as 6 separate biological 
replicates. Briefly, the cells were trypsinized, collected, suspended, and lysed. The lysate was then homog-
enized using 350 μL of  RLT lysis buffer followed by vortexing and ethanol elution. RNA buffer RW1 
(700 μL) was used as a washing agent to purify RNA followed by final elution of  whole RNA in 50 μL 
of  RNase-free water. Concentration of  RNA was quantified using NanoDrop (Thermo Fisher Scientific) 
and Bioanalyzer (Agilent) with resulting RNA integrity numbers > 9. Whole RNA was stored at –80°C 
until cDNA generation using the OneStep RT PCR Kit (QIAGEN) according to manufacturer’s recom-
mendations using 10 μL of  RNA per sample. Reverse transcriptase PCR was conducted using a TaqMan 
assay probe (Thermo Fisher Scientific) targeted to the first exon of  SYNE1, which is present in all SYNE1 
mRNA transcripts. Amplification was performed on a DNA Engine Tetrad 2 (Bio-Rad), initially for 30 
minutes at 50°C to initiate reverse transcription, followed by 15 minutes at 95°C to activate the DNA poly-
merase. The samples were then cycled for 40 cycles under PCR conditions of  1 minute at 94°C, 1 minute 
at 68°C (annealing), 1 minute at 68°C (extension), and 10 minutes at 72°C and run on a ViiA 7 Real-Time 
PCR System (Thermo Fisher Scientific). A minimum cycle quantification value > 15 was obtained for the 
3 replicates performed. Relative expression was quantified using the Livak method (97).

Drug treatment. SYNE1-KD and control (wild-type) cells were treated with 3 mL of  fasudil (10 mg sus-
pended in 7 mL of  sterile water) (Santa Cruz Biotechnology) added to the cellular media. After 30 minutes’ 
incubation at room temperature, media (containing fasudil) were removed by aspiration.

Statistics. R software was used for statistical analysis, and statistical significance was denoted by P < 
0.05 after correcting for multiple testing (where appropriate, in most cases a Bonferroni correction for the 
number of  tests). Fisher’s exact test was used to compare the proportion of  individuals with rare, damag-
ing, missense SYNE1 variants between the COEH and BHCMG cohorts. A binomial test was used to com-
pare the proportion of  individuals with rare deleterious SYNE1 biallelic variation (in trans) in the COEH 
cohort to the predicted proportion with similar variation (i.e., rare, damaging SYNE1 variation in trans) 
in gnomAD. For the AoU database, the χ2 test was used for proportion comparison between cases and 
controls. A 1-way ANOVA test was used to compare allele frequencies of  SYNE1 rare, damaging variants 
across ethnic groups in gnomAD and evaluate the difference in the mean level of  elasticity measurements 
obtained from the AFM between cell types (i.e., controls, SYNE1 KD, fasudil treated). For the specific case 
of  elasticity data, statistical significance was denoted by a P < 0.01.

Study approval. All data and materials from human participants were obtained in accordance with 
research parameters approved by the Institutional Review Board at BCM, the Institutional Committee 
for the Protection of  Human Subjects, or the Institutional Review Board at the UTHealth and Children’s 
Memorial Hermann Hospital, Texas Medical Center (all in Houston, Texas, USA).

Data availability. Data supporting this manuscript are available in the supplement and the Supporting 
Data Values file.
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