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Abstract: 9 

Digital cognitive assessments, particularly those that can be done at home, present as low 10 

burden biomarkers for participants and patients alike, but their effectiveness in diagnosis of 11 

Alzheimer’s or predicting its trajectory is still unclear. Here, we assessed what utility or added 12 

value these digital cognitive assessments provide for identifying those at high risk for cognitive 13 

decline. We analyzed >500 ADNI participants who underwent a brief digital cognitive 14 

assessment and Aβ/tau PET scans, examining their ability to distinguish cognitive status and 15 

predict cognitive decline. Performance on the digital cognitive assessment were superior to both 16 

cortical Aβ and entorhinal tau in detecting mild cognitive impairment and future cognitive 17 

decline, with mnemonic discrimination deficits emerging as the most critical measure for 18 

predicting decline and future tau accumulation. Digital assessments are effective in identifying 19 

at-risk individuals, supporting their utility as low-burden tools for early Alzheimer’s detection 20 

and monitoring. 21 

  22 
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1. Introduction: 23 

Alzheimer's disease (AD) pathologies, such as beta-amyloid (Aβ) and tau tangles, develop up 24 

to 20 years before overt cognitive decline1,2. Therefore, identifying individuals before cognitive 25 

decline is essential for the treatment of this disease. Significant advances have enabled 26 

quantification of Aβ and tau deposition in living individuals using both PET imaging and 27 

biofluid based techniques3–5. These methods are now used to identify individuals at risk for 28 

future cognitive decline and act as screening tools for clinical trials6,7.  29 

While there has been substantial progress in techniques for these pathologies prior to 30 

cognitive decline, the development of sensitive cognitive tasks has lagged behind. Many of the 31 

common tasks currently used to assess cognitive function, such as the mini-mental state exam 32 

(MMSE) or clinical dementia rating (CDR), are relatively unaffected until late in disease 33 

progression 2,8 with impairments on these tasks lagging years behind AD biomarkers9–11. 34 

Therefore, it is now common to believe that cognitive decline occurs well after the buildup of 35 

pathology. While this may be the case for standard neuropsychological tests designed to measure 36 

overt cognitive impairment, there is little reason to assume that this must necessarily be the case 37 

and that pathological load could not be read out in subtle changes in cognition or behavior. If 38 

digital biomarkers can be developed and validated to reflect some aspect of AD pathology, they 39 

might offer a non-invasive, low-burden way to predict Alzheimer’s risk or monitor disease or 40 

treatment progression. 41 

Recent work has demonstrated that digital cognitive batteries that tax circuits related to AD 42 

can accurately distinguish between individuals with cognitive impairment compared to 43 
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cognitively healthy controls12–14. Further, longitudinal performance on these batteries is related 44 

to AD biomarkers prior to cognitive decline and are predictive of future decline on standardized 45 

cognitive tasks15,16. However, the tasks in these batteries are not equivalent in predicting AD 46 

biomarker status and future cognitive impairment. Specifically, tasks that tax the circuits most 47 

vulnerable to AD emerge as the best predictors of future decline. 48 

Substantial progress has been made in understanding the neural circuits that contribute to 49 

differing cognitive functions and which circuits are particularly susceptible to AD pathologies17–50 

19. Specifically, the hippocampus, a region critical for memory formation, is affected (directly 51 

and indirectly) early in the disease progression19,20. This vulnerability makes tasks that tax 52 

hippocampal integrity ideal candidates for detecting early cognitive changes in AD. A primary 53 

mechanism carried out in the hippocampus is pattern separation which is used to overcome 54 

competing interference between similar representations 21–23. To this end, it is unsurprising that 55 

one of the earliest cognitive changes in AD is the ability to differentiate between similar events 56 

24,25. 57 

Mnemonic discrimination tasks have been developed to tax hippocampal pattern separation 58 

and they show promise in identifying individuals at high risk for AD 26,27. Indeed, work has 59 

found that performance on these tasks is impaired in individuals with Mild Cognitive Impairment 60 

(MCI) compared to cognitively normal (CN) older adults 28,29. Further, these tasks can identify 61 

individuals with elevated Aβ and tau prior to cognitive decline 30,31. However, it is not yet fully 62 

known if mnemonic discrimination deficits are predictive of future AD pathology and cognitive 63 

decline. 64 
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Here we investigated whether subtle cognitive changes could outperform Aβ and tau at 65 

predicting future cognitive decline. We used the Cogstate Brief Battery data from ADNI as a 66 

testbed to assess the validity of digital biomarkers and demonstrate that performance on the 67 

cognitive battery better predicts conversion to MCI compared to Aβ and tau deposition. Further, 68 

we demonstrate that deficits in mnemonic discrimination drive this, suggesting that mnemonic 69 

discrimination deficits are an early marker of AD. 70 

2. Methods 71 

The data used here come from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 72 

database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, 73 

led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to 74 

test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 75 

other biological markers, and clinical and neuropsychological assessment can be combined to 76 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer's disease 77 

(AD). For up-to-date information, see www.adni-info.org. 78 

2.1. Participants 79 

523 older adults who took the Cogstate Brief Battery (CBB) and underwent Aβ and tau PET 80 

imaging were included from ADNI3. All participants did not have a history of major 81 

neurological or psychiatric disorders, head trauma, or history of drug abuse or dependency. 82 

Diagnosis as CN, MCI, or AD was provided by ADNI.  83 
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2.2. Digital Cognitive Battery 84 

The CBB is a brief digital cognitive battery that includes four cognitive tasks, each designed 85 

to probe separate cognitive domains32,33. Subjects completed the battery in one sitting on a 86 

computer. All tasks involve playing cards and require “Yes” and “No” responses. The four tasks 87 

include a Detection task (DET), an Identification task (IDN), One Back Task (OBT), and the 88 

One Card Learning Task (OCL). Participants had to complete 75% of trials to be included in the 89 

study. 90 

Descriptions of the tasks have been outlined in detail before32,34. Briefly, DET is a task that 91 

measures psychomotor speed where subjects click “Yes” when a playing card turns over. 92 

Psychomotor speed is calculated as the average reaction time over 35 valid trials. Invalid trials 93 

(anticipatory responses of less than 250ms) were not included in the calculations and a 94 

replacement trial was added to total 35 valid trials. IDN is a visual attention task in which either 95 

a red or black joker card flips over, and the subject responds “Yes” if the card is red and “No” if 96 

the card is black. The performance outcome of this task is average reaction time over 30 valid 97 

trials. For the OBT, individuals are shown a series of playing cards and asked if the card is the 98 

same as the previous card. This task taxes working memory and performance is quantified as 99 

average reaction time over 31 trials. OCL is a task that taxes hippocampal pattern separation 100 

which is critical for episodic memory. In this task, participants are shown a series of playing 101 

cards and are asked if they have seen the playing card previously during the task. Four cards are 102 

randomly selected to repeat eight times throughout the task. The task consists of 80 trials and the 103 

performance outcome is accuracy. 104 
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To develop a composite score reflecting overall cognitive performance, we standardized the 105 

scores from all four tasks using z-scores and inverted DET, IDN and OBT so that more negative 106 

z-scores corresponded to poorer performance. Afterward, we calculated the average of these 107 

adjusted scores across all tasks to obtain the composite measure. 108 

2.3. PET Imaging 109 

All individuals underwent Aβ PET imaging and tau PET imaging within 90 days of 110 

administration of the CBB. Individuals either underwent flobetapir (FBP) (n = 295) or 111 

florbetaben (FBB) (n = 235) imaging to quantify Aβ SUVR and flortaucepir (FTP) to quantify 112 

tau SUVR. Preprocessing of the data was handled by the ADNI PET core. Comprehensive 113 

information regarding the PET processing and acquisition techniques is available on the ADNI 114 

website at https://adni.loni.usc.edu/wp-content/uploads/2012/10/ADNI3_PET-Tech-115 

Manual_V2.0_20161206.pdf. 116 

Amyloid and tau PET quantification was provided by ADNI. For amyloid, a cortical 117 

composite SUVR was calculated which included the frontal, anterior/posterior cingulate, lateral 118 

parietal, and lateral temporal regions. Individuals who had a SUVR greater than 2 standard 119 

deviations above young controls (FBP: > 1.11, FBB: >1.08) were considered Aβ+ 35. For 120 

continuous measures, SUVR was converted to centiloids to enable comparisons across tracers36. 121 

For assessing longitudinal Aβ and tau deposition, individuals with a follow-up PET scan 122 

after the initial scan were included. Both Aβ and tau SUVR annual percent change (APC) was 123 

calculated by taking the difference in uptake (centiloids for Aβ, SUVR for tau) between the 124 

initial scan and the most recent scan divided by the years between scans. 125 
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2.4. Statistical analyses 126 

All analyses were done in Python and RStudio. Logistic regressions were run using 127 

statsmodels 37 to predict cognitive status and conversion status. Areas under the curve (AUC) 128 

measures were derived from ROC curves of the logistic regressions. Random permutation tests 129 

with 1000 permutations were used to compare AUCs between models. Commonality analyses 130 

were performed using the “yhat” package in RStudio. To identify how each variable acts in 131 

relation to the others, we performed a 6-choose-3 combinatorial analysis and quantified the 132 

number of times each metric appeared in the top third of AUCs. Pearson correlations were used 133 

to assess the associations between two continuous variables. One-way ANOVAs with Tukey’s 134 

HSD post-hoc tests were used to identify within-factor differences. For all analyses, p < 0.05 was 135 

considered reliable. 136 

3. Results: 137 

3.1. Digital Cognitive Biomarkers perform as well and often better than Aβ and EC tau 138 

at distinguishing between CN, MCI, and AD 139 

Significant research has shown that Aβ and tau levels are elevated in MCI and AD compared 140 

to CN older adults. Consequently, we investigated whether digital biomarkers could also 141 

differentiate between CN, MCI, and AD statuses. As expected, our findings indicate an increase 142 

in Aβ in individuals with MCI or AD compared to cognitively normal older adults with a 143 

marginal increase between MCI and AD (Fig 1A; one-way ANOVA: F(2) = 12.04, p < 0.0001, 144 

Tukey’s HSD: CN vs MCI: p < 0.0001, CN vs AD: p < 0.0001, MCI vs AD: p = 0 .09). 145 
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Similarly, EC tau was increased in MCI and further increased in AD (Fig 1B; one-way ANOVA: 146 

F(2) = 39.39, p < 0.0001, Tukey’s HSD: CN vs MCI: p < 0.0001, CN vs AD: p < 0.0001, MCI 147 

vs AD: p < 0 .01). Additionally, performance on the digital cognitive battery was related to 148 

cognitive status with CN individuals outperforming those with MCI, who in turn, outperformed 149 

those with AD (Fig 1C; one-way ANOVA: F(2) = 40.15, p < 0.0001, Tukey’s HSD: CN vs MCI: 150 

p < 0.0001, CN vs AD: p < 0.0001, MCI vs AD: p = 0.03).  151 

Given that all measures could differentiate individuals based on cognitive task, we explored 152 

whether the degree of differences between groups varied when considering Aβ, tau, or cognitive 153 

performance. To assess this, we computed effect sizes for the differences categorized by 154 

cognitive status. We observed that cognitive performance and EC tau had roughly equivalent 155 

effect sizes for CN versus MCI and for MCI versus AD (Fig 1D) with cortical Aβ having a 156 

smaller effect size (CN vs MCI: cortical Aβ d = 0.37, CI = [0.19 0.56], EC tau d = 0.72, CI = 157 

[0.53 0.90], Digital Cognitive Battery d = 0.74, CI = [0.56 0.93]; MCI vs AD: cortical Aβ d = 158 

0.66, CI = [-0.10 1.43], EC tau d = 0.89, CI = [0.13 1.66], Digital Cognitive Battery d = 0.92, CI 159 

= [0.16 1.69]).). Conversely, EC tau had the largest effect size for separating AD from CN 160 

(cortical Aβ d = 1.36, CI = [0.60 2.12], EC tau d = 2.64, CI = [1.86 3.41], Digital Cognitive 161 

Battery d = 1.80, CI = [1.04 2.57]) 162 

To better understand the sensitivity and specificity of these various markers, we next 163 

performed a set of logistic regression and ROC analyses using cortical Aβ, EC tau, and cognitive 164 

performance as variables to predict cognitive status (Fig 1G-I). Our analysis confirmed that each 165 

of the three measures could effectively differentiate between CN and MCI (Fig 1G). However, 166 

performance on the digital cognitive battery reached a higher AUC compared to either Aβ or tau 167 
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measures (Cortical Aβ AUC = 0.55, p < 0.0001, EC tau AUC = 0.65, p < 0.0001, Digital 168 

Cognitive Battery AUC = 0.70, p < 0.0001).  169 

We used a permutation test (1000 permutations) to determine whether any of these AUCs 170 

reliably differed. We found that performance on the digital cognitive battery and EC tau proved 171 

to be more predictive of diagnostic status than Aβ and performance on the digital cognitive 172 

battery was qualitatively better compared to tau and this approached significance (Digital 173 

Cognitive Battery vs cortical Aβ p < 0.0001, EC tau vs cortical Aβ p < 0.01, Digital Cognitive 174 

Battery vs EC tau p = 0.07). Further, all three measures could differentiate CN versus AD (Fig 175 

1I; cortical Aβ AUC = 0.66, p < 0.001, EC tau AUC = 0.80, p < 0.0001, Digital Cognitive 176 

Battery AUC = 0.87, p < 0.0001) with cognitive performance reaching a qualitatively higher 177 

AUC compared to both Aβ and tau, but a random permutation test (n = 1000) did not find any 178 

reliable differences between AUCs (all ps > 0.15). Conversely, only EC tau and cognitive 179 

performance could reliably distinguish MCI and AD reaching similar AUCs (Fig 1H; Cortical 180 

Aβ AUC = 0.64, p = 0.10, EC tau AUC = 0.69, p = 0.04, Digital Cognitive Battery AUC = 0.70, 181 

p = 0.02) with a random permutation test (n = 1000) finding no reliable differences between 182 

models (all ps > 0.5). Thus, performance on the digital cognitive battery was at least as good as, 183 

and often reliably better than amyloid and tau at differentiating individuals based on cognitive 184 
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status. 185 

 186 

 187 

Figure 1: AD pathologies and digital cognitive assessments differentiate by diagnosis. A) Cortical 
Aβ is increased in MCI (yellow) and AD (red) compared to CN (blue) older adults. B) EC tau SUVR 
is increased in MCI compared to CN and further increased in AD compared to MCI. C) Performance 
on the digital cognitive battery declines in MCI with further impairment in AD. Effect sizes for 
Cortical Aβ (blue), EC tau (green) and the performance on the digital cognitive assessment (maroon) 
between D) CN and MCI, E) MCI and AD, and F) CN and AD. G) ROC curves show that AD 
pathologies and performance on the digital cognitive assessment can each differentiate CN and MCI, 
but the digital cognitive assessment was reliably better than the other two measures. H) ROC curves 
demonstrating that only the digital cognitive assessment and EC tau can differentiate MCI and AD. I) 
Each measure reliably differentiates CN from AD. 
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3.2. Deficits in mnemonic discrimination is the best predictor of MCI and AD 188 

Given that performance on the digital cognitive battery exceeded biomarkers in detecting 189 

cognitive impairment, we next asked which cognitive domains were particularly informative by 190 

assessing performance on each of the four tasks separately. We found that performance on DET 191 

differed as a function of cognitive status with decreased psychomotor speed in MCI and AD 192 

compared to CN (Fig 2A). However, performance was not reliably different in individuals with 193 

AD compared to MCI (one-way ANOVA: F(2) = 13.99, p < 0.0001, Tukey’s HSD: CN vs MCI: 194 

p < 0.0001, CN vs AD: p < 0.01, MCI vs AD: p = 0.14). Conversely, we found that visual 195 

attention, measured via IDN, was compromised in MCI and AD compared to CN, but there was 196 

no reliable difference on IDN between MCI and AD (Fig 2B; one-way ANOVA: F(2) = 19.68, p 197 

< 0.0001, Tukey’s HSD: CN vs MCI: p < 0.0001, CN vs AD: p < 0.01, MCI vs AD: p = 0.21). 198 

Next, we found that performance on the OBT, which assesses working memory, declined in MCI 199 

and AD compared to CN, but was not reliably different between AD and MCI (Fig 2C; one-way 200 

ANOVA: F(2) = 17.92, p < 0.0001, Tukey’s HSD: CN vs MCI: p < 0.0001, CN vs AD: p < 0.01, 201 

MCI vs AD: p = 0.21). Finally, we assessed whether OCL, which measures mnemonic 202 

discrimination, declines as a function of cognitive status. We observed that performance on OCL 203 

declined in MCI compared to CN and this was exacerbated in AD (Fig 2D; one-way ANOVA: 204 

F(2) = 40.65, p < 0.0001, Tukey’s HSD: CN vs MCI: p < 0.0001, CN vs AD: p < 0.0001, MCI 205 

vs AD: p = 0.048), indicating that only OCL was sensitive to the additional decline in AD.  206 

These findings collectively imply that MCI and AD are associated with widespread cognitive 207 

deficits. However, OCL showed the greatest difference between individuals who were CN 208 

compared to those with MCI (Fig 2E) or AD (Fig 2G) based on the magnitude of effect sizes 209 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2024. ; https://doi.org/10.1101/2024.05.23.595638doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.23.595638
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

calculated for each cognitive task (CN vs MCI: Detection d = 0.42, CI = [0.24 0.60], 210 

Identification d = 0.53, CI = [0.35 0.71], OBT d = 0.50, CI = [0.31 0.68], OCL d = 0.75, CI = 211 

[0.56 0.94], CN vs AD: Detection d = 1.21, CI = [0.45 1.97], Identification d = 1.35, CI = [0.59 212 

2.11], OBT d = 1.21, CI = [0.45 1.97], OCL d = 1.64, CI = [0.88 2.40]). However, OCL and 213 

Detection were roughly equivalent in their effect sizes between MCI and AD (Fig 2F; Detection 214 

d = 0.67, CI = [-0.09 1.43], Identification d = 0.52, CI = [-0.24 1.29], OBT d = 0.59, CI = [-0.17 215 

1.35], OCL d = 0.95, CI = [0.19 1.72]). 216 

To further investigate how well these tasks separate individuals based on cognitive status, we 217 

conducted separate logistic regressions using performance on each of the cognitive tasks to 218 

predict cognitive status. The results demonstrated that all tasks could differentiate CN from MCI, 219 

with OCL reaching the highest AUC (Fig 2H; Detection AUC = 0.62, p < 0.0001, Identification 220 

AUC = 0.63, p < 0.0001, OBT AUC = 0.64, p < 0.0001, OCL AUC = 0.71, p < 0.0001). We next 221 

asked which cognitive task was the most predictive of MCI by conducting a random permutation 222 

test and found that OCL better predicted cognitive status compared to the other three tasks (OCL 223 

vs Detection p < 0.01, OCL vs Identification p = 0.01, OCL vs OBT p = 0 .03). Further, the other 224 

tasks did not vary in their predictive power (all ps > 0.28). This pattern held true when predicting 225 

CN versus AD, where again all tasks were effective (Fig 2J; Detection AUC = 0.77, p < 0.01, 226 

Identification AUC = 0.73, p < 0.01, OBT AUC = 0.78, p < 0.01, OCL AUC = 0.92, p < 0.0001) 227 

and the models did not differ in their predictive value (all ps > 0.15). However, when 228 

differentiating MCI from AD, only the OCL task showed reliable predictive capability, unlike 229 

the other tasks (Fig 2I; Detection AUC = 0.67, p = 0.11, Identification AUC = 0.60, p = 0.21, 230 

OBT AUC = 0.67, p = 0.14, OCL AUC = 0.79, p < 0.01). However, a random permutation test 231 
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found no reliable differences between models (all ps > 0.16). Given that OCL better 232 

differentiated CN and MCI compared to the other tasks, we compared the predictive capacity of 233 

OCL compared to Aβ and tau. A random permutation test (n = 1000) found that OCL was 234 

superior at differentiating CN and MCI compared to both cortical Aβ and EC tau (OCL vs 235 

Cortical Aβ p < 0.0001, OCL vs EC tau p = 0.049). This suggests that OCL, which taxes 236 

hippocampal pattern separation, is particularly vulnerable to MCI and AD. 237 
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 238 

 239 

Figure 2: OCL is superior to other tasks for differentiating individuals by diagnosis. Violin plots depicting 
performance differences on A) DET, B) IDN, C) OBT, and D) OCL tasks as a function of cognitive status. 
Individuals with MCI (yellow) or AD (red) are impaired on all four tasks compared to CN (blue) and individuals 
with AD are reliably worse on OCL compared to MCI. Effect sizes for IDN (light green), DET (light blue), OBT 
(orange) OCL (red) between E) CN and MCI, F) MCI and AD, and G) CN and AD. H) ROC curves show that each 
task can reliably differentiate CN and MCI with OCL performing reliably better than the other measures. I) Only 
OCL performance can differentiate MCI and AD. J) Performance on each task reliably differentiates CN from AD 
with OCL performance reaching the highest AUC. 
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3.3. Deficits in mnemonic discrimination is the best predictor of progression to MCI 240 

while EC tau predicts progression to AD 241 

We next asked whether performance on the digital cognitive assessment could better predict 242 

conversion from cognitively normal to MCI compared to Aβ and tau. To investigate this, we 243 

identified individuals who had a follow-up visit two years after administration of the digital 244 

cognitive assessment, Aβ and tau PET imaging. Individuals who were cognitively normal at 245 

baseline and remained cognitively normal two years later were called nonconverters while 246 

individuals who progressed to MCI within 2 years of baseline were called converters. We next 247 

conducted logistic regressions using either baseline digital cognitive assessment scores, cortical 248 

Aβ or EC tau to differentiate converters and nonconverters. We found that performance on the 249 

digital cognitive assessment predicted conversion over two years while Aβ and tau could not (Fig 250 

3A; Cortical Aβ AUC = 0.57, p = 0 .08, EC tau AUC = 0.50, p = 0.24, Digital Cognitive Battery 251 

AUC = 0.74, p = 0.01). A random permutation test demonstrated that the Digital Cognitive 252 

Battery was superior to EC tau with no reliable difference between the Digital Cognitive Battery 253 

and Cortical Aβ (Digital Cognitive Battery vs EC tau p = 0.04, Digital Cognitive Battery vs 254 

Cortical Aβ p = 0.17, EC tau vs Cortical Aβ p = 0.54).  255 

To further assess whether the Digital Cognitive Battery was superior to Cortical Aβ and EC 256 

tau, we conducted a multiple logistic regression with all three measures predicting conversion 257 

status. The combined model was able to reliably predict conversion status (R2 = 0.10, BIC = 258 

95.55, p = 0.04), but performance on the Digital Cognitive Battery was the only predictor that 259 

was statistically reliable after controlling for the other variables (Digital Cognitive Battery z = - 260 
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2.25, p = 0.03, EC tau z = 0.45, p = 0.66, Cortical Aβ z = 1.15, p = 0.25). Further, we conducted 261 

a commonality analysis to identify which measure contributes the most to predicting conversion 262 

to MCI. We found that performance on the Digital Cognitive Battery contributed the most to the 263 

model, explaining 56.2% of the variance. Conversely, Cortical Aβ explained 18.7% and EC tau 264 

explained 1.5% of the variance (Table 1).  These results suggest that the digital cognitive 265 

measures were superior to cortical Aβ and EC tau in predicting short term conversion to MCI. 266 

To investigate which cognitive domains were the best indicators of conversion from CN to 267 

MCI, we conducted separate logistic regressions for each task. We found that only OCL could 268 

predict conversion to MCI over two years while the other tasks did not reliably predict 269 

converters (Fig 3B; Detection AUC = 0.64, p = 0.11, Identification AUC = 0.69, p = 0.06, OBT 270 

AUC = 0.63, p = 0.17, OCL AUC = 0.74, p < 0.01). A random permutation test did not find any 271 

reliable differences between models (all ps >0.32). Notably, the predictive strength of OCL was 272 

comparable to the composite score of the entire digital cognitive battery.  273 

In a post-hoc analysis using a multiple logistic regression, we found that the overall model 274 

was modestly able to predict conversion status (R2 = 0.11, BIC = 100.25, p = 0.06). Within the 275 

model, OCL was the only statistically reliable predictor (OCL Z = - 2.18, p = 0.03, OBT Z= 276 

0.08, p = 0.94, Detection Z= 0.29, p = 0.77, Identification Z= 0.42, p = 0.67) demonstrating that 277 

mnemonic discrimination is still a reliable predictor even when controlling for the other 278 

cognitive domains assessed. A commonality analysis found that OCL explained 54.3% of the 279 

variance, far more than any other task, with no other task explaining more than 5% of the 280 

variance. Importantly, only 11% of the variance was shared across all tasks suggesting that while 281 

the tasks are somewhat related, they each individually contribute to assessing the risk of 282 
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progressing from CN to MCI (Table 1). To further verify that OCL was the superior measure for 283 

predicting conversion to MCI, we performed a 6-choose-3 combinatorial analysis and quantified 284 

how often each measure occurred in the top third of resulting AUCs. We found that OCL 285 

appeared in all the top models and appeared nearly twice as much as any other measure (Fig 3C). 286 

These results collectively suggest that deficits in mnemonic discrimination are predictive of 287 

conversion to MCI. 288 

Table 1: Commonality Analysis predicting conversion from CN to MCI 289 

AD biomarkers vs Digital Biomarkers: CN to MCI 

Measure Coefficient % Variance Explained 
Cortical Aβ 0.00765 18.75 

EC tau 0.00063 1.55 
Digital Cognitive Battery 0.02295 56.25 

Cortical Aβ & EC tau 0.00289 7.08 
Cortical Aβ & Digital Cognitive Battery 0.00330 8.09 

EC tau & Digital Cognitive Battery 0.00093 2.27 
Cortical Aβ & EC tau & Digital Cognitive Battery 0.00245 6.01 

Digital Cognitive tasks: CN to MCI 

Measure Coefficient % Variance Explained 
OCL 0.02195 54.34 
OBT 0.00001 0.02 

Identification 0.00214 5.30 
Detection 0.00008 0.20 

OCL & OBT 0.00003 0.08 
OCL & Identification 0.00163 4.03 
OBT & Identification 0.00082 2.04 

OCL & Detection 0.00061 1.52 
OBT & Detection 0.00001 0.01 

Identification & Detection 0.00179 4.43 
OCL & OBT & Identification 0.00190 4.71 

OCL & OBT & Detection -0.00003 -0.07 
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OCL & Identification & Detection 0.00355 8.80 
OBT & Identification & Detection 0.00147 3.64 

OCL & OBT & Identification & Detection 0.00442 10.95 
 290 

We next investigated whether these measures could predict the progression from MCI to AD 291 

over two years. To address this, we first identified individuals who were initially diagnosed with 292 

MCI and divided them into two groups: nonconverters, who remained stable with MCI, and 293 

converters, who progressed to AD. Employing logistic regressions for each measure, we found 294 

that EC tau, Cortical Aβ and the digital cognitive assessment were all effective predictors of 295 

progression (Fig 3D; Cortical Aβ AUC = 0.76, p < 0.01, EC tau AUC = 0.79, p < 0.01, Digital 296 

Cognitive Battery AUC = 0.68, p = 0.03). Further, we did not find any differences between the 297 

measures for predicting conversion to AD (all ps > 0.28). 298 

Interestingly, in a post-hoc multiple logistic regression, we found that while the overall 299 

model was significant (R2 = 0.17, BIC = 102.94, p < 0.001), none of the measures could reliably 300 

predict conversion from MCI to AD (Digital Cognitive Battery Z = - 1.09, p = 0.28, Cortical Aβ 301 

Z= 1.48, p = 0.14, EC tau Z= 2.53, p = 0.11). This suggests that the measures likely share 302 

variance and therefore are not individually significant after controlling for the other measures. To 303 

this end, we conducted a commonality analysis and found that nearly half the variance (49.18%) 304 

was shared between Cortical Aβ and EC tau and 12.18% of the variance was explained by EC 305 

tau alone. Conversely, Cortical Aβ and the Digital Cognitive Battery each explained less than 306 

10% of the variance (Table 2). 307 

We next asked which cognitive domains predicted conversion from MCI to AD. We 308 

conducted separate logistic regressions and found that none of the cognitive tasks could predict 309 
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progression from MCI to AD (Fig 3E; Detection AUC = 0.63, p = 0.18, Identification AUC = 310 

0.65, p = 0.13, OBT AUC = 0.66, p = 0.10, OCL AUC = 0.66, p = 0.11). These measures also 311 

did not statistically differ in predicting conversion status (all ps > 0.70). A post-hoc multiple 312 

logistic regression was not able to differentiate converters and nonconverters (R2 = 0.06, BIC = 313 

119.36, p = 0.21) and none of the individual metrics were able to reliably predict converters (all 314 

ps > 0.12). In a commonality analysis, 39.20% of the variance was unique to OCL with no more 315 

than 6% of the variance being unique to any of the other tasks (Table 2). When conducting a 6-316 

choose-3 combinatorial analysis with all the measures, we observed that EC tau was the most 317 

represented in the top third of models with OCL as a distant second (Fig 3F). This underscores 318 

the importance of EC tau in predicting progression from MCI to AD. 319 

Table 2: Commonality Analysis predicting conversion from MCI to AD 320 

AD biomarkers vs Digital Biomarkers: MCI to AD 
Measure Coefficient % Variance Explained 

Cortical Aβ 0.01313 9.04 
EC tau 0.02456 16.90 

Digital Cognitive Battery 0.01164 8.01 
Cortical Amyloid & EC tau 0.07165 49.31 

Cortical Aβ & Digital Cognitive Battery 0.00157 1.08 
EC tau & Digital Cognitive Battery 0.00506 3.48 

Cortical Aβ & EC tau & Digital Cognitive Battery 0.01770 12.18 
Digital Cognitive tasks: MCI to AD 

Measure Coefficient % Variance Explained 
OCL 0.01662 39.30 
OBT 0.00279 6.59 

Identification 0.00259 6.12 
Detection 0.00067 1.59 

OCL & OBT 0.00220 5.20 
OCL & Identification -0.00091 -2.15 
OBT & Identification 0.00371 8.77 

OCL & Detection -0.00001 -0.03 
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OBT & Detection 0.00050 1.19 
Identification & Detection 0.00361 8.55 

OCL & OBT & Identification 0.00036 0.86 
OCL & OBT & Detection 0.00019 0.46 

OCL & Identification & Detection -0.00083 -1.97 
OBT & Identification & Detection 0.01011 23.91 

OCL & OBT & Identification & Detection 0.00068 1.61 
 321 

 322 

 323 

Figure 3: Predicting cognitive decline over two years. A) ROC curves demonstrating that performance on the 
digital cognitive battery (maroon) reliably predicts future cognitive decline while Cortical Aβ (blue), EC tau (green) 
do not. B) OCL performance reliably predicts future cognitive decline while IDN (light green), DET (light blue) and 
OBT (orange) do not. C) OCL appears nearly twice as often in top third of models from a permutation analysis 
suggesting that OCL performance is most influential in predicting future cognitive decline. D) ROC curves 
demonstrate that Cortical Aβ, EC tau and the digital cognitive assessment could each predict conversion from MCI to 
AD. E) None of the cognitive tasks could reliably predict conversion from MCI to AD. F) A permutation analysis 
found that EC tau was the most common metric in top third of models suggesting that this measure is important for 
predicting progression from MCI to AD. 
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3.4. Mnemonic discrimination deficits predict future impairment on MMSE in 324 

cognitively normal older adults 325 

Given that OCL was the most important measure for predicting conversion to MCI, we next 326 

asked whether performance on this task predicts cognitive changes in cognitively normal older 327 

adults. To assess this, we asked whether OCL performance, EC tau or Cortical Aβ predicts 328 

decline on the MMSE, a standard task used to quantify global cognitive ability. We calculated 329 

MMSE APC as the difference between the most recent MMSE score and the MMSE score at 330 

baseline divided by the difference in years. We found that baseline Cortical Aβ and EC tau were 331 

not associated with longitudinal change on the MMSE (Fig 4A; Cortical Aβ: rp = -0.07. p = 0.30, 332 

Fig 4B; EC tau: rp = 0.02, p = 0.76). Conversely, we found a reliable positive association 333 

between baseline OCL performance and MMSE APC (Fig 4C; rp = 0.25, p < 0.0001), suggesting 334 

that impairments on OCL were related to longitudinal cognitive decline. Further, we found that 335 

there was no relationship between baseline MMSE and longitudinal changes in cortical Aβ, EC 336 

tau or OCL performance (Fig 4D; Cortical Aβ: rp = 0.08, p = 0.22, Fig 4E; EC tau: rp = -0.06, p = 337 

0.44, Fig 4F; OCL: rp = 0.06, p = 0.34). This suggests that OCL performance predicts future 338 

cognitive decline in cognitively normal older adults. 339 
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 340 

 341 

3.5. Mnemonic discrimination performance predicts future tau accumulation in the 342 

entorhinal cortex and inferior temporal cortex 343 

Given the significance of OCL performance as an indicator of future cognitive decline, we 344 

proceeded to explore whether performance could serve as a predictor for future tau accumulation 345 

in EC and IT. To do this, we correlated baseline performance on the OCL task with tau SUVR 346 

Figure 4: Only OCL performance predicts cognitive decline in CN older adults. No relationship 
between baseline A) Cortical Aβ or B) EC tau and longitudinal change on the MMSE. C) Positive 
correlation with OCL performance and annual change on the MMSE suggesting that lower OCL 
performance is associated with longitudinal decline on MMSE. No relationship between baseline 
MMSE and longitudinal change in D) Cortical Aβ E) EC tau or F) OCL performance. 
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APC in Aβ- and Aβ+ individuals. Our findings revealed a significant negative correlation 347 

between baseline OCL performance and EC tau accumulation among Aβ+, but not Aβ-, 348 

cognitively normal older adults (Fig 5A; Aβ+: rp = -0.26, p =0.03, Aβ-: rp = -0.06, p =0.55). 349 

Conversely, there was no association between baseline OCL and EC tau SUVR APC in subjects 350 

with MCI, regardless of Aβ status (Fig 5B; Aβ+: rp = -0.04, p =0.82, Aβ-: rp = 0.17, p =0.33). 351 

When investigating whether OCL related to future tau deposition in IT cortex, we found a 352 

modest relationship between baseline OCL and IT tau SUVR APC in Aβ+, but not Aβ- 353 

cognitively normal individuals (Fig 5C; Aβ+: rp = -0.23, p =0.07, Aβ-: rp = -0.03, p =0.76). 354 

However, we did observe a significant negative association between OCL performance and IT 355 

tau SUVR APC in Aβ+ subjects with MCI, but not Aβ- MCI individuals (Fig 5D; Aβ+: rp = -356 

0.43, p =0.01, Aβ-: rp = 0.19, p =0.30). 357 
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 358 

 359 

Figure 5: OCL is related to future tau accumulation. A) Lower OCL performance is associated with future 
EC tau in Aβ+ (red), but not Aβ- (blue) CN older adults. B) No reliable relationship between OCL 
performance and EC tau regardless of Aβ status in MCI. C) No reliable correlation between baseline OCL and 
IT tau accumulation in both Aβ+ or Aβ- CN older adults. D) Lower baseline OCL performance is associated 
with increased future IT tau accumulation in Aβ+ but not Aβ- (red) MCI older adults. 
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4. Discussion:  360 

There is a critical need for the development and validation of low burden biomarkers that 361 

identify individuals at high risk for future cognitive decline. While great strides have been made 362 

with biofluid biomarkers, less work has identified cognitive biomarkers that predict future 363 

cognitive decline. Here we used the Cogstate Brief Battery as a testbed to demonstrate that 364 

digital cognitive assessments can predict future cognitive decline. We found that the digital 365 

cognitive battery identified individuals with MCI and predicted future cognitive decline at a 366 

higher proficiency compared to baseline Aβ and tau levels. Conversely, EC tau was a critical 367 

predictor for conversion from MCI to AD. Further, we demonstrated that mnemonic 368 

discrimination deficits are the most predictive of future cognitive decline and are also related to 369 

future tau accumulation in Aβ+ older adults. This work highlights the value of digital cognitive 370 

biomarkers for identifying those at high risk for AD. 371 

4.1. Utility of Digital Cognitive Batteries in identifying individuals with cognitive 372 
decline 373 

Prior work has demonstrated the ability of digital cognitive batteries to distinguish 374 

individuals with cognitive impairment 13,14. Specifically, the CBB can accurately distinguish 375 

between CN and MCI at high proficiency with each of the four tasks differentiating between 376 

unimpaired and impaired older adults38. We replicated this in a different cohort demonstrating 377 

that all tasks can distinguish between CN and MCI. In addition, other cognitive batteries have 378 

shown promise in distinguishing between CN and MCI at high proficiency 14,25. However, less 379 

has been done to assess how digital cognitive assessments compare to Aβ and tau pathology in 380 

distinguishing CN and MCI. Building off these findings, we demonstrated that the digital 381 
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cognitive battery was superior to both cortical amyloid and EC tau in differentiating CN from 382 

MCI, reaffirming the benefits of digital cognitive batteries. 383 

An important question is how well biomarkers can forecast future cognitive decline. 384 

Identifying individuals at high risk for future cognitive decline can increase the therapeutic 385 

window for currently approved therapies and can aid in clinical trial recruitment. Indeed, prior 386 

work has found that Aβ and tau pathologies are predictive of future cognitive decline 7. 387 

However, the lack of specificity and sensitivity of these AD biomarkers suggest that other 388 

biomarkers are also needed. To determine whether digital cognitive assessments may aid in this, 389 

we asked whether performance on the battery predicted conversion to MCI over two years. We 390 

found that only digital cognitive biomarkers were predictive of future cognitive decline. Further, 391 

both a multiple regression and a commonality analysis suggested that digital cognitive 392 

biomarkers were superior to Aβ and tau levels. This suggests that digital cognitive assessments 393 

can complement Aβ and tau measures to identify those at highest risk for cognitive decline. 394 

4.2. Elevated Aβ and tau is predictive of progression to dementia 395 

The digital cognitive battery was superior to Aβ and tau for predicting progression to MCI, 396 

but we did not see the same pattern in individuals progressing from MCI to AD. In these 397 

individuals, performance on the digital cognitive assessment did predict progression, but 398 

entorhinal tau was more indicative of future decline. This aligns with prior work suggesting that 399 

tau accumulation is most rapid during MCI and relates to neurodegeneration and cognitive 400 

decline in MCI39,40. Importantly, in a commonality analysis, we found that nearly half of the 401 

variance was shared by cortical Aβ and entorhinal tau which suggests that these pathologies are 402 

critical for progression to dementia. Together, these results indicate that subtle cognitive changes 403 
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are important for predicting progression to MCI, but once individuals exhibit overt cognitive 404 

impairment, pathologies are critical for progression to dementia. 405 

4.3. Selective vulnerability of mnemonic discrimination in AD 406 

Given that the digital cognitive battery included tasks across multiple domains, we asked 407 

whether one task was superior to the others in differentiating cognitive impairment and 408 

predicting future decline. Interestingly, we found that performance on the OCL task was most 409 

informative of cognitive status and decline. While all tasks distinguished between CN and MCI, 410 

OCL reached the highest AUC and was reliably better than the other tasks. Further, only OCL 411 

could reliably predict progression to MCI over two years. In a multiple regression model, we 412 

found that OCL was a reliable predictor of cognitive decline even when controlling for 413 

performance on the other tasks and a commonality analysis reaffirmed this, showing that OCL 414 

performance explains most of the variance in the model. Of note, MCI and AD were diagnosed 415 

cognitively, therefore, it is not completely unsurprising that OCL performance was decreased in 416 

MCI and AD. Critically, however, we compared this with other cognitive domains and Aβ and 417 

tau. Further, performance on the digital unsupervised tasks were not used in diagnosis of MCI or 418 

AD. Rather, a comprehensive in person gold standard neuropsychological testing session was 419 

used for diagnosis. Therefore, our work suggests that deficits in mnemonic discrimination were 420 

able to reliably predict impairment across the entire neuropsychological battery and at a higher 421 

proficiency than the other cognitive domains and AD biomarkers. We next asked whether OCL 422 

could predict decline on the MMSE in cognitively healthy older adults and contrasted this with 423 

Aβ and tau. We found that only OCL was related to future decline on the MMSE. A similar 424 

concern regarding cognition might apply here, but MMSE performance did not predict Aβ 425 
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deposition, EC tau levels or OCL decline. This suggests that deficits on the OCL predicts global 426 

cognitive impairment, but not vice versa. 427 

The OCL task requires individuals to remember details of playing cards despite accumulating 428 

interference and, therefore, prima facie, taxes hippocampal pattern separation. We hypothesize 429 

that hippocampal pattern separation, which reduces interference between similar representations, 430 

is particularly vulnerable to AD pathology 27,28. Indeed, prior work has demonstrated that 431 

performance on tasks that tax hippocampal pattern separation, such as the mnemonic similarity 432 

task, declines in MCI and individuals with AD pathologies already show impairment on these 433 

tasks prior to cognitive decline 26,41–43. This is likely because the hippocampus is one of the 434 

earliest areas affected (both directly and indirectly) by AD pathologies 19. Therefore, we propose 435 

that individuals with deficits in mnemonic discrimination are likely exhibiting declines in 436 

hippocampal integrity which is related to cognitive decline. 437 

4.4. Hippocampal hyperexcitability as a predictor of future tau 438 

Recent work has suggested that increasing tau deposition is a critical predictor of future 439 

cognitive decline 44,45. Specifically, it has been proposed that amyloid deposition is not 440 

pathological without tau tangles, however, amyloid can drive accumulation of tau 46–49. While the 441 

mechanism by which this happens is not fully understood, it’s been suggested that hippocampal 442 

hyperexcitability may be the mediating factor 50,51. Work has found that tasks that tax 443 

hippocampal pattern separation are vulnerable to hippocampal hyperexcitability. Specifically, 444 

increased hippocampal activity is negatively associated with performance on these tasks and 445 

pharmacologically reducing this hyperexcitability increases performance 28,52. Therefore, we 446 

propose that tasks that tax hippocampal pattern separation could serve as an indirect proxy for 447 
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hippocampal dysfunction and in particular, hippocampal hyperactivity. This would suggest that 448 

performance on the OCL may be predictive of future tau accumulation. Indeed, we found a 449 

negative relationship between OCL performance and future EC tau accumulation in CN older 450 

adults, but only in Aβ+ individuals. Conversely, we found that OCL was related to future IT tau 451 

accumulation in Aβ+ MCI individuals. Work has found that hippocampal hyperactivity is related 452 

to future tau accumulation in both regions 51. However, this aligns with prior work finding that 453 

tau accumulates in EC prior to cognitive decline, but IT is particularly vulnerable later in disease 454 

progression 11,17. Further, the finding that this is selective to Aβ positive individuals aligns with 455 

work finding that Aβ potentiates tau accumulation. While promising, future work is needed to 456 

understand the direct connection between OCL performance and hippocampal hyperexcitability. 457 

4.5. Conclusion  458 

In this study we asked whether digital cognitive assessments could serve as low-burden 459 

biomarkers in AD. We demonstrate that performance on these assessments exceed Aβ and 460 

entorhinal tau in distinguishing CN and MCI and predicting progression to MCI. Conversely, we 461 

found that increased Aβ and tau deposition are indicative of progression from MCI to AD. 462 

Further, we demonstrate that deficits in mnemonic discrimination, which relies on hippocampal 463 

pattern separation, are informative of future cognitive decline and tau deposition. Our work 464 

suggests that digital cognitive assessments are important tools for predicting cognitive decline, 465 

and these assessments should include tasks that tax hippocampal pattern separation. 466 

  467 
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