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Summary 7 

During perceptual decision-making, behavioral performance varies with changes in 8 

internal states such as arousal, motivation, and strategy. Yet it is unknown how these internal 9 

states affect information coding across cortical regions involved in differing aspects of sensory 10 

perception and decision-making. We recorded neural activity from the primary auditory cortex 11 

(AC) and posterior parietal cortex (PPC) in mice performing a navigation-based sound localization 12 

task. We then modeled transitions in the behavioral strategies mice used during task 13 

performance. Mice transitioned between three latent performance states with differing decision-14 

making strategies: an ‘optimal’ state and two ‘sub-optimal’ states characterized by choice bias 15 

and frequent errors. Performance states strongly influenced population activity patterns in 16 

association but not sensory cortex. Surprisingly, activity of individual PPC neurons was better 17 

explained by external inputs and behavioral variables during suboptimal behavioral performance 18 

than in the optimal performance state. Furthermore, shared variability across neurons (coupling) 19 

in PPC was strongest in the optimal state. In AC, shared variability was similarly weak across all 20 

performance states. Together, these findings indicate that neural activity in association cortex is 21 

more strongly linked to internal state than in sensory cortex. 22 

Introduction 23 

As an animal makes decisions based on relevant sensory information, its behavior can 24 

shift between periods of optimal and suboptimal performance. These fluctuations in performance 25 

are guided by changes in the internal state of the animal, such as its level of arousal or motivation 26 

(Flavell et al., 2022; Livneh & Andermann, 2021). These fluctuations in task performance can be 27 
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modeled as discrete decision-making strategies guiding choice behavior (Ashwood et al., 2022; 28 

Bolkan, Stone et al., 2022). Animals trained to expertly perform decision-making tasks 29 

predominantly occupy an optimal performance state, as evidenced by high task accuracy and 30 

enhanced attention to sensory information (Harris & Thiele, 2011). When animals occupy 31 

suboptimal performance states, although they are still engaged in decision-making behavior, they 32 

experience increased lapses in choices, and increased variability on correlates of arousal such 33 

as pupil diameter and uninstructed movements (Hulsey et al., 2024). 34 

Task-relevant information, such as sensory stimuli and behavioral choices, is encoded 35 

across sensory and association-level cortex (Runyan et al., 2017; Steinmetz et al., 2019; Tseng 36 

et al., 2022). The primary auditory cortex (AC) processes incoming sound information but is also 37 

modulated by task performance (Fritz et al., 2003; Heller et al., 2023; Kuchibhotla et al., 2017), 38 

arousal state (Khoury et al., 2023; Lin et al., 2019; McGinley et al., 2015), and motor behavior 39 

(Nelson & Mooney, 2016; Schneider et al., 2014, 2018). Downstream association-level cortices, 40 

such as posterior parietal cortex (PPC), integrate sound information with other relevant 41 

information to guide perceptual decisions. Both AC and PPC are characterized by rich population 42 

activity dynamics (Aponte et al., 2021; Aschauer et al., 2022; Downer et al., 2021; Driscoll et al., 43 

2017; Mohan et al., 2021), and in both regions, shared variability in the activity across neurons is 44 

modulated by task performance and arousal level (Khoury et al., 2023; McGinley et al., 2015). 45 

However, shared variability is overall stronger and has a longer timescale in PPC (Runyan et al., 46 

2017). Both AC and PPC are diversely connected with other brain regions such as other 47 

association cortices and subcortical structures (Lyamzin & Benucci, 2019), and contribute to 48 

perceptual decision-making (Akrami et al., 2018; Guo et al., 2017; Pho et al., 2018; Song et al., 49 

2017; Zhong et al., 2019).  50 

Although task engagement impacts sensory responses in AC and PPC, it is unclear how 51 

transitions in the internal states that naturally occur within the task performance context impact 52 

information coding across these two different levels of cortical processing. Do suboptimal 53 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2024. ; https://doi.org/10.1101/2024.05.23.595581doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.23.595581
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

performance states hinder representations of task information in both AC and PPC, or is one 54 

region more impacted by state than the other? Furthermore, do optimal performance states affect 55 

the shared variability of activity between neurons, an important feature of population activity, and 56 

is this effect consistent across the cortical hierarchy?   57 

To answer these questions, we identified latent states that explained variations in mouse 58 

performance of an auditory decision-making task, including a near-optimal performance state and 59 

heavily biased, suboptimal performance states. We then related these states to neural population 60 

coding for task-related information in AC and PPC. Coding was differently impacted in the two 61 

areas across performance states. In AC, population activity patterns were highly similar across 62 

states. In contrast, population activity patterns differed significantly across performance states in 63 

PPC in three key ways: 1) PPC activity could be used to identify the latent behavioral state, 2) 64 

stimulus decoding using PPC activity was enhanced in high performance states, and 3) shared 65 

variability across neurons was greater in PPC during the optimal performance state. Our results 66 

reveal that latent performance states during decision-making have a diverse range of effects on 67 

information coding in the activity of different cortical regions, and optimal performance states drive 68 

association but not sensory cortex into correlated and functionally coupled regimes.   69 

Results  70 

Mice switch between performance states during auditory decision-making 71 

Mice performed a two-armed forced choice, virtual reality (VR) based T-maze task, using 72 

the locations of sound stimuli to guide left-right choices (n=5, Runyan et al., 2017). As mice ran 73 

down a T-stem of the virtual reality corridor a sound cue was played from one of eight possible 74 

locations. Mice reported whether the sound came from a left or right direction by turning in that 75 

direction at the T-intersection (Figure 1A). Expert mice learned to accurately categorize the 76 

locations of the sound cues, making greater than 70% correct choices in a session, and used a 77 

subjective category boundary (as shown by the peak of the psychometric slope function) that 78 

closely matched the experimentally defined category boundary (Figure 1B). However, even expert 79 
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mice fluctuated in task performance within single behavioral sessions (Figure 1C-top), and 80 

periods of low task performance were found to have an increased choice bias regardless of the 81 

sound localization cue (Figure 1C-middle, bottom). 82 

 To characterize these fluctuations in task performance and identify potential changes in 83 

hidden states guiding behavioral performance, we used hidden Markov models with generalized 84 

linear model observations (GLM-HMMs, Ashwood et al., 2022). We modeled the mouse’s 85 

decision-making strategy using a GLM-HMM with four inputs (Figure 1D): (1) the left-right location 86 

category of the auditory stimulus on the present trial; (2) the binary (left-right) choice made by the 87 

mouse on the previous trial; (3) whether the previous trial was correct or incorrect; (4) and a 88 

constant offset or choice bias. Thus, each ‘state’ in the HMM corresponds to a Bernoulli GLM for 89 

a rightward choice given the four input predictors. We fit GLM-HMMs with varying numbers of 90 

latent states to choice data from 69 total behavioral sessions across 5 mice performing the VR 91 

sound localization task and found that a three-state GLM-HMM explained the data well, as 92 

evidenced by high log-likelihood and predictive accuracy on held-out test data (Extended figure 93 

1).      94 

 Examining the inferred GLM weights related to the mouse’s choice in each state revealed 95 

that the state 1 GLM had a large weight for sound stimulus location and negligible weights for 96 

previous choice, previous reward outcome, and choice bias. The GLMs for state 2 and state 3, 97 

had small weights for stimulus location and high and opposing weights for the left-right bias input 98 

(Figure 1E). State 1 was the most frequently occupied state across all behavioral sessions 99 

(53.5±11.8%), and when mice occupied this state their task performance was high (88.0±1.2% 100 

correct). States 2 and 3 were less frequently occupied (23.7±12.4% and 22.7±1.8%), and mice 101 

during these states had low task performance (58±6.2% and 56±2.2% correct), however they still 102 

performed higher than chance (Figure 1F-G). We assessed the decision-making strategies 103 

associated with each state by plotting psychometrics curves for the probability of a rightward 104 

choice as a function of the stimulus location (Figure 1H). The state 1 psychometric had a steep 105 
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slope indicating that the mouse more optimally categorized both easy and difficult sound 106 

locations. By comparison, the psychometric curves for state 2 and state 3 had shallow slopes and 107 

were shifted up or down, reflecting rightward and leftward choice biases, respectively.  108 

To characterize the temporal structure of how mice transitioned between states during 109 

performance of the task, we used the three state GLM-HMM to compute the posterior probability 110 

over the mouse’s latent state across all trials (Figure 1I). States persisted for many trials in a row 111 

(state 1: 20.2±8.2 trials, state 2: 8.6±2.0 trials, state 3: 6.9±1.3 trials), and multiple state transitions 112 

occurred throughout a behavioral session (11.3±6.9 state switches). The model had high 113 

confidence of the mouse’s assigned state during behavior, predicting the most probable state with 114 

a probability greater than 0.9 on 87% of trials. Overall, the three-state GLM-HMM revealed that 115 

mice trained to expertly perform a VR sound localization task transitioned between optimal and 116 

suboptimal latent states of behavioral performance, characterized by unique strategies governing 117 

behavioral choices.    118 

Performance states differently impact information coding in sensory and association cortex 119 

population activity 120 

 To elucidate the effects of behavioral performance state on cortical representations of 121 

task-relevant information across different cortical regions, we related occupancy in the 3 GLM-122 

HMM states to patterns of neural activity in AC and PPC. We used in-vivo calcium imaging to 123 

monitor the activity of GCaMP6+ neurons in AC and PPC on separate days (Figure 2A; N = 203 124 

PPC neurons from 5 behavioral sessions and 178 AC neurons from 4 behavioral sessions). First, 125 

we tested if population activity patterns of AC and PPC neurons distinguished between the mouse 126 

performing the task in an optimal (state 1) or suboptimal performance state (states 2 or 3). We 127 

trained binary support vector machine (SVM) decoders to classify each trial as state 1 or not state 128 

1 (combining states 2 and 3) from AC or PPC neuronal population activity during that trial and 129 

calculated the decoding accuracy using five-fold cross validation (Figure 2B). The accuracy of 130 

PPC population decoding of performance state was significantly higher than chance (p= 5.9 x 10-131 
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7, Wilcoxon signed rank test), in stark comparison to AC population decoding of performance state 132 

which was not significantly different from chance performance (p= 0.67, Wilcoxon signed rank 133 

test). This result shows that performance state, as identified by the GLM-HMM, could be 134 

discriminated by population activity in PPC but not AC.  135 

Next, we tested if behavioral performance state affected population coding for stimulus 136 

and choice variables. We trained SVM decoders to classify left or right stimulus trials from AC or 137 

PPC population activity, which was aligned to the onset of the first sound in the trial. One decoder 138 

was trained on population activity and trial information from exclusively state 1 trials (‘state 1 139 

decoder’) and another was trained on population activity and trial information from trials spanning 140 

all performance states (‘all-state decoder’). The all-state decoder included data from state 2 and 141 

state 3 trials supplemented with subsampled state-1 trials to ensure similar numbers of trials for 142 

comparisons between the two types of decoders (Extended Figure 3A). The accuracy of stimulus 143 

classification from AC population activity peaked at one second post sound onset for both 144 

decoders and both had similar peak decoding accuracy (Figure 2C). Conversely, the accuracy of 145 

stimulus classification from PPC population activity over time was different between the two 146 

decoders: state 1 decoder had consistently higher stimulus classification accuracy than the all-147 

state decoder (Figure 2D).  148 

We repeated this SVM decoding approach for classification of left or right choice trials 149 

from AC or PPC neuronal population activity but aligned activity instead to the onset of the turn 150 

into the left or right arm of the VR maze. The accuracy of choice classification from AC population 151 

activity was similarly low in the state 1 and all-state decoders (Figure 2E), while the accuracy of 152 

choice classification from PPC population activity was different across the two decoders (Figure 153 

2F). Both decoders trained to classify choice from PPC population activity had peak classification 154 

accuracy at the time of turn onset, and classification accuracy was higher for the state-1 decoder 155 

in comparison to the all-state decoder. Together, these results indicate that task-relevant 156 
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information in association cortex but not sensory cortex population activity patterns were 157 

modulated by the performance state of the animal. 158 

Behavioral variables better predict PPC activity during suboptimal performance states 159 

Neural activity in AC and PPC is heterogeneous, affected by stimulus, choice, and various 160 

other task-relevant variables such as reward delivery, the mouse’s position in the maze, and its 161 

running patterns (Goard et al., 2018.; Harvey et al., 2012; Minderer et al., 2019; Runyan et al., 162 

2017). To understand the relationship between these diverse variables and the neuronal 163 

responses in AC and PPC, we followed an encoding model approach using generalized linear 164 

models (GLMs, (Runyan et al., 2017)). The GLMs, which used all measured task-relevant 165 

variables as predictors of each AC or PPC neuron’s activity, were trained and tested using trials 166 

that occurred during different behavioral performance states, as defined by the GLM-HMM above. 167 

The first set of models included only performance state 1 (‘state 1 encoding model’), and the 168 

second set of models were trained and tested using trials from all three performance states (‘all-169 

state encoding model’). 170 

To compare encoding properties across behavioral performance states in each AC or PPC 171 

neuron, we compared the state 1 encoding model’s prediction performance (measured as the 172 

fraction of explained deviance in held-out trials) to the all-state encoding model’s prediction 173 

performance. We could then use this comparison to estimate the impact of suboptimal 174 

performance states on encoding of information in neuronal activity. In AC, the prediction 175 

performance of the two encoding models was similar (n=171 AC neurons, p=.18, Mann-Whitney 176 

U-test, Figure 3B). Surprisingly, the activity of most PPC neurons was better predicted by the all-177 

state encoding model (n=203 PPC neurons, p=1.8 x 10-5, Mann-Whitney U-test, Figure 3C). This 178 

suggests that task-relevant variables were equal predictors of neuronal activity in AC across 179 

performance states but were stronger predictors of neuronal activity in PPC when mice occupied 180 

the suboptimal performance state.  181 
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To understand these seemingly paradoxical results, that in PPC stimulus and choice 182 

decoding were modestly improved in the optimal state (Figure 2) but that the encoding model 183 

prediction performance was worse in optimal behavioral state (Figure 3C), we examined the 184 

contributions of different categories of predictors in explaining neurons’ activity across states in 185 

the encoding model. To assess to total weighting of each category of predictor, we summed the 186 

coefficients for each type of predictor (e.g. sound stimuli) from the model fits for each AC and PPC 187 

neuron. Sound stimulus predictors were weighted heavily and equally by both sets of encoding 188 

models for AC neurons. In contrast, for PPC neurons there was a significant difference in the 189 

magnitude of the sound stimulus predictor coefficients between the two encoding models. Sound 190 

predictors had large coefficients only in the all-state encoding model but not the state-1 encoding 191 

model (Figure 3D). A similar trend persisted for position/choice predictors and running velocity 192 

predictors (Figure 3E-F). Collectively, the results from this encoding model analysis show that the 193 

activity of sensory cortex neurons is similarly explained by stimulus and behavioral variables 194 

regardless of performance state, while the activity of association cortex neurons is more strongly 195 

explained by these variables when mice are in suboptimal states.  196 

Functional coupling between neurons increased in PPC during optimal performance states 197 

 When mice performed the task more optimally (occupying state 1), the decoding of task 198 

information (i.e. stimulus and choice) from PPC population activity was slightly higher, but, 199 

surprisingly, task and behavioral information more poorly predicted PPC neuronal activity. This 200 

mismatch indicated that our encoding models, built solely on task information, were missing other 201 

relevant predictors of PPC neuronal activity, especially during optimal performance states. 202 

Previous work has shown that functional coupling, or shared variability among neurons in local 203 

populations, is higher in association than sensory cortex, and affects information coding and 204 

behavioral accuracy (Valente et al., 2021). We first asked whether functional interactions among 205 

neurons in AC and PPC varied across performance states, by computing pairwise noise 206 

correlations, the Pearson correlation between two neurons’ trial-to-trial response variability 207 
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(Figure 4A). Noise correlations during the sound onset period in the AC population were similar 208 

between optimal and suboptimal performance states (p=.096, Mann-Whitney U-test) but were 209 

significantly higher during the optimal performance state in PPC (p=2.4 x 10-9, Mann-Whitney U-210 

test) during the turn onset period. This indicated that functional coupling in the PPC population 211 

was more pronounced during periods of optimal task performance and could therefore be a key 212 

predictor of neuronal activity.  213 

 To test this hypothesis and measure functional coupling in PPC population activity across 214 

performance states, we modified our encoding models to predict a given neuron’s activity based 215 

on task information and the activity of the other neurons in the population (Figure 4B). We 216 

extracted the first five principal components (PCs), identified via principal component analysis, of 217 

the population response (excluding the activity of the predicted neuron) and convolved these PCs 218 

with gaussian basis functions to model correlations across time (Runyan et al., 2017). We refit 219 

both the all-state and state-1 encoding models for each AC or PPC neuron with these ten 220 

additional ‘functional coupling’ predictors and compared prediction performance with and without 221 

population activity to measure the contribution of functional coupling to each neuron’s activity. For 222 

the all-state encoding model, adding functional coupling predictors had no significant effect on 223 

prediction performance of neuronal activity in both AC and PPC (Figure 4D, AC: p=.106, PPC: 224 

p=.588, Mann-Whitney U-test). This was also true for the state 1 encoding model fit to AC 225 

neuronal activity. However, adding functional coupling predictors to the state 1 encoding model 226 

for PPC neurons significantly increased prediction performance (Figure 4C, AC: p=.438, PPC: 227 

p=6.2 x 10-5, Mann-Whitney U-test)) in comparison to the state 1 model without population activity. 228 

Additionally, an examination of the model weights for the functional coupling predictors for each 229 

model revealed that coupling weights were larger in the state-1 model than in the all-state model, 230 

only for PPC neurons (Figure 4E). Together, these findings reveal that when mice exclusively 231 

occupy an optimal performance state, association cortex but not sensory cortex population 232 
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 10 

dynamics become functionally coupled and increase relevant information coding in neuronal 233 

activity. 234 

Discussion 235 

 In this study, we show that internal states related to behavioral performance affect 236 

information coding differently in sensory and association cortex. We trained mice to perform an 237 

auditory decision-making task, imaged neuronal spike-related activity in AC and PPC and used 238 

GLM-HMM modeling to identify distinct states of optimal and suboptimal behavioral performance 239 

each with unique decision-making strategies. Similar to the performance states identified during 240 

visual decision-making (Ashwood et al., 2022; Bolkan et al., 2022; Hulsey et al., 2024), we 241 

identified one optimal state, characterized by high task performance, and two suboptimal states 242 

in which mice were biased in their choice behavior toward either left or right choices (Figure 1E-243 

G). Interestingly, though psychometrics in the suboptimal states were poor, we did find 244 

conservation of psychometric slope, indicating that animals were still engaged in the task despite 245 

adopting a suboptimal strategy.  246 

We used decoding and encoding analyses to relate population activity patterns in AC and 247 

PPC to the behavioral performance state of the mouse. One challenge to this approach is that 248 

mouse behavior in biased states is, by definition, biased toward one choice direction in a particular 249 

state. As a consequence, in an area like PPC where neurons strongly encode choice direction, 250 

direct comparison of the three states could lead to trivial conclusions based on the differential 251 

choice outcomes in the left and right biased states. It was therefore crucial to balance all possible 252 

combinations of stimulus and choice directions to decouple these variables and balance their 253 

weighting in the training datasets. We accomplished this by combining the two suboptimal 254 

performance states, balancing their trial numbers, in the training and testing datasets for our 255 

models. Furthermore, because the mice were trained to become experts at the auditory decision-256 

making task, they tended to predominantly perform the task in the optimal state. The resulting 257 

imbalance, in the number of trials performed across the three states, left too few trials to directly 258 
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compare population coding between suboptimal and optimal performance states, as these 259 

analyses require large numbers of trials to train encoding models and test their prediction 260 

performance. We therefore compared population coding in optimal vs ‘all’ states, combining the 261 

two biased states and supplementing with trials during optimal performance. 262 

By training a linear classifier to decode task trials during optimal vs suboptimal states, we 263 

discovered that the mouse’s behavioral performance state could be decoded from PPC but not 264 

AC population activity (Figure 2B). This implies that population activity patterns differed with 265 

performance state in PPC, but not AC. Indeed, PPC population activity differed in several key 266 

aspects across states. First, the stimuli and behavioral choices in the task could be more 267 

accurately decoded using PPC activity during the optimal performance state. Second, task- and 268 

movement-related variables better explained PPC activity in the ‘all-state’ models than in the 269 

optimal models. This result was initially surprising but fits well with other findings that uninstructed 270 

movements are inversely correlated with behavioral performance and can modulate cortical 271 

activity (Musall et al., 2019; Yin et al., 2023).  Third, functional coupling among PPC neurons was 272 

stronger in the optimal behavioral performance state, consistent with similar comparisons in 273 

correct and error trials in the same dataset (Runyan et al., 2017; Valente et al., 2021). This 274 

stronger coupling could enable PPC to drive behavioral outputs more strongly in the optimal 275 

performance state. 276 

In contrast, shifts in behavioral state had little impact on population activity in AC in our 277 

study. We had expected that these shifts in behavioral performance could be related to shifts in 278 

the arousal state of the animal. A rich literature has established relationships between arousal 279 

state and stimulus coding, firing rates, and shared variability in auditory cortex (Bigelow et al., 280 

2019; Khoury et al., 2023; Lin et al., 2019; McGinley et al., 2015) , and so the current results may 281 

seem contradictory. A few possibilities could explain the inconsistency. We did not monitor the 282 

pupil diameter of these mice, and so unfortunately, we do not know whether arousal states shifted 283 

systematically between the optimal and suboptimal states. However, the psychometric curves 284 
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measured using suboptimal state trials suggest that although the mice are biased in reporting 285 

their choices, they are still engaged in performing the task. Additionally, our mice must be 286 

‘aroused’ to even perform trials in our task design, as they must voluntarily progress through the 287 

T-maze by running on the spherical treadmill. We suspect that our mice are always in a relatively 288 

aroused state, and so the differences in arousal across GLM-HMM states 1-3 may not be wide 289 

enough to differently drive AC activity patterns. 290 

Limitations of the study 291 

In this study, we measured various behavioral features during task performance such as 292 

running velocity, sensory stimulus identity and timing, behavioral choice, and reward delivery. We 293 

used these variables in our GLM-HMM modeling and GLM encoding analyses, and inferred latent 294 

states related to behavior, which we connected to neural activity patterns. These are observational 295 

analyses, as we did not experimentally manipulate the animal’s behavioral state, but instead 296 

compared neural activity across natural fluctuations in performance. Furthermore, neuronal data 297 

from AC and PPC was not collected simultaneously, and neurons in either population were not 298 

tracked over days. We take this into account when comparing across both regions and recognize 299 

that correlations between the two populations could also be modulated by transitions in behavioral 300 

state.  301 
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Data and code availability 337 

Analysis code is deposited and publicly available at: https://github.com/acbandi213/Bandi-338 

--Runyan-2024.git 339 

Experimental model details 340 

Behavioral and imaging data were collected from five male C57BL/6J mice (The Jackson 341 

Laboratory) that were ~ 7 weeks old at the initiation of behavior task training. 342 

Method details 343 

In this study, we performed an independent analysis of publicly available mouse 344 

behavioral and calcium imaging experiments described previously (Runyan et al., 2017). A brief 345 

summary of the experimental procedures is provided here, and full detailed procedures can be 346 

found in the previously published work. All experimental procedures were approved by the 347 

Harvard Medical School Institutional Animal Care and Use Committee. 348 

Sound localization task: 349 

Head-restrained mice ran on a spherical treadmill to control movement through a virtual 350 

reality T-maze, which was projected on a screen in front of the mouse. The virtual T-maze was 351 

constructed using the Virtual Reality Mouse Engine (ViRMEn, Aronov & Tank, 2014) in MATLAB 352 

(v2011a). As mice ran down the stem of the T-maze, sound stimuli were 1-2 s dynamic ripples, 353 

delivered from one of eight possible locations (−90°, −60°, −30°, −15°, +15°, +30°, +60° and +90°), 354 

using speakers centered around the mouse’s head. The stimuli began 10cm into the maze and 355 

repeated after a 100-ms gap until the mouse reached the T-maze intersection. Mice were required 356 

to report the left-right category of the stimulus location by turning in that direction into either the 357 

left or right arm at the T-maze intersection. Correct decisions resulted in delivery of a 4 μl sugar 358 

water and a ‘reward tone’, while incorrect decisions resulted in a ‘no-reward tone’. Following a 359 

correct choice, there was a 3 s inter-trial interval (ITI), and following an incorrect choice there was 360 

a 5 s ITI. 361 

In vivo calcium imaging: 362 
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Imaging was performed on alternating days from the AC and PPC on the left hemisphere 363 

of the animal (PPC centered at 2 mm posterior and 1.75 mm lateral to bregma; AC centered at 364 

3.0 mm posterior and 4.3 mm lateral to bregma). In each session, ~50 neurons (range, 37–69) 365 

were simultaneously imaged using a two-photon microscope (Sutter MOM) operating at a 15.6-366 

Hz frame rate and at a resolution of 256 × 64 pixels (~250 μm × 100 μm). ScanImage (version 3, 367 

Vidrio Technologies) was used to control the microscope. Imaging data were acquired at depths 368 

of between 150 and 300 μm, corresponding to layers 2/3. Four AC and six PPC fields of view from 369 

five mice were analyzed. 370 

Quantification and statistical analysis 371 

GLM-HMM modeling of behavioral performance: 372 

To quantify transitions between discrete decision-making states within a single behavioral 373 

session, we used a hidden Markov model with Bernoulli Generalized Linear Model observations 374 

(GLM-HMM) based on a modified version of the SSM python package. The model is defined by 375 

a transition matrix containing a fixed set of transition probabilities: z ∈{1,…,K}, and a vector of 376 

GLM weights for each state. Each GLM has a unique set of weights wk that maps external 377 

covariates to the probability of choice for each of the k states. We coded the external covariates 378 

on each trial as follows: (1) the signed location of the auditory stimulus on the present trial; (2) the 379 

binary choice (1 for right or 0 for left) made by the mouse on the previous trial; (3) whether the 380 

previous trial was correct or incorrect (1 or 0); (4) and a constant offset or bias. The output for 381 

each trial was a value of 1 or 0 depending on whether the mouse turned right or left. 382 

We first fit the GLM-HMM to all behavioral data using the expectation-maximization (EM) 383 

algorithm, again using the SSM python package. The GLM-HMM state was inferred using the 384 

posterior probabilities calculated from the preceding trials and the state transition matrix. To select 385 

the number of latent states in the model (K) we performed cross-validation of the behavioral data, 386 

which revealed that three states allowed the model to plateau in likelihood, calculated via 387 

maximum likelihood estimation (MLE). We also measured choice prediction accuracy for the three 388 
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state GLM-HMM by using the weights of the inferred state to predict the choice on that trial, which 389 

is compared to the empirical data thus determining model prediction accuracy. Following this 390 

optimization of states, we then fit a single three state GLM-HMM to the observations and inputs 391 

concatenating all sessions from a single subject, and again inferred the state occupation 392 

estimates using the posterior probabilities calculated from the preceding trials and the state 393 

transition matrix. We found that the three states were consistent across all the subjects used in 394 

this study and each three state GLM-HMM fit to each individual animal had high log-likelihood 395 

and predictive accuracy on held-out test data. For all further analyses, we set an 80% state 396 

probability criterion for inclusion of a trial with a performance state, and discounted trials that did 397 

not meet the criterion. 398 

SVM decoding of state, stimulus, and choice information: 399 

For population decoding of performance state information, we used a SVM decoder with 400 

a linear kernel (C=100, gamma=0.1, identified via best estimate grid search) based on the 401 

sklearn.svm python package. Equal numbers of state 1 trials and non-state 1 trials (combining 402 

state 2 and 3) were selected, and then balanced to have a structured distribution of trials from 403 

each stimulus and choice combination (left stimulus left choice, right stimulus right choice, left 404 

stimulus right choice, right stimulus left choice). We trained the SVM decoder to classify a trial as 405 

state-1 or not state-1 (combining states 2 and 3) from AC or PPC neuronal population activity 406 

during that trial and calculated the decoding accuracy using five-fold cross validation. Population 407 

activity was aligned to turn onset and five seconds of activity leading up to turn onset were used 408 

to train the SVM. 409 

For comparing the population decoding of stimulus and choice information across 410 

performance states, we first separated trials based on the state as identified by the three state 411 

GLM-HMM. Due to the higher percentage of state-1 trials in comparison to state 2 and 3 trials, 412 

particularly in the behavioral sessions in which imaging was performed, we separated data into 413 

two groups for this decoding approach. The first group (‘Exclusively State 1’) included data 414 
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exclusively from state-1 trials and the second group (‘All States’) included data from state 2 and 415 

state 3 trials supplemented with subsampled state-1 trials to ensure a similar amount of trials for 416 

comparisons between groups. For each group, within the training dataset (70% of trials), we 417 

ensured that cross-validation folds were balanced with a structured distribution of trials from each 418 

stimulus and choice combination (left stimulus left choice, right stimulus right choice, left stimulus 419 

right choice, right stimulus left choice, Extended Figure 3A). The test dataset (30% of trials) also 420 

had a similar distribution of trial conditions and was left out of the fitting procedure. For the 421 

stimulus information decoder, neural population activity was aligned to sound onset and for the 422 

choice information decoder, neural population activity was aligned to turn onset. All decoders were 423 

again built and trained using the sklearn.svm python package. Independent SVMs were trained 424 

and tested at each time point, and decoding accuracy was expressed as the proportion of correct 425 

classifications across the folds of cross-validation.  426 

GLM encoding models: 427 

 Our GLM based encoding models allowed us to model, for each single AC and PPC 428 

neuron, the time-dependent effects of various task and behavioral variables on neuronal activity 429 

during single trials in a specific recording session. We extend the approaches taken in (Pillow et 430 

al., 2008; Runyan et al., 2017; Tseng et al., 2022; Weber & Pillow, 2017) to account for 431 

performance state by using separate encoding models for exclusively state-1 trials and another 432 

model for trials spanning all states. Again, due to the higher percentage of state-1 trials in 433 

comparison to state 2 and 3 trials, particularly in the behavioral sessions in which imaging was 434 

performed, we separated data into two groups for this decoding approach. The first group included 435 

data exclusively from state-1 trials and the second group included data from state 2 and state 3 436 

trials supplemented with subsampled state-1 trials to ensure a similar amount of trials for 437 

comparisons between groups. We used a Bernoulli GLM to weight task variables or task variables 438 

+ functional coupling variables (principal components of population activity) in predicting a single 439 

neuron’s binary activity.  440 
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Task-related model predictors  441 

 A total of 419 task-related predictors (420 when including a constant predictor 442 

corresponding to the average activation probability of each individual neuron) were used in all 443 

encoding models. The behavioral variables included the running velocity on the pitch and roll axes 444 

of the spherical treadmill, x and y position, onset times and locations of sound stimuli, view angle 445 

of the mouse in the VR maze, turn direction, and reward and error signal delivery times. A detailed 446 

description of the selection, construction, and normalization parameters of task-related predictors 447 

using various sets of basis-functions can be found in Runyan et al., 2017.  448 

Functional coupling model predictors 449 

 We developed encoding models with functional coupling predictors to compare the 450 

dependence of each neuron’s activity on task-related information correlates and the activity of the 451 

other neurons in the population. Previous work has used the relative spike rate of each other 452 

neuron excluding the neuron being fitted and convolved the spike rate with boxcar functions, 453 

however we took a dimensionality reduction approach to reduce the number of total coupling 454 

predictors. We first excluded the neuron being fit by the encoding model and performed principal 455 

component analysis (PCA) along ~1 second time bins on the matrix of spiking activity of all other 456 

neurons in the local population for that imaging session using the sklearn.decomposition.pca 457 

python function. We then took the first five principal components (PCs), which accounted for ~65-458 

70% of the overall variance in the population activity. We then maximum-normalized and z-scored 459 

the PCs and convolved the PCs using two evenly spaced Gaussian basis functions extending 460 

~120ms second forwards and backwards in time which yielded 10 total ‘functional coupling’ 461 

predictors.   462 

GLM fitting procedure: 463 

 All task-related information and functional coupling predictors were maximum-normalized, 464 

and z-scored before fitting each encoding model. We fitted the GLMs to each single neuron’s 465 

activity using the GLM_tensorflow_2 python package. We used an elastic net regularized GLM 466 
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which interpolates between L1 and L2 regularization penalties based on the interpolation 467 

parameter α. We used α = .95 to allow for a relatively small number of predictors to be selected 468 

by the model. Within the training dataset (70% of trials), cross-validation folds were balanced with 469 

a structured distribution of trials from each stimulus and choice combination (Extended Figure 470 

3A). The test dataset (30% of trials), also containing a similar distribution of trial conditions, was 471 

left out of the fitting procedure entirely, and was used only for testing the model performance. 472 

Each model was thus fitted and tested on entirely separate data, removing over-fitting concerns. 473 

This train and test procedure was repeated ten times, with random subsamples of the data 474 

included in train and test segments. 475 

GLM model performance: 476 

 Model performance was quantified by computing the fraction of explained deviance of the 477 

fitted model by comparing the deviance of the fitted model with the deviance of null model of each 478 

neuron’s activity that used a single constant parameter. This null model lacked time-varying task 479 

predictors or functional coupling predictors. Thus, the fraction of explained deviance was 480 

calculated as ((null deviance – fitted model deviance) / null deviance). All deviance calculation 481 

were calculated on the test dataset for all folds of the encoding models for each neuron.    482 

Pairwise noise correlations:   483 

 Pairwise noise correlations were calculated based on trial-to-trial fluctuations around 484 

mean sound-evoked responses. PPC neuronal activity for each trial is aligned to turn onset and 485 

AC neuronal activity for each trial is aligned to first sound onset. We then calculated the mean 486 

sensory-evoked activity for each neuron for each of the eight possible sound locations and binned 487 

the activity of each neuron by 1s over the course of the sound trial. For each neuron, we 488 

subtracted the corresponding mean sensory evoked responses from single trial activity, and then 489 

concatenated these mean-subtracted trial responses. For each pair of neurons, we computed the 490 

Pearson correlation coefficient between these binned, mean-subtracted activity timeseries using 491 

the np.corrcoef python function.  492 
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Figure 1. Mice switch between different performance states during auditory decision-making. (A) Mice were trained to 
report the location of a sound stimulus by turning in the direction of the sound in a virtual-reality T-maze. (B) Mice learned to 
categorize sound locations and performed the task (n=5 mice, mean ± s.e.m) as evidenced by the psychometric curve for the 
probability of a right-ward choice given a sound stimulus for a specific location (C, top) Performance of an example mouse in 
one behavioral session presented as a 20-trial moving window of correct choices. Vertical dashed lines indicate a period of 
trials where the mouse’s performance dropped below chance level. (C, middle) Left or right choice identity for each trial. (C, 
bottom) Correct or incorrect identity for each trial. (D) Three-state GLM-HMM model with four input variables and three differ-
ent GLMs corresponding to different decision-making strategies. (E) Inferred GLM weights for the three-state GLM-HMM. 
State 1 has a high weight for stimulus information, and states 2 and 3 have high and opposing weights for bias (n=5 mice, 
mean ± s.e.m). (F) Fractional occupancies for each state across all behavioral trials used in fitting the global three state 
GLM-HMM. State 1 is the most occupied (n=17,602 trials, mean ± s.e.m). (G) Task accuracy across each GLM-HMM state 
(n=17,602 trials, mean ± s.e.m). (H) Per-state psychometric curves for the probability of a right-ward choice given a sound 
stimulus for a specific location. The different psychometrics across the three states highlight differences in decision-making 
strategy and performance (n=17,602 trials, mean ± s.e.m). (I, top) Posterior state probability for the example session shown 
in C. The three-state model successfully identifies the period of poor task performance and classifies the animal’s behavior 
as being in state 2, which is characterized by rightward bias. 
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Figure 2. Performance states differently impact information coding in sensory and association cortex population 
activity. (A) Schematic of using a linear SVM to decode state, stimulus, and choice information from AC and PPC population 
activity. (B) SVM decoding accuracy of the classification of a trial as occuring during the optimal or suboptimal state from PPC 
or AC population activity during that trial (n=6 recording sessions, mean ± s.e.m, AC: p= 0.67, PPC: p= 5.9 x 10-7, Wilcoxon 
signed rank test). (C) SVM decoding accuracy of stimulus information from AC population activity at each time point in the 
trial. Green indicates decoding from exclusively state 1 trial, and black indicates decoding from trials spanning all three states 
(n=6 recording sessions, mean ± s.e.m, p= .82, Wilcoxon signed rank test). (D) SVM decoding accuracy of stimulus informa-
tion from PPC population activity (n=6 recording sessions, mean ± s.e.m, p= .44, Wilcoxon signed rank test). (E) SVM decod-
ing accuracy of choice information from AC population activity (n=6 recording sessions, mean ± s.e.m, p= .004, Wilcoxon 
signed rank test). (F) SVM decoding accuracy of stimulus information from PPC population activity (n=6 recording sessions, 
mean ± s.e.m, p= .038, Wilcoxon signed rank test). 
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Figure 3. Behavioral variables better predict PPC but not AC neuronal activity during suboptimal performance states. 
(A) Model schematic for two GLM-based encoding models. The state 1 encoding model was trained to predict neuronal activi-
ty given task information from exclusively state-1 trials. The all-state model was trained to predict neuronal activity given task 
information from trials spanning all three states. (B, C - left) Prediction performance of the state 1 model and all-state model 
for all AC and PPC neurons. (B, C – right) Histograms showing the distribution of the difference in prediction performance of 
the two model types across all AC and PPC neurons (n=171 AC neurons, n=203 PPC neurons). (D) Fitted model weights for 
variables related to sound location between the two model types averaged across AC (red) and PPC (blue) neurons. (n=171 
AC neurons, n=203 PPC neurons, mean ± s.e.m, AC comparison: p=.384, PPC comparison: p=.001, Mann-Whitney U-test). 
(E) Fitted model weights for variables related to position and choice between the two model types averaged across AC and 
PPC neurons. (n=171 AC neurons, n=203 PPC neurons, mean ± s.e.m, AC comparison: p=.014, PPC comparison: p=.005, 
Mann-Whitney U-test). (F) Fitted model weights for variables related to running between the two model types averaged 
across AC and PPC neurons. (n=171 AC neurons, n=203 PPC neurons, mean ± s.e.m, AC comparison: p=.011, PPC compar-
ison: p=.037, Mann-Whitney U-test).
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Figure 4. Functional coupling drives PPC neuronal activity only during optimal performance states. (A) Comparison of 
the pairwise noise correlations between all AC (red) or PPC (blue) neurons from exclusively state 1 trials or trials spanning all 
three states (AC: p=.096, PPC: p=2.4 x 10-9, Mann-Whitney U-test).  (B)  Model schematic for two GLM-based encoding 
models with population activity functional coupling predictors (C) Comparison of average model performance between the 
state-1 encoding model with only behavioral task information as predictors of neuronal activity (n=171 AC neurons, n=203 PPC 
neurons, mean ± s.e.m, AC: p=.438, PPC: p=6.2 x 10-5, Mann-Whitney U-test) and the all-state encoding model with both 
behavioral task information and functional coupling as predictors of neuronal activity. (n=171 AC neurons, n=203 PPC neurons, 
mean ± s.e.m, AC: p=.106, PPC: p=.588, Mann-Whitney U-test). (D) Comparison of average model performance between the 
state-1 encoding model with only behavioral task information as predictors of neuronal activity and the state-1 encoding model 
with both behavioral task information and functional coupling as predictors of neuronal activity. (E) Fitted model weights for 
coupling predictors between the two model types averaged across AC and PPC neurons (n=171 AC neurons, n=203 PPC 
neurons, mean ± s.e.m, AC comparison: p=.278, PPC comparison: p=1.0 x 10-4, Mann-Whitney U-test).
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A B C

Extended Figure 1. GLM-HMM cross validation. (A) Model comparison of GLM-HMMs with different number of latent states 
using test log likelihood (in bits per trial) from five-fold cross validation. (B) Prediction accuracy (percentage of held out test trials 
the model correctly predicted the mouse’s choice) of GLM-HMMs with different number of latent states. (C) Inferred transition 
probability matrix for global three state GLM-HMM. 
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Extended Figure 2. Choice formation is slower in the optimal performance state. We quantified how well running trajectories 
in a single trial predicted the mouse’s upcoming choice on that trial using a long short-term memory (LSTM) recurrent neural 
network (Tseng et al., 2022). For each time point in the trial the LSTM used running variables such as X/Y position, X/Y velocity, 
and view angle in the maze from all previous time points to estimate the probability that the mouse turned left or right. We then 
measured the latency to dynamic choice as the time point where the model’s prediction exceeded a threshold of 0.9 for left 
choice trials and 0.1 for right choice trials. We examined the latency to dynamic choice for all three GLM-HMM latent states 
across all behavioral sessions and found that the latency to dynamic choice, was significantly higher in the optimal state (state 
1) than in the two suboptimal states (state 1 vs state 2, p=0.024. state 2 vs state 2, p=0.011. state 2 vs state 3, p=.680. 
Mann-Whitney U-test). 
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Extended Figure 3. All state encoding model performance across trials from each GLM-HMM state. (A) Schematic of trial 
type distribution for each model (SVM decoders + GLM encoding models). (B) Model schematic for the all-state encoding 
model trained on neuronal activity given task information from trials spanning all three states and then tested on trials from each 
of the three states separately to measure the model performance for each state. (C) Model performance for each state for AC 
neurons (red) and PPC neurons (blue) show consistent performance across all states. 
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Extended Figure 4. The all-state encoding model with coupling has model weights consistent to the all-state encoding 
model without coupling. (A) Schematic of the PCA based population activity functional coupling predictors used in the encod-
ing models presented in figure 4. (B) Fitted model weights for variables related to sound location between the two model types 
averaged across AC (red) and PPC (blue) neurons. (AC comparison: p=.602, PPC comparison: p=.018, Mann-Whitney U-test). 
(C) Fitted model weights for variables related to position and choice between the two model types averaged across AC and
PPC neurons. (AC comparison: p=.088, PPC comparison: p=.030, Mann-Whitney U-test). (D) Fitted model weights for
variables related to running between the two model types averaged across AC and PPC neurons. (AC comparison: p=.025,
PPC comparison: p=.022, Mann-Whitney U-test).
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