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All mammals exhibit flexible decision policies that depend, at least in part, on the cortico-basal ganglia-thalamic (CBGT) pathways. Yet
understanding how the complex connectivity, dynamics, and plasticity of CBGT circuits translates into experience-dependent shifts of decision
policies represents a longstanding challenge in neuroscience. Here we used a computational approach to address this problem. Specifically,
we simulated decisions driven by CBGT circuits under baseline, unrewarded conditions using a spiking neural network, and fit the resulting
behavior to an evidence accumulation model. Using canonical correlation analysis, we then replicated the existence of three recently identified
control ensembles (responsiveness, pliancy and choice) within CBGT circuits, with each ensemble mapping to a specific configuration of the
evidence accumulation process. We subsequently simulated learning in a simple two-choice task with one optimal (i.e., rewarded) target. We
find that value-based learning, via dopaminergic signals acting on cortico-striatal synapses, effectively manages the speed-accuracy tradeoff
so as to increase reward rate over time. Within this process, learning-related changes in decision policy can be decomposed in terms of the
contributions of each control ensemble, and these changes are driven by sequential reward prediction errors on individual trials. Our results
provide a clear and simple mechanism for how dopaminergic plasticity shifts specific subnetworks within CBGT circuits so as to strategically
modulate decision policies in order to maximize effective reward rate.
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A characteristic of nearly all mammals is the ability to1

flexibly shift how currently available evidence is used to drive2

actions based on past experiences (1). For example, feedback3

may be used to quickly shift between making exploratory de-4

cisions, where actions are sampled randomly or in order to5

gain information, and exploitative decisions, where actions are6

taken to maximize immediate rewards (2–4). Orthogonal to7

this exploration-exploitation dimension is a complementary8

choice about decision speed: actions can be made quickly or9

slowly depending on immediate goals and priorities (5). These10

shifts between fast or slow and exploratory or exploitative11

decision policies can be interpreted as different states of an12

underlying evidence accumulation process (6, 7), often cap-13

tured by mathematical models such as the drift diffusion model14

(DDM; (8–12)). Any fixed values of parameters such as the15

drift rate (v; the rate of evidence accumulation during a single16

decision) and boundary height (a; the amount of evidence17

needed to trigger a decision) effectively represent a position18

on a manifold of possible decision policies that determine how19

both internal and external evidence combine to drive eventual20

actions (Figure 1, "WHAT" panel). The goal of learning is21

thus to converge to the position on this manifold of decision22

policies that optimally manages the speed-accuracy tradeoff23

for a given context (13).24

This form of learning is managed, at least in part, by the25

cortico-basal ganglia-thalamic (CBGT) circuit, a distributed26

set of interconnected brain regions that can potentially influ-27

ence nearly every aspect of decision-making (14–18) (Figure 1,28

"WHERE" panel). The CBGT circuit includes a collection29

of interacting basal ganglia pathways that receive cortical30

inputs and compete for control of an output region (predomi-31

nantly the internal globus pallidus, GPi, in primates or the32

substantia nigra pars reticulata, SNr, in rodents) that impacts 33

thalamocortical or superior collicular activity to influence ac- 34

tions (19–21). The balance of this competition is thought to 35

map to a configuration of the evidence accumulation process 36

(7, 22–26). Therefore, if behavioral flexibility reflects the what 37

and CBGT circuits represent the where of flexible decision- 38

making, then we are left with an open question of how: how 39

do CBGT circuits achieve and control flexibility in decision 40

policies during learning? 41

In prior work we showed how the computational logic of 42

normative CBGT circuits can be expressed in terms of three 43

low-dimensional subnetworks, called control ensembles, that 44

each tune specific configurations of evidence accumulation 45

parameters and reflect control over distinct dimensions of 46

a decision policy (27). In theory, these control ensembles, 47

dubbed responsiveness, pliancy, and choice (Figure 1, "HOW" 48

panel), provide candidate mechanisms for controlling shifts 49

in decision policies during learning. Here we illustrate how a 50

single plasticity mechanism acting at the cortical inputs to the 51

basal ganglia can, through network interactions, leverage the 52

control ensembles to steer behavior during learning. To this 53

end, we simulated a biologically-constrained spiking CBGT 54

model that learns to select one of two actions via dopamine- 55

dependent plasticity, driven by reward prediction errors, at the 56

cortico-striatal synapses. We then implemented an upwards 57

mapping approach (28), in which the behavioral features (de- 58

cision times and choices) produced by the simulated CBGT 59

network were modeled across stages of learning using the 60

DDM (see (24, 27, 29)). Finally, we used various analytical 61

approaches to replicate the existence of the low-dimensional 62

control ensembles prior to learning and quantify how their 63

influence levels change over the course of training. Our results 64

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | May 21, 2024 | vol. XXX | no. XX | 1–16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.21.595174doi: bioRxiv preprint 

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/2024.05.21.595174
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT
Fig. 1. Decision-making deconstructed. Most voluntary decision policies depend on the CBGT circuits (WHERE; left panel). This can be described at the algorithmic level by a
set of parameters in a process model (e.g., the DDM) that drives an evidence accumulation process and determines the effective reward rate (WHAT; right panel contours), as
well as other decision parameters. Control ensembles within CBGT circuits determine the relative configuration of decision policy parameters (HOW; middle panel) (27). What
remains unclear is how learning drives changes in control ensembles that shift decision policies so as to maximize reward rate. Cx, cortical PT cells; CxI, inhibitory interneurons;
FSI, fast spiking interneurons; d/iSPN, direct/indirect spiny projection neurons; STN, subthalamic nucleus; GPe, external globus pallidus; GPi, internal globus pallidus

show that value-based learning leads to a specific tuning of65

CBGT control ensembles in a way that maximizes the increase66

in reward rate across successive decisions.67

Results68

Feedback learning in CBGT networks maximizes reward rate.69

Learning in the context of action selection involves finding an70

effective balance between the speed and accuracy of decisions71

(13). Here we consider a situation where an agent encounters a72

new environment for which it has no relevant prior experience73

or bias, so that the selection of all options is equally likely at74

first. In a simple two-choice bandit task, with one rewarded75

and one unrewarded option, this unbiased starting point would76

correspond to a 50% error rate. With learning it should be77

possible to make fewer errors over time, but exactly how this78

is achieved in practice depends on the decision policy that the79

agent adopts. For example, if the agent prioritizes speed over80

all else in its action selection, then its error rate will likely81

remain high. Conversely, by making sufficiently slow decisions,82

the agent may be able to achieve an extremely low error rate.83

The overall reward rate achieved by the agent depends on both84

decision speed and accuracy; intuitively this may be optimized85

for a fixed level of experience via some compromise between86

these two dimensions.87

To understand how this optimization of speed and accu-88

racy can emerge from CBGT circuits, we first simulated 30089

instances of a spiking computational model of the CBGT90

pathways, each with a parameter set selected pseudorandomly91

from pre-determined parameter intervals that maintain the92

firing rates of the relevant cell types within known biolog-93

ical ranges (updated slightly from our past work (27); see94

Supporting Information Appendix, SI - Figure S1A). The net-95

works performed a two-armed bandit task with deterministic 96

reward feedback (i.e., the reward probability was 100% for 97

the optimal choice and 0% for the suboptimal one). Learning 98

was implemented with dopamine-dependent plasticity at the 99

cortico-striatal synapses, where the magnitude of the phasic 100

dopamine response was based on reward prediction errors (for 101

details see (30)). We fit the reaction times (RT) and choice 102

probabilities of each network with a hierarchical version of the 103

DDM (31, 32). The DDM provides an intuitive framework for 104

mapping behavioral responses to an evidence-accumulation 105

decision policy that can be described by only a few parameters 106

(8). After each predetermined step in learning (2, 4, 6, and 107

15 trials with plasticity on), we would freeze the network by 108

turning off plasticity, simulate 300 trials to generate an RT 109

distribution and choice probabilities, and fit the DDM to these 110

behavioral measures. After these probes, learning was turned 111

back on and the task progressed. This process yielded an 112

effective trajectory in the DDM parameter space. 113

Figure 2 shows the average trajectories of three groups of 114

networks on a manifold defined by two parameters of the DDM, 115

drift rate (v) and boundary height (a). For each v and a we 116

also estimated the average RT (Figure 2A), accuracy (Figure 117

2B) and reward rate (Figure 2C). The three groups represent 118

a tertiary split of the full set of simulated networks into fast 119

(short RT, orange), intermediate (medium RT, brown), and 120

slow (long RT, red) groups, based on their initial RT values 121

(Figure S1B). We implemented this split to determine whether 122

decision policy adjustments due to learning were influenced 123

by initial biases in the networks. Despite their initial speed 124

differences, all three network classes showed chance level perfor- 125

mance before plasticity (Figure S1C) and converged to similar 126

regions of the (v, a) space with learning (Figure 2, shaded 127

ellipses). A comparison of behavioral measures and DDM 128
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parameters before and after plasticity is presented in Figure129

S2.130

These trajectories clearly demonstrate that our CBGT net-131

work can learn from simple dopaminergic feedback at cortico-132

striatal synapses. But what exactly is the objective being133

maximized by the network? To test this, we compared the134

change at each step of learning to the predicted direction that135

the network would take if it were maximizing one of three136

possible behavioral objectives: speed, accuracy, or reward rate.137

These predicted directions are illustrated as blue vectors in138

Figure 2A-C, reflecting steps from each initial point that are139

in the direction of the gradient of each objective (i.e., the direc-140

tion of maximal change, which lies orthogonal to the contours,141

shown with the same length as the vector representing the142

actual network evolution at the first step of learning in each143

case). Analysis of the trajectories in Figure 2A reveals that144

while plasticity decreases RTs with learning, the angles of the145

learning trajectories do not align with the optimal directions146

for maximally reducing RT. Similarly, the network trajectories147

do not align with the vectors that would be expected if they148

were maximizing accuracy alone (Figure 2B). In contrast, the149

average trajectories along the reward rate manifold (Figure 2C)150

were closest to the optimal direction. Moreover, the rate of151

increase in reward rate was similar regardless of the network’s152

initial speed bias.153

To quantify the alignment of observed network trajecto-154

ries to the expected directions of maximal change, we calcu-155

lated the cosine distance between the observed vector and the156

optimal vector, normalized to the observed vector’s length,157

at each learning step. While there is substantial variability158

across networks (Figure 2D), there was a consistent effect of159

objective type on network fits (F[3813, 2]=47.2, p<0.0001).160

Fits to the reward rate trajectories (cosine distances averaged161

over all plasticity stages for each network) were consistently162

better than to either RT (t(299)=13.22, p<0.0001) or accu-163

racy (one-sample t(299)=8.75, p<0.0001) trajectories. This164

effect held regardless of a network’s initial bias (Figure S3).165

Thus, our biologically detailed model of the CBGT circuit166

can effectively learn to maximize reward rate by managing167

the speed-accuracy tradeoff during the evidence accumula-168

tion process via dopaminergic plasticity at the cortico-striatal169

synapses.170

Low-dimensional control ensembles that map to general deci-171

sion policies. The CBGT network and DDM are, respectively,172

implementation-level and algorithmic-level descriptions of the173

evidence accumulation process that guides goal-directed behav-174

ior. We have previously shown that there is a low-dimensional,175

multivariate mapping between these two levels of analysis in176

the absence of learning (27). Here we set out to replicate177

this observation with the CBGT parameter sets used in the178

current study, with the aim of analyzing their contributions179

to the dopaminergic learning process. For this step, we con-180

sidered two aspects of activity within each CBGT population:181

global activation across the two action representations (sum182

of the activity in that region, across both channels; Σ) and183

bias towards one action representation (difference in activity184

within each region, across the action channels; ∆). Using185

canonical correlation analysis (CCA), we captured the low-186

dimensional components that maximally correlate variation187

in CBGT activity with variation in DDM parameters. This188

analysis identified three such components (Figure 3). We refer189

Fig. 2. Dopamine-dependent cortico-striatal plasticity drives CBGT networks in the
direction of reward rate maximization. (A) The evolution of RTs achieved by a DDM
fit to CBGT network behavior, projected to (v, a)-space. The orange (fast), brown
(intermediate) and red (slow) stars represent the average starting positions of the
three groups of networks with different initial decision speeds. The squares indicate
the evolution of each network group over the plasticity stages, which converge after
15 trials (shaded ellipses). The yellow (purple) colors represent high (low) RTs. The
network trajectories do not evolve in the direction that would be expected to minimize
the RTs (e.g., optimal direction shown in blue from the initial position of all three
speed groups). (B) The yellow (purple) colors represent high (low) accuracy. The
networks evolve towards increasing expected accuracy but not in an optimal fashion
(trajectories vs. blue arrows). (C) The yellow (purple) colors represent high (low)
reward rate. The network evolution aligns closely with the direction that maximizes
the reward rate (blue arrows). (D) The cosine distances calculated for every network
at each plasticity stage for RT, accuracy and reward rate are shown as distributions.

to these low-dimensional components as control ensembles. 190

The three control ensembles identified by our analysis nearly 191

perfectly replicate our prior work (27), where they are de- 192

scribed in more detail (see also Section Upward mapping). 193

Thus we kept the labels responsiveness, pliancy, and choice 194

ensembles for the first, second, and third components recov- 195

ered, respectively. The recovered components are shown in 196

both CBGT and DDM parameter spaces in Figure 3 (right 197

panels). The responsiveness component describes the agent’s 198

sensitivity to evidence, both in terms of the delay before the 199

agent starts to accumulate evidence (t) and how significantly 200

the presence of evidence contributes to achieving the decision 201

threshold (a). The dominant features of CBGT activity that 202

vary along the responsiveness control ensemble loadings are 203

a global inhibitory signal, including fast-spiking interneuron 204

(FSI) and overall internal globus pallidus (GPi(Σ)) activity, 205

as well as overall excitatory and inhibitory cortical activity 206

(Cx(Σ), CxI). Because the CBGT and DDM loadings that 207

emerge from the CCA have the same sign (all negative), they 208

imply that a decrease in the weighted activity of the loaded 209

cells corresponds to an decrease in t and a and hence to a 210

increase in overall responsiveness. 211

The pliancy component refers to the level of evidence that 212

must be accumulated before committing to a decision. As with 213

responsiveness, pliancy loads mostly on a and t, but now with 214
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Fig. 3. Canonical correlation analysis (CCA) identifies control ensembles (cf. (27)).
Given matrices of average firing rates, F (both summed rates across channels, Σ,
and between-channel differences, ∆), and fit DDM parameters, D, derived from a set
of networks at baseline (left panels), CCA finds the low dimensional projections, û for
firing rates and v̂ for DDM parameters (right panels), which maximize the correlation,
ρ, between the projections ûF and v̂D of F and D.

opposing signs for these two loadings, corresponding to the215

idea that even though an agent is attentive to evidence (small216

t), it requires significant evidence to reach its threshold (large217

a). The CBGT activity features that characterize pliancy are218

the overall engagement of the BG input nodes (i.e., global219

dSPN and iSPN activity, with a smaller STN contribution), as220

well as total GPi and thalamic activity, with opposite loadings221

to each other. For the pliancy component, a change in the222

activity consistent with the cell type loadings (e.g., increase223

in SPN activity) corresponds to a decrease in overall pliancy224

(e.g., increase in a).225

Lastly, the choice component represents the intensity of226

the choice preference and is reflected largely in the drift rate227

(v) and the neural correlates of competing choice representa-228

tions in the CBGT (i.e., difference in activity across the two229

action channels within each BG region). A change in activity230

consistent with the cell type loadings (e.g., greater difference231

in dSPN activity between the two channels) corresponds to a232

stronger commitment towards the more rewarded option (i.e.,233

larger v).234

In summary, each CBGT control ensemble can be inter-235

preted as specifying a coordinated collection of changes in236

CBGT neural activity levels that can, in theory, most effec-237

tively tune a set of decision policy parameters (captured by238

the DDM). Now that we have delineated the control ensembles239

embedded within the CBGT network (cf. (27)), we are ready240

to consider how dopamine-dependent plasticity regulates their241

influence in a way that collectively drives decision policies to242

maximally increase reward rate.243

Cortico-striatal plasticity drives control ensembles during244

learning. Our analysis of the CBGT network behavior (Fig-245

ure 2) shows that dopamine signaling at the cortico-striatal246

synapses is enough to elicit changes in the evidence accumu-247

lation process that maximize reward rate. This observation248

suggests that there are emergent driver mechanisms, origi-249

nating from cortico-striatal synaptic changes, that tune the250

control ensembles in a way that achieves this outcome. That 251

is, if each control ensemble represents a knob to tune an aspect 252

of the decision policy, then a driver mechanism selects a set of 253

adjustments of the knobs that yields an overall decision policy 254

selection. We next set out to identify these emergent drivers. 255

As a first step, to quantify the modulation of CBGT activity 256

after plasticity, we calculated the principal components of 257

the change in firing rates of all 300 networks, before and 258

after plasticity. The first 5 of these components collectively 259

explain more than 90% of the observed variance (Fig. S4A, 260

thick blue line marked "All"). The loading weights (Fig. 4A) 261

show that the first and third components reflect the global 262

activity of the CBGT nuclei. The second, fourth and fifth 263

components relate more strongly to the bias towards one 264

option, with predominant loadings on differences in rates 265

across channels in certain CBGT regions. Together, these 266

components represent the collection of changes in firing rates 267

that result from learning-related changes at the cortico-striatal 268

synapses. 269

We next calculated the matrix S of weighting factors 270

(drivers) for the firing rate components, describing what com- 271

bination of adjustments to the control ensembles best accounts 272

for the associated firing rate changes (Fig. 4B; for full descrip- 273

tion of this approach see Methods subsection Modulation of 274

control ensembles by plasticity). To interpret the drivers of 275

control ensemble influence (Fig. 4B), it is important to note 276

that positive (negative) coefficients correspond to changes in 277

control ensemble activity in the same (opposite) direction as 278

indicated by the loadings in Fig 3. The first driver corresponds 279

to a large amplification of the responsiveness control ensemble, 280

and hence a decrease in various forms of global inhibition in the 281

CBGT network (overall GPi, FSI and CxI activity), along with 282

a boost to the choice control ensemble, and hence increased 283

bias towards the rewarded choice (differences in activity across 284

CBGT channels). The second driver has a strong negative 285

weight on the choice and a positive weight on the pliancy 286

control ensemble. The third, fourth and fifth drivers feature 287

weaker effects, with small modulations of all three control en- 288

sembles. Based on this analysis across all of the networks, the 289

overall modulation of the control ensembles due to plasticity, 290

calculated as the weighted sum over all drivers (weighted by 291

the % of variance explained by each PC), is shown in Supp 292

Figure S4B. All three control ensembles end up being boosted, 293

meaning that, to varying extents, the activity measures that 294

comprise these ensembles change in the directions indicated 295

by their loadings in Fig. 3. In this way the general trend is 296

for the CBGT networks to become more responsive, yet less 297

pliant, which together amount to an earlier onset of evidence 298

accumulation without much change in boundary height, and 299

exhibit more of an emergent choice bias. 300

Because of the difference in decision policies across the fast, 301

intermediate, and slow networks, we recomputed the drivers 302

separately for each network type. This was done by consid- 303

ering the firing rate differences (∆F ) and calculating the S 304

loadings for fast, intermediate, and slow networks separately 305

(see Methods - section Modulation of control ensembles by plas- 306

ticity). The explained variance for the three network types are 307

shown in Supp Figure S4A, and their corresponding PCs and 308

goodness of fits are shown in Supp Figure S5. As expected, the 309

drivers showed variability across the network types (Fig. 4C). 310

The driving factor corresponding to responsiveness is negative 311
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Fig. 4. Corticostriatal synaptic plasticity results in increased pliancy and choice
ensemble activity in all CBGT networks; however, the sign of the responsiveness
change depended on network class. A) The loading weights of the first 5 PCs of firing
rate changes from before to after plasticity pooled for all networks. B) The drivers
(columns of S), which quantify the modulation of control ensembles (responsiveness,
pliancy, choice) that capture each PC (pooled for all network classes). C) The variance-
weighted combinations of drivers for each control ensemble, combined separately for
the three network classes (fast, intermediate and slow).

for fast networks, while remaining positive for the others. The312

pliancy and choice factors were positive for all three networks,313

but pliancy was by far the largest for fast networks and quite314

small for the other two network types. Referring to the DDM315

parameter changes associated with changes in control ensemble316

loadings (Fig. 3), we see that the decrease in responsiveness317

and strong increase in pliancy for fast networks would both318

promote an increase in boundary height, a. This aligns with319

the fact that, of the three network types, only fast networks320

show an increase in a over the course of learning (Fig. 2,321

Supp. Fig. S6). Overall, we see that the specific way that322

plasticity adjusts the weighting of the control ensembles to323

drive changes in decision policies depends on the current state324

of the network. Since plasticity results from the sequence of325

decisions and rewards that occur during learning, we next326

investigate more directly how decision outcomes lead to this327

dependency.328

The influence of feedback sequences on control ensembles. In329

the previous section, we described the overall effects of cortico-330

striatal plasticity on control ensemble tuning. To build from331

there, we next analyzed the early temporal evolution of these332

effects by focusing on the initial two learning trials. Specifically,333

we examined the modulation of the control ensembles for334

different combinations of successes (i.e., rewarded trials; R)335

and failures (i.e., unrewarded trials; U) achieved by the first336

two consecutive choices. For this analysis, we implemented337

our usual DDM fitting process followed by CCA for networks338

that were frozen (i.e., with plasticity switched off) after two339

trials, and we grouped the results based on the sequence of340

choice outcomes. The drivers (combined columns of S) for each341

sequence of outcomes, U-U, U-R, R-U and R-R, are shown in342

Fig. 5A.343

First, consider the case of networks that receive no rewards344

(U-U). Here we infer that the boundary height, a, increases,345

due to a simultaneous decrease in driving of the responsive-346

ness ensemble and increase in driving of the pliancy ensemble,347

both of which result in a boost of the boundary height. In348

addition, driving of the choice ensemble is reduced. Thus, two 349

consecutive unsuccessful trials yields an overall increase in the 350

degree of evidence needed to make a subsequent decision by 351

simultaneously increasing the boundary height and decreas- 352

ing the drift rate. Moreover, slow networks encounter U-U 353

outcomes more often than other network classes in the first 354

two trials (Supp. Table 1), which presumably constrains the 355

increase in responsiveness and choice seen in these networks 356

during learning (Fig. 4C). On average, however, fast networks 357

make more mistakes than the other networks. This result, 358

which we can display graphically in terms of the proportion 359

of unrewarded trials, or mistakes, encountered after the first 360

two plasticity trials (Fig. S6D), likely explains the negative 361

loading for responsiveness and high positive loading for pliancy 362

for fast networks shown in Fig. 4C. 363

In contrast, two consecutive successful trials (R-R, far right 364

of Fig. 5A) produce largely the opposite effect. The influences 365

of the responsiveness and choice ensembles increase, resulting 366

in lower onset time and boundary height along with an increase 367

in the drift rate. This coincides with a weak change in pliancy. 368

As a result, in the R-R case, the decision policy is tuned 369

to include a decreased degree of evidence needed to make 370

subsequent decisions. 371

Not surprisingly, the two mixed combinations of outcomes 372

(U-R, R-U) have largely similar effects on the responsiveness 373

and pliancy ensembles, regardless of the order of outcomes. 374

In both cases responsiveness increases and pliancy decreases, 375

resulting in less overall evidence needed to trigger a decision 376

(by shrinking the boundary height, without much change in 377

the onset time). However, when the first trial is unsuccessful 378

(U-R) the influence of the choice ensemble decreases, while 379

it increases when the first trial is successful (R-U). Indeed, 380

looking at the progressive change in the choice ensemble across 381

the four unique sequences of trials, it appears that early suc- 382

cess (i.e., reward in the first trial) boosts the choice ensemble 383

influence while early failure (i.e., unrewarded first trial) does 384

the opposite. When these combined drivers are recomputed 385

separately for each network class, the learning-induced modu- 386

lations of the ensembles follow the same general trend (Supp. 387

Figure S7), with quantitative details depending on the network 388

class. 389

The preceding analysis shows how the relative contributions 390

of the control ensembles to the evidence accumulation process 391

depend on trial outcomes. What are the results of these 392

changes on the performance of the network? To illustrate 393

these effects, we plot the distribution of changes in reward 394

rates associated with each set of outcomes and separate by 395

network types in Fig. 5B. Although all distributions are 396

generally positive, there is significant variation in reward rate 397

changes across the different feedback sequences (F(619 , 3) = 398

274.2, p<0.0001). The reward rate also varies significantly 399

with the network type (F(619, 2) = 50.3, p<0.0001), and 400

the interaction term between network types and feedback 401

sequences is significant as well (F(619, 6)=3.5, p = 0.002). 402

Compared to all other conditions, the networks that made two 403

consecutive unsuccessful choices (U-U) yielded the smallest 404

changes in reward rates (values of all network types pooled 405

together, all two-sample t(336) > -19.11, all p<0.0001). The 406

two mixed feedback conditions (U-R, R-U) had substantially 407

higher growth in reward rates than the condition with two 408

rewarded trials (R-R; all t(404) > 8.38, all p<0.001), perhaps 409
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Fig. 5. Suboptimal and optimal choices modulate control ensembles in opposite
directions. A) The modulation of control ensembles associated with various reward
sequences encountered in two initial trials with corticostriatal plasticity. U represents
"Unrewarded" and R represents "Rewarded" trials. B) The reward rate changes
obtained by simulation of networks with synaptic weights frozen after various reward
sequences occurred on two initial trials.

because R-R sequences were more likely in networks that410

already had high reward rates. In all cases, the trend was411

for faster networks to achieve greater increases in reward rate.412

As expected, the impact of feedback sequences on reward413

rate is associated with underlying changes in both accuracy414

(Fig. S8A) and decision speed (Fig. S8B).415

Discussion416

Adaptive behavior depends on flexible decision policies (what),417

driven by CBGT networks (where) that shift their activity418

in order to maximize reward rate by coordinated adjustments419

of a set of underlying control ensembles (how; Fig. 1). In420

this work, we focused on the how part of this process, using421

an upward (in abstraction) mapping between a biologically422

realistic model of CBGT pathways and the DDM to illustrate423

the complex, low-dimensional structure of the CBGT subnet-424

works that modify decision policies (Fig. 3). Specifically, we425

recapitulated recent results (27) showing that the three main426

CBGT control ensembles of decision-making represent respon-427

siveness, pliancy, and choice (Fig 3) and serve to regulate the428

evidence accumulation process. We then showed how driver429

mechanisms tune these control ensembles strategically during430

learning (Fig. 4 & 5) in order to maximize reward rate. More-431

over, although they all optimize the same quantity (reward432

rate), we find that networks modulate the control ensembles433

differently depending on their a priori decision policy (fast,434

intermediate, or slow). While all networks increase responsive-435

ness and choice to varying extents, fast networks alone decrease436

responsiveness (Fig. 4C) and correspondingly increase bound-437

ary height (a; Fig. S5A). Put together, our results highlight438

the dynamic and coordinated way that subnetworks within439

CBGT circuits can regulate adaptive decision-making through440

simple dopaminergic plasticity at the cortico-striatal synapses.441

Perhaps the most surprising aspect of this theoretical anal-442

ysis is the sophisticated adjustments that emerged from a sim-443

ple plasticity mechanism on just one class of CBGT synapses.444

Dopaminergic learning at the cortico-striatal synapses was445

sufficient to push our naive networks from an exploratory deci-446

sion policy to an exploitative policy that effectively managed447

the speed-accuracy trade off by maximizing average reward448

rate (Fig. 2). This behavior was also recently observed in449

rats performing a perceptual learning task (33), suggesting450

that such reward rate maximization is a natural behavior in 451

many, if not all, mammals. The rewards in our task that drove 452

learning were based only on the accuracy of each selection. So, 453

how is it possible that rewards based only on accuracy lead to 454

an optimization of reward rate? The answer to this question 455

lies in the architecture of the CBGT circuits. Although the 456

synaptic plasticity in our model occurs only at the cortico- 457

striatal synapses, the changes in activity that result from this 458

plasticity ripple throughout the entire CBGT network, based 459

on the synaptic coupling among populations that the network 460

includes. An emergent result from our simulations is that 461

these cascading effects produce the subsequent reduction of de- 462

cision times, even without any reward incentive that explicitly 463

depends on speed. As a result, the model tends to act more 464

slowly in the early phases of learning, but increases accuracy 465

and speeds decisions as learning progresses. This is similar 466

to behavioral observations in rodents (33, 34), non-human 467

primates (35), and humans (36, 37). Our results suggest that 468

this complex behavior is a natural consequence of dopamine- 469

dependent plasticity at the cortico-striatal synapses together 470

with the architecture of the CBGT circuit. 471

Here we decomposed the circuit-level effects of plasticity 472

that underlie adaptive reward rate maximization in terms of 473

varying levels of learning-related drives on a set of control en- 474

sembles. Based on the relation of the control ensemble loading 475

to evidence accumulation parameters (Fig. 3), the effective 476

learning-related changes result in shorter decision onset delays, 477

higher rates of evidence accumulation, and variable changes 478

in decision threshold as learning progresses (Fig. S6). On 479

the shorter timescale of consecutive trials, each possible set 480

of reward outcomes induces a specific adjustment of control 481

ensembles in a way that increases subsequent accuracy and 482

reward rate (Fig. 5, Fig. S8). Interestingly, but perhaps 483

not surprisingly, having mixed feedback (one rewarded and 484

one unrewarded trial) resulted in more effective reward rate 485

maximization than two consecutive rewarded trials, consistent 486

with past results (and intuition) on the benefits of exploration 487

for effective learning (38, 39). It is, however, important to 488

note that cortico-striatal plasticity may explain only a part 489

of the decrease in decision speed seen in experiments, with 490

additional reductions that result from an agent’s increased 491

confidence in the outcomes of its decisions (increased certainty) 492

deriving from other information sources (40). Moreover, an 493

experimental paradigm that requires learning an explicit min- 494

imization of decision times may reveal other novel CBGT 495

control ensembles, apart from those that we report here. 496

A reasonable question at this point is whether the control 497

ensembles that play a crucial role in learning in our simula- 498

tions exist in real CBGT circuits. Directly recovering these 499

ensembles would necessitate simultaneous in vivo recording of 500

nine distinct cell populations during a learning task. This is 501

currently outside the scope of available empirical technology. 502

Nonetheless, a review of the current literature reveals piece- 503

meal indications of the existence of these control ensembles. 504

For example, the predominant loadings in the responsiveness 505

ensemble in our CBGT model corresponds to decreases in 506

FSI, cortical, and overall GPi activity. The increase in re- 507

sponsiveness associated with learning in intermediate and slow 508

networks in our model therefore matches the suppression of 509

activity in the subpopulation of striatal FSIs that was observed 510

after learning in non-human primates (41). Interestingly, ex- 511
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periments have also found evidence for an earlier onset of512

activity in striatum with the progression of learning in non-513

human primates (42), consistent with the decrease in onset514

time t that arises via the learning-induced increase in drive of515

the responsiveness or pliancy ensemble in all network classes516

in our model.517

The pliancy ensemble is associated with the onset time518

and boundary height parameters, but with opposing loadings.519

Thus, an increase in activity of the pliancy ensemble corre-520

sponds to an earlier onset of evidence accumulation but with521

a higher boundary height. This places an emphasis not on the522

collection of evidence itself, but on the agent’s willingness to be523

convinced by this evidence. It has been shown that an increase524

in the conflict between action values is associated with an in-525

crease in global STN activity (43–45), which is consistent with526

a strengthened driving of our pliancy ensemble that results in a527

higher decision threshold. Also, because our simulations show528

an increase in efficacy of the pliancy ensemble with value-based529

learning (Fig 4C) for fast and intermediate networks, we pre-530

dict that the overall level of striatal SPN activity will increase531

as learning progresses, while that in GPi will decrease. The532

predominant contributions of this effect are predicted to occur533

in response to unrewarded trials (Fig 5A). Consistent with534

this idea, past studies have shown such increases in striatal535

activity in association with learning (46). Related findings536

have been interpreted as being potentially linked to increased537

attentiveness to a task (47) or increased motivation (48, 49).538

Both effects are consistent with the lowering of onset time539

associated with our pliancy ensemble. Interestingly, increases540

in striatal activity, as measured via fMRI, have been found to541

be beneficial for learning in adolescents (50), which our results542

suggest could relate to enhanced learning from mistakes.543

Finally, the choice ensemble is strongly associated with drift544

rate. The CBGT components contributing to this ensemble545

include the differences across action representations in both546

dSPN and iSPN populations. Consistent with this relationship,547

single unit activity in dorsal striatum has been shown to548

reflect the rate of evidence accumulation and consequently549

preference for a specific response to a stimulus (51). At the550

macroscopic level, we recently found that the competition551

between action representations in CBGT circuits, measured552

with fMRI, is indeed reflected in the drift rate in humans (7).553

At the causal level, a recent study with patients suffering from554

dystonia showed that deep brain stimulation (DBS) in the GPi555

increased the likelihood of exploratory behavior, which was556

encoded as decrease in the drift rate in an DDM-type model557

(17). Whether DBS increases or decreases the output of its558

target area is a matter of controversy (52–54); however, based559

on the loadings in the choice ensemble, we would predict that560

the decrease in drift rate aligns with activity becoming more561

similar across GPi neurons in different channels, which would562

be a natural result if DBS affected all channels similarly.563

Taken all together, the results in this paper show how the564

low-dimensional substructure of CBGT circuits can implement565

environmentally appropriate changes in behavior during learn-566

ing by tuning specific aspects of the evidence accumulation567

process that, in turn, determine the current state of a decision568

policy. Importantly, dopamine-dependent synaptic plasticity569

at the cortico-striatal synapses, mediated by choice-related570

reward signals, adjusts the activity of these control ensembles571

in a strategic and coordinated way that improves accuracy572

while reducing decision times so as to maximize the increase 573

of reward rate. These results not only align with previous 574

empirical observations, but also make explicit predictions that 575

can be the focus of future experimental work. 576

Materials and Methods 577

CBGT network. The CBGT network model is a biologically 578

constrained spiking neural network including neural popula- 579

tions from the striatum (dSPNs, iSPNs and FSIs), globus 580

pallidus external segment (GPe), subthalamic nucleus (STN), 581

globus pallidus internal segment (GPi), thalamus and cor- 582

tex (excitatory and inhibitory components). For a two-choice 583

task, each choice representation is implemented as a “channel” 584

(21, 24, 27, 55), so the model includes two populations of each 585

type except FSIs and inhibitory cortical neurons, which are 586

shared. The cortico-striatal projections to both dSPNs and 587

iSPNs are plastic and are modulated by a dopamine-dependent 588

spike timing dependent plasticity rule (29, 56, 57). On a trial, 589

a choice is selected if the firing rate in the thalamic population 590

within its action channel reaches 30 Hz before the rate of the 591

other thalamic population hits that level. The complete details 592

of this network can be found in our methods paper (30). 593

Characterization of networks before plasticity. In our previ- 594

ous work, we identified control ensembles based on extensive 595

simulation of the CBGT network with each of 300 parameter 596

sets selected using Latin hypercube sampling from among the 597

ranges of synaptic weights that maintained biologically realistic 598

firing rates across all populations (27). In that work, in which 599

no learning occurred, however, the cortico-striatal projections 600

to the choice representations (channels) were considered to 601

be independent. Hence, some sampled network configurations 602

were biased towards one of the choices. Because we study 603

the evolution of the control ensembles under plasticity in this 604

work, we started with completely unbiased networks. Hence 605

we resampled the networks from the joint synaptic weight dis- 606

tribution using genetic algorithms (see below) and isolated 300 607

networks that produced firing rates of all CBGT populations 608

within the experimentally observed ranges. The firing rate 609

distributions are shown in Supp Fig S1A. The networks before 610

plasticity showed a diversity of reaction times (RTs, Supp Fig 611

S1B). The RT distribution was divided into 3 equal tertiles 612

and used to define "fast" (orange), "intermediate" (brown) and 613

"slow" (red) networks. All of the networks before plasticity 614

showed chance levels of accuracy (Supp Fig S1C). 615

Genetic algorithms. The DEAP library (58) was used to run a 616

genetic algorithm (GA) designed to sample networks with pa- 617

rameters from the ranges used previously (27). Two additional 618

criteria were used for the optimization function of the GA, 619

namely (a) the network should produce trial timeouts (when 620

no action was selected within 1000 ms) on fewer than 1% of 621

trials, and (b) the network should be cortico-basal-ganglia 622

driven; that is, the correlation between cortical activity and 623

striatal activity should be positive. The first criterion ensured 624

that we had ample choices included in the data, as needed to 625

appropriately fit the DDM parameters (timeouts are dropped 626

before fitting the DDM parameters). The second criterion en- 627

sured that the networks did not operate in a cortico-thalamic 628

driven regime, in which cortical inputs alone directly pushed 629

thalamic firing over the decision threshold. 630
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The range for each parameter specified in past work (27)
was divided into 30 bins and this grid was sampled to create
populations. The indices of each bin served as a pointer to
the actual values of the parameters in the ranges considered.
The GA uses these indices to create, mate and mutate the
populations. This ensures that the values of parameters re-
main within their specified ranges. For example, suppose that
parameter A has range (-2.0,2.0) and parameter B has range
(-0.3,1.0) and these ranges are each divided into 5 bins. The
grids for parameters A and B will be:

Agrid =
(
−2 −1 0 1 2

)
Bgrid =

(
−0.3 0.025 0.35 0.675 1

)
.

If individual population members have indices ind1 = (0 1) and631

ind2 = (4 0) for (A, B), then they have (A, B) = (−2, 0.025)632

and (A, B) = (2, −0.3), respectively. Supposed that the indi-633

viduals mate by crossing over the 1st and 2nd elements. Then634

ind3 = (4 1) with parameter values (2, 0.025) and ind4 = (0 0)635

with parameter values (−2, −0.3). The individuals ind3 and636

ind4 are included in the next iteration of evolution.637

New individuals created from mating were used to638

overwrite the original individuals that were mated to-639

gether(cxSimulatedBinary). The individuals could also mutate640

by shuffling the indices of the attributes (mutShuffleIndexes)641

with a probability of 0.2. After a round of mating and mu-642

tation, tuples of two values for each individual, namely the643

% of timeouts and the Pearson’s correlation coefficient be-644

tween cortical and striatal activity, were compared to select645

the individuals for the next round of evolution. The selection646

algorithm that was used was tournament selection (selTour-647

nament) of size 3, which picked the best individual among 3648

randomly chosen individuals, 10 times, where 10 is the size649

of the population of networks in every iteration of the GA.650

During every iteration, any network configuration that met651

the criteria (a) and (b) above was saved as a correct solution.652

The GA was run for 2000 iterations or until 300 solutions were653

found, whichever was sooner. Post hoc, we confirmed that the654

firing rates of the members of the final, selected population655

remained within the originally targeted ranges (Figure S1).656

Upward mapping. The DDM parameters and activity of the657

CBGT nuclei for our 300 network configurations, before plas-658

ticity, were used to identify CBGT control ensembles through659

canonical correlation analysis (CCA), as was also done in our660

previous work (27) and is illustrated in Fig 3. The CCA scores661

were calculated using k-fold validation (k=4), where the 300662

networks were divided into groups of 4 (75 networks each) and663

a CCA score was calculated for each of the groups. The CCA664

scores for actual data were compared with a shuffled version of665

data (firing rates and DDM components for 300 networks) and666

the set of components giving rise to the maximum CCA score,667

which we found to include three elements as in our previous668

work (27), were selected.669

Modulation of control ensembles by plasticity. We used a single670

approach to compute a set of effective drivers of the control671

ensembles either from the full collection of CBGT networks or672

from one of the network subtypes (fast, intermediate, or slow)673

that we considered. Let X ∈ {all, fast, intermediate, slow}674

denote the class of networks being used. From the set of vectors675

of changes in CBGT firing rates computed by subtracting firing676

rates before plasticity from those after plasticity (∆FX), we 677

extracted 5 principal components (PCs) that together explain 678

at least about 90% of the variance (Fig. 4A, Supp Figure 679

S4A). ∆FX was then projected onto these 5 PCs to form the 680

target matrix PX . Specifically, we computed 681

PX = (∆FX)VX [1] 682

where the 5 PCs comprise the columns of VX . Note that 683

PX is an n by 5 matrix, where n is the number of firing rate 684

data vectors used. ∆FX was also projected onto the three 685

control ensemble components obtained from the full collection 686

of baseline networks before plasticity, via the mapping 687

CX = (∆FX)U [2] 688

where the components of the 3 control ensembles form the 689

columns of U , such that CX is an n by 3 matrix. Finally, we 690

found the least squares solution SX , representing the element 691

in the range of CX that is closest to PX , from the normal 692

equation 693

SX = (CT
XCX)−1CT

XPX . [3] 694

The least squares solution SX is a 3 × 5 matrix independent 695

of n. The columns of Sall are displayed in Fig. 4B. The 696

sums of the columns of the appropriate SX , each weighted by 697

the percent of variance explained, comprise Figs. 4C and S7 698

(X = fast, X = intermediate, and X = slow), as well as 699

Figs. 5A and S4B (X = all). 700

Reward rates. The reward rate was calculated as: 701

RR = 1−p(err)
DT +T0

= accuracy
RT

702

where p(err) denotes the error rate and where the reaction time, 703

RT , is the sum of the decision time, DT , and the additional 704

non-decision time that arises within each trial, T0, which in 705

our analysis is ascribed to the onset delay represented by the 706

DDM parameter t. 707

Plasticity stages. The effect of plasticity on the network was 708

studied at four stages: a) after 2 trials of plasticity, b) after 2 709

additional trials (total 4) of plasticity, c) after 2 more addi- 710

tional trials (total 6) of plasticity, d) after 9 additional trials 711

(total 15) of plasticity. The state of the network was frozen 712

at each of these stages by suspending the plasticity, so that 713

we could use the frozen network to perform probe trials. The 714

choices and reaction times from the probe trials were used 715

to calculate DDM parameters and reward rate distributions 716

for each stage of plasticity, based on upward mapping and 717

CCA, and thus to generate the trajectories in Fig. 2, the time 718

courses in Fig. S6, and the 2-trial results in Figs. 5, S7, and 719

S8. 720

Data sharing. The network codebase utilized in this study 721

can be found on our GitHub repository and accessed at 722

https://github.com/CoAxLab/CBGTPy/blob/main. Detailed instal- 723

lation instructions and a comprehensive list of implemented 724

functions can be found in the README.txt file within the 725

repository. All datasets generated and analyzed during the 726

course of this research, along with a demonstration demo will 727
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be openly available on GitHub at https://github.com/jyotikab/728

CBGT_maximize_RR.729
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Fig. S1. Network firing rates, accuracy and RTs before plasticity. (A) The distributions of average firing rates for the 9 nuclei based on 300 networks. The average firing rates for
one example each from three categories of network – fast (orange), intermediate (brown) and slow (red) – are marked on the distribution. The networks before plasticity were
categorized as fast, intermediate and slow based on a tertiary split of the reaction time (RT) distribution as shown in (B). The RTs for the exemplar fast (orange), intermediate
(brown) and slow (red) networks are marked. (C) The average accuracy of all 300 networks. The accuracy is centered around 50% (0.5) because the networks had not
undergone plasticity.
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Fig. S2. Comparison of DDM and behavioral measures for all 300 networks before (blue) and after (pink) plasticity. The subplots on the diagonal represent the marginal
distributions for DDM parameters (a, t, v) and behavioral features (RT and accuracy). The onset delay (t) shows a decrease, the drift rate (v) shows an increase, RTs show a
decrease, and accuracy shows an increase after plasticity. The off-diagonal subplots show the pairwise covariances.
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Fig. S3. Evolution of behavioral measures for 300 networks over 16 trials with plasticity. (A) Network behavior was assessed after each of 2, 4, 6, 9 and 15 trials. The RTs
steadily decreased for all three network categories: fast (orange), intermediate (brown) and slow (red). The average over all 300 networks also showed a steady decrease as
shown in black markers and lines. (B) The accuracy for the three categories of the networks and the average over all 300 networks increased with plasticity. (C) The reward rate
for three categories of network and the average over 300 networks increased with plasticity. (D) The distribution of differences in cosine distance, measured relative to the
direction of greatest increase, for changes in RT vs accuracy, RT vs reward rate, and accuracy vs reward rate for all 300 networks and all stages of plasticity. The comparisons
with reward rate yield distributions skewed to significantly above 0, suggesting that the cosine distances are lowest for reward rates. (E) Absolute cosine distance distributions
shown separately for the three network classes, fast (orange), intermediate (brown) and slow (red).
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Fig. S4. The least squares solution S pooled over the network types. (A) Cumulative variance explained by the first 10 principal components (PC) derived from the changes in
firing rates from before to after plasticity. The dashed line indicates 90% of the explained variance. The analysis was done for all the networks pooled together (blue line) and
separately for fast (orange), intermediate (brown) and slow (red) networks. For all networks pooled together as well as the separated slow and intermediate networks, the first 5
PCs explain more than 90% of the variance, whereas for fast networks 1 PC suffices. (B) The weighted sum of the columns of S (see main text - Fig 4B), pooled over all three
network classes (fast, intermediate and slow), shows that the observed changes in firing rates correspond to increased loadings of the responsiveness, pliancy and choice
ensembles of the CBGT network.

Fig. S5. Reconstruction of firing rate changes from the least squares solution S for the three network classes. (A) The first 5 PCs for the firing rate changes in the fast networks.
Although the 1st PC explains around 90% of the variance for fast networks, we used 5 PCs to calculate S coefficients (Fig 4C) to be consistent with slow and intermediate
networks (Supp Figure S4A). (B,C) Same as (A) for intermediate and slow networks, respectively. (D-F) The dot products of the CCA component vector (C) with each of the 5
columns of S, the least squares solution of P = CS, provide an approximate reconstruction of the 5 PCs of the changes in firing rate from before to after plasticity, (∆F ). The
quality of the reconstruction was checked by projecting ∆F onto the original PCs for each network (marked as Actual on y-axis) and comparing the results with the projections
of ∆F onto the reconstructed PCs (marked as Predicted on x-axis). The goodness of fit is calculated as the Spearman rank correlation (ρ) between the actual and predicted
values. For fast networks (D), the rank correlations (ρ) are high and significant (p < 0.0001) for all of the PCs as shown, suggesting that the reconstruction is excellent. For
intermediate networks (E), the rank correlations are significant for all PCs except the 5th PC. For slow networks (E), the rank correlations are significant for all except 4th and
5th PCs.
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Fig. S6. Evolution of DDM parameters with plasticity. (A) The change in boundary height (a) due to plasticity is dependent on network type: slow networks (red) show a
decrease, intermediate (brown) show little change, and fast (orange) networks show a slight increase. The mean over all networks is shown by large black circles. (B) All
network types show a strong decrease in decision onset time (t) due to plasticity. (C) All network types show an increase in drift rate (v) due to plasticity. (D) Fast networks
make more mistakes on average. Shown are the histograms of proportion of unrewarded ("U") trials encountered by all the three network classes after the first two plasticity
trials.
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Fig. S7. Effect of reward sequences on the weighting coefficients S for the three network classes. The weighting coefficients S shown in Fig. 5A combine the three network
types. The separated coefficients here show the same trends as the combined ones.
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Fig. S8. Effect of reward sequences on changes in accuracy and reaction times (RTs). (A) The change in accuracy showed an increase in all cases, but to different extents.
The highest increase in accuracy was for one rewarded and one unrewarded trial (U-R and R-U), due to strengthening of the cortico-striatal projection to dSPNs of the optimal
choice along with strengthening of cortico-striatal projections to iSPNs of the sub-optimal choice. (B) The change in RTs after plasticity for the four outcome sequences. All
sequences involving at least one rewarded trial showed a decrease in RT, whereas the sequence with two consecutive unrewarded trials (U-U) showed an increase in RT.

Table S1. Relative number of instances of the reward sequences en-
countered by each network type. Slow networks encounter a relatively
higher proportion of two consecutively unrewarded choices (U-U) as
compared to intermediate and fast networks.

Network type Reward sequence Relative number of instances (%)

Fast R-R 36.27%
Fast R-U 18.62%
Fast U-R 28.9%
Fast U-U 16.2%
Intermediate R-R 35.1%
Intermediate R-U 19.9%
Intermediate U-R 29.4%
Intermediate U-U 15.6%
Slow R-R 32.1%
Slow R-U 10.7%
Slow U-R 31.1%
Slow U-U 26.0%
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