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Abstract 24 

 25 

The molecular pathogenesis of diabetes is multifactorial, involving genetic predisposition and 26 

environmental factors that are not yet fully understood. However, pancreatic β-cell failure remains 27 

among the primary reasons underlying the progression of type-2 diabetes (T2D) making targeting β-cell 28 

dysfunction an attractive pathway for diabetes treatment. To identify genetic contributors to β-cell 29 

dysfunction, we investigated single-cell gene expression changes in β-cells from healthy (C57BL/6J) 30 

and diabetic (NZO/HlLtJ) mice fed with normal or high-fat, high-sugar diet (HFHS). Our study presents 31 

an innovative integration of the causal network perturbation assessment (ssNPA) framework with meta-32 

cell transcriptome analysis to explore the genetic underpinnings of type-2 diabetes (T2D). By 33 

generating a reference causal network and in silico perturbation, we identified novel genes implicated in 34 

T2D and validated our candidates using the Knockout Mouse Phenotyping (KOMP) Project database. 35 
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Introduction 36 

Type 2 diabetes (T2D) comprises more than 90% of all diabetes cases, impacting approximately 6.8% 37 

(537 million individuals) of the global population in the year 2021 (Zheng et al., 2018; Sun et al., 2022). 38 

T2D is a multifactorial disease caused by a complex interplay between genetic and environmental 39 

factors. However, while some of the major environmental factors (i.e., diet and physical activity) are well 40 

known, the genetic bases of T2D remain poorly understood. The endocrine portion of the pancreas is 41 

constituted by highly specialized hormone-secreting entities known as islets of Langerhans. The islets 42 

comprise β, α, delta, PP, and ghrelin cells that secrete insulin, glucagon, somatostatin, pancreatic 43 

polypeptide, and ghrelin, respectively. Islet and/or β-cell dysfunctions are central to diabetes, and the 44 

onset of full-blown T2D occurs when α or β cells lose their capacity to secrete appropriate amounts of 45 

insulin in response to elevated blood glucose levels. Current research on Type 2 diabetes faces 46 

significant limitations due to the variability in genetic, environmental, and lifestyle factors among diverse 47 

populations, which challenges the generalizability of findings. Additionally, there is a notable gap in 48 

long-term clinical trials that comprehensively assess the efficacy of emerging treatments across 49 

different stages of the disease. In recent years, single-cell RNA sequencing (scRNA-seq) has proven 50 

critical for investigating comprehensive gene expression profiles, revealing the presence of 51 

heterogeneous gene expression patterns, even within cells of the same type. Furthermore, diverse 52 

phenotypes of pancreatic β cells have been observed within a single islet (Hrovatin et al.,2023, 53 

Camunas-Soler et al., 2020; Bhakti et al., 2019). The application of scRNA-seq has significantly 54 

contributed to our understanding of β-cell maturation, β-cell heterogeneity, β-cell failure, and β-cell 55 

function in both healthy and diseased states. For this study, we used the polygenic NZO/HlLtJ mouse 56 

strain that displays signs of morbid obesity, fasting hyperglycemia, hyperinsulinemia, insulin resistance, 57 

and hypercholesterolemia resembling human T2D (Leiter et al., 1998; Ortlepp et al.,2000; Reifsnyder et 58 

al.,2002). Mice from the NZO/HlLtJ strain and healthy C57BL/6J controls were kept on a standard or 59 

high-fat high-sugar (HFHS) diet regimen for XY days. At the end of the treatment, we analyzed the 60 

single-cell gene expression profile of β-cells derived from NZO/HlLtJ mice and compared it to that of β-61 

cells from healthy C57BL/6J mice (Figure 1A). To explore the genetic underpinnings of T2D, it is 62 

crucial to identify gene perturbations and hub genes associated with the disease. We hypothesize that 63 

conventional differential gene expression analysis does not effectively detect certain type of disruptions 64 

in gene networks. To overcome this limitation, we extend a causal network perturbation assessment 65 

(ssNPA) framework (Buschur, Chikina, & Benos, 2020) in combination with a meta-cell transcriptome 66 

analysis. This approach, termed meta-ssNPA workflow, allowed us to identify genes and gene networks 67 

that are perturbed in T2D mice in response to diet changes, providing valuable insights into its genetic 68 
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landscape. Briefly, this study aimed to juxtapose three distinct physiological states, encompassing a 69 

spectrum from health to disease conditions, specifically: 1) a comparison between healthy and 70 

prediabetic states (C57BL/6J mice on a normal chow diet vs. C57BL/6J on a HFHS  diet); 2) a 71 

comparison between prediabetic and severely diabetic states (comparing C57BL/6J mice on a HFHS 72 

diet with NZO/ShiLt mice on a HFHS diet); and 3) a comparison between mildly diabetic and severely 73 

diabetic states (evaluating NZO/ShiLt mice on normal or HFHS diet conditions). We focused our 74 

analysis on the transcriptional profile of pancreatic beta cells due to their pivotal role in upholding 75 

glucose homeostasis and serving as the primary source of insulin. 76 

 77 

We successfully detected novel T2D genes that is not differentially expressed and validated them with 78 

Knockout Mouse Phenotyping (KOMP) Project database. The KOMP database, accessible at the 79 

International Mouse Phenotyping Consortium website, serves as a valuable resource for researchers, 80 

offering comprehensive phenotypic data and genetic insights on a wide array of knockout mouse 81 

models. This platform facilitates the understanding of gene function and disease mechanisms and is 82 

instrumental in advancing the study of human diseases, including the identification of potential 83 

therapeutic targets.  84 
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Material & Methods 85 

 86 

Animal studies and islet isolation 87 
 88 
In strict adherence to the standards set by the Association for Assessment and Accreditation of 89 

Laboratory Animal Care, our facility at The Jackson Laboratory has upheld the care and treatment of 90 

mice. We acquired male and female mice from three distinct strains: C57BL/6J (B6; 91 

RRID:IMSR_JAX:000664), and NZO/HlLtJ (NZO; RRID:IMSR_JAX:002105), starting at the age of four 92 

weeks. The mice were provided with two types of diets from Research Diets: a high-fat, high-sucrose 93 

diet (HFHS, comprising 44% kcal from fat and 1360 kcal from sucrose; Research Diets D19070208) 94 

and a control diet (10% kcal from fat and devoid of sucrose; Research Diets D19072203), both 95 

containing equal fiber content. The diets were given ad libitum starting from the age of six weeks. At the 96 

age of fifteen weeks islet isolation was performed and mice were euthanized through cervical 97 

dislocation. and the common bile duct at the Sphincter of Oddi was clamped. Collagenase solution 98 

(three milliliters of a solution containing collagenase P (5 units/ml) and DNaseI (1mg/ml) in Hank’s 99 

Balanced Salt Solution (HBSS) was inserted into the bile duct proximal to the final bifurcation leading to 100 

the liverto inflate the pancreas. We then removed the pancreas for digestion at 37°C for 40 minutes. 101 

Post-digestion, samples were agitated for ten seconds, diluted it with 10 ml of HBSS, and centrifuged 102 

for 3 minutes at 300 RPM. After two washes with HBSS, the pellet was resuspended in 5ml HBSS, and 103 

handpicked islets were collected using a clean petri dish containing HBSS. We. The islets were then 104 

transferred to 24-well plates with 1ml of the warmed media (containing RPMI 1640, 10% FBS, 105 

glutamine, and HEPES) and incubated overnight at 37°C. After overnight incubation islets were 106 

centrifuged and the supernatant was discarded. Finally, islets were resuspended in 1-2 ml of StemPro 107 

Accutase dissociation solution (A1110501, Fisher Scientific), which had been preheated to 37°C. The 108 

cell suspension was gently pipetted for 30 seconds to facilitate the dissociation of islets until the media 109 

appeared translucent and there were no visible clumps, usually within 2-5 minutes. Following 110 

dissociation, 2-3ml of RPMI complete medium was added, and the cell suspension was filtered through 111 

a 20um strainer. The cells were then centrifuged at 230 RCF for 3 minutes, the supernatant was 112 

removed, and the cells were resuspended in 2-3ml of RPMI complete medium. 113 

 114 

 115 

Preprocessing of Single Cell RNA-Seq  116 
 117 
We processed raw fastq reads from Illumina sequencing for scRNA-Seq by aligning them to the mouse 118 

reference genome (mm10/GRCm38) using 10X Cell Ranger version 6.1.1 with standard settings.  119 
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 120 

To demultiplex the strain of origin from samples containing mixed strains, we employed demuxlet 121 

version 2 (https://github.com/statgen/popscle;(Kang et al., 2018)), utilizing known genomic variations 122 

from VCF files obtained from the Sanger Mouse Genomes Project ((Keane et al., 2011)). We focused 123 

on sites that were biallelic and varied among our two strains (B6, and NZO). We ran demuxlet on RNA-124 

Seq data with specific parameters “--alpha 0.0 --alpha 0.5 --tag-group CB --tag-UMI UB --field GT”, 125 

accounting for all cells identified by Cell Ranger.  126 

 127 
Quality Control and Filtering of Single Cell RNA-Seq Data 128 
 129 
Post-processing, we applied quality control measures to the feature count matrices generated by Cell 130 

Ranger. Single cells with fewer than 500 (islet) genes, more than 20% (islet) mitochondrial transcripts, 131 

or over 50% ribosomal transcripts were excluded. Additionally, genes not detected in at least three 132 

single cells per sequenced library were also omitted. To correct for potential ambient RNA 133 

contamination in islet samples, we utilized decontX from the celda V1.10.0 package, adhering to 134 

developer guidelines on GitHub. The SCDS V1.10.0 package was deployed to eliminate cell doublets, 135 

using default settings. 136 

 137 

Clustering and Identification of Cell Types in Single Cell RNA-Seq 138 
 139 
Following the filtration and quality control, single cells/nuclei underwent normalization and were 140 

clustered using Seurat version 4.1, with batch variations across libraries corrected by harmony version 141 

0.1.0. Gene expression data from single cells were normalized based on library size and log-142 

transformed. Dimensionality was reduced using principal component analysis (PCA) on the 2,500 most 143 

variable genes, and these principal components (PCs) underwent batch correction using harmony. The 144 

batch-corrected PCs were then used for Louvain-based clustering, with the resolution parameter 145 

adjusted between 0.1 and 1 according to the dataset specifics. 146 

 147 

We identified differential marker genes for various groups via the Wilcoxon rank-sum test or MAST 148 

within the Seurat package, employing an FDR cutoff of 0.1 and a fold change cutoff of 1.5. Cluster-149 

specific genes aided in assigning cell types. Independently, cell type assignment was also performed 150 

unbiasedly using the SingleR package, comparing each single-cell transcriptome to reference 151 

transcriptome profiles of known cell types. For formal differential gene expression tests, we created 152 

pseudobulks within cell types by aggregating gene expression counts across all cells of a given type 153 

from a single mouse, applying DESeq2 on the pseudobulks. This approach using negative binomial 154 

modeling with pseudobulks derived from single-cell transcriptomic data is noted for its efficacy and 155 
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accuracy in differential expression testing in single-cell contexts (Love et al., 2014). Low-expression 156 

genes have been filtered out the OGFSC algorithm (Hao, Cao, Huang, Zou, & Han, 2019). 157 

 158 

Refine the existing Single Sample Network Perturbation Assessment (ssNPA) method 159 

However, many limitations still exist for the existing ssNPA framework (Buschur, Chikina, & Benos, 160 

2020). The first limitation is the framework doesn’t work well on single cell data. The single cell data 161 

have sparsity issues where a lot of genes have zero expressions in many cells. This violates the 162 

assumption of linear model ssNPA is using and thus the prediction performance is bad. We tackle this 163 

problem by a simple meta-cell idea (Baran, Y., Bercovich, 2019). We randomly pick several cells from 164 

the same cell type and average the gene expressions as a new meta-cell sample. This approach 165 

maintains the relative level of all gene expression in the cell (high expression genes are still higher and 166 

lower expression genes are still lower in the meta-cells) while removing the zeros. Secondly, original 167 

ssNPA use simple criterion to filter out Perturbed genes: as long as the average Perturbance Score is 168 

higher in the test group than the control group, the gene is annotated as a Perturbed Gene. This 169 

approach doesn’t consider the random noise in the Perturbance Score, thus induces False Positive 170 

results. We refined this process by applying Wilcoxon test (Li, Ge, Peng, Li, & Li, 2022) onto test and 171 

control group Perturbance Score and use False Discovery Rate (fDR) < 0.05 as the threshold to filter 172 

the Perturbed Genes where statistical significance is introduced in the comparison. We performed one 173 

sided Wilcoxon test with alternative hypothesis: control group Perturbance Score < test group 174 

Perturbance Score. 175 

 176 

Workflow and experimental design 177 

Based on the discussion above, we propose the following meta-ssNPA workflow (Figure 1B, S0 and 178 

S0’): the single-cell RNA-seq data from various sample groups underwent standard processing using a 179 

single-cell pipeline to identify distinct cell types. Subsequently, meta-cell transcriptome data was 180 

generated for each of these identified cell types. Using the control group samples as a reference 181 

dataset, perturbation scores were computed for all genes within a given gene network, employing the 182 

ssNPA framework. Perturbance scores were calculated by comparing the network predictions derived 183 

from the reference network and the test group data, with the expectation of distinguishing between the 184 

test and control groups. Then, we visualize all samples perturbance score with t-sne and compare them 185 

against real group ID (test or control). After verifying that the test and control group are separated well 186 

in visualization indicating the Perturbance Scores can be used to distinguish the two groups. The 187 

Wilcoxon tests (Li, Ge, Peng, Li, & Li, 2022) were applied to filter out genes exhibiting significant 188 

perturbations, and finally, pathway analysis was conducted for further interpretation of the findings. The 189 
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genes with a significant adjusted p-value ( < 0.05) in the Wilcoxon test between test and control 190 

perturbance score is defined as Perturbed Genes. 191 

DEG analysis  192 

To identify differentially expressed genes (DEGs) associated with diet, we applied the Wilcoxon test on 193 

single cell expression data between control and test group for Beta cells using the same code in (Li, 194 

Ge, Peng, Li, & Li, 2022). Genes with a False Discovery Rate (fDR) < 0.05 were considered DEGs. 195 

Venn diagrams were generated to visualize the overlap between perturbed genes and DEGs. 196 

 197 

Pathway Analysis assessment: perturbed and differentially expressed genes 198 

Gene set enrichment analysis of KEGG mouse pathways was conducted using the hypergeometric 199 

test. This analysis assessed both perturbed genes and differentially expressed genes (DEGs). The 200 

pathways were ranked based on their p-values, and the top 10 pathways with the lowest p-values were 201 

selected.   202 
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Results 203 

Workflow to detect perturbed genes via meta-cell local reference causal network 204 

We combined a meta-cell transcriptome analysis with the ssNPA framework to identify the genes that 205 

are perturbed in the test condition (High Fat High Sugar diet) compared to that of the control using a 206 

causal network (Buschur, Chikina, & Benos, 2020). The causal network is computed using a Fast 207 

Greedy Equivalent Search (FGES) algorithm (Ramsey, Glymour, Sanchez-Romero, & Glymour, 2017) 208 

on a directed acyclic graph (DAG), where the nodes are genes, and the directed edges are the causal 209 

relationships between the genes. The FGES algorithm iteratively adds an edge if the addition 210 

decreases the Bayesian Information Criteria (BIC) where BIC is calculated based on a linear model 211 

where the expression of a gene is predicted by fitting a linear model with the expression levels of its 212 

parents, spouses, and children (Markov Blanket) in the current network as the predictors. The single-213 

cell gene expression data from the mouse given the standard diet is used to construct the causal 214 

network. The difference between the predicted and actual values (i.e., perturbation score) is used to 215 

identify genes essential for T2D pathogenesis. Since, unlike the standard differential expression 216 

analysis, this method considers the interactions between the genes and their neighbors, several genes 217 

identified in our analysis could not have been identified otherwise. Importantly, the expression level of 218 

perturbed genes – quantified by differential expression analysis – can be similar between test and 219 

control groups, but the interactions between them and their neighbor genes vary.  220 

 221 

Identification of differentially expressed and perturbed genes in β cells in healthy vs prediabetic 222 

state  223 

To identify prediabetic-states-specific perturbed genes, we performed ssNPA analysis using single-cell 224 

transcriptomes of β cells isolated from C57BL/6J mice fed on HFHS diet (test group) vs. those kept on 225 

a standard (control group). Only male mice are used since female mice are observed to be more 226 

resistant to T2D. The β cells exhibited differentially expressed genes (DEGs) (Wilcoxon Test) and 227 

perturbed genes when comparing a normal diet to a HFHS diet. Furthermore, there were shared DEGs 228 

and meta-ssNPA perturbed gene signatures. Among the highly upregulated perturbed genes were 229 

Gadd45b, Hmgn2, Cartpt, Hdgfl3 (Figure 2A). Conversely, the downregulated perturbed genes 230 

included Trim12a, Col27a1, Ly6a, Rflna, and AY036118. We performed pathway enrichment analysis 231 

using hypergeometric test for the perturbed genes. Multiple pathways enriched for perturbed genes are 232 

related to T2D biology (Figure 2B). The MAPK signaling pathway plays a crucial role in T2D by 233 

affecting insulin signaling and beta-cell function. An article in the journal Diabetes assessed the 234 

increased MAPK activation and its impact on insulin signaling in microvascular endothelial cells in T2D, 235 

highlighting the functional role of endothelin-1 (Gogg, Smith, & Jansson, 2009). 236 
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Identification of hub genes, drivers and network analysis   237 

The meta-ssNPA analysis revealed perturbed genes strongly linked to T2D. Due the large size of the 238 

network, only a sub network with non-DEG perturbed genes is shown (Figure 2C). A full version of the 239 

network is shown in Figure S1. In this representation, gene names (in red) and triangles denote genes 240 

that are perturbed but not differentially expressed, while those in green nodes indicate downregulated 241 

perturbed genes, and red node denotes upregulated perturbed genes. The out degree of the genes (top 242 

20) in the perturbed network is shown as bar plot in Figure 2D. The out-degree of a gene quantifies the 243 

number of other genes being affected by the chosen gene. The genes with highest out-degree are: 244 

Zbtb20, Zdhhc2, Ndufa4, Rpl7, and Gnai2, Multiple detected perturbed genes are related to T2D 245 

biology. The GLP1R gene, which encodes the glucagon-like peptide-1 receptor, plays a crucial role in 246 

modulating insulin secretion in response to blood glucose levels and has been targeted by a number of 247 

antidiabetic therapies (Ussher et al., 2023; Müller et al., 2019). Similarly, the Insulin-like growth factor 1 248 

receptor (IGF-1R) is a receptor tyrosine kinase that plays a significant role in mediating the effects of 249 

insulin-like growth factor 1 (IGF-1) on cell growth, proliferation, and metabolism. While primarily 250 

recognized for its involvement in growth and development, emerging evidence suggests its implication 251 

in diabetes and related metabolic disorders and targeting IGF-1R signaling pathways may hold promise 252 

as a therapeutic strategy for diabetes and its associated complications (O'Neill et al., 2015; Viana-253 

Huete et al., 2016). Another gene of interest is MAFA, a transcription factor critical for pancreatic β-cell 254 

function and insulin gene regulation, which may serve as a biomarker for β-cell dysfunction in T2DM 255 

(Nishimura et. al., 2015). Additionally, the PYY gene, which produces peptide YY, a hormone involved 256 

in appetite regulation, links obesity, a significant risk factor for T2DM, to this metabolic disorder (Tan et 257 

al., 2023).  Some of the genes highlighted in the network pathway are Neurogenin3, Glp-1r, Slc30a8, 258 

Serpinb9, Gabra4, Cacna2d2, Angptl4 and Lpl. 259 

Neurogenin3 (Neurog3) is a transcription factor pivotal in developing pancreatic endocrine cells, 260 

including insulin-producing β cells. In mice, the absence of Ngn3 results in the complete absence of 261 

endocrine cells within the pancreas (Gradwohl et al., 2000). The Cacna2d2 gene, encoding the alpha-262 

2-delta-2 subunit of voltage-gated calcium channels, have demonstrated that alterations in Cacna2d2 263 

expression or function can impact insulin sensitivity and glucose metabolism (Huang et al., 2020; 264 

Cromer et al., 2015) Slc30a8, also known as Zinc transporter 8 (ZnT8), has garnered significant 265 

attention in the field of T2D research due to its role in insulin secretion and glucose homeostasis. This 266 

gene encodes a zinc transporter protein primarily expressed in pancreatic β cells, where it plays a vital 267 

role in packaging zinc into insulin-containing vesicles. Several studies have demonstrated a strong 268 

association between genetic variants in SLC30A8 and the risk of developing T2D. One of the most well-269 

known and extensively studied SLC30A8 variants is rs13266634, located in the intron of SLC30A8. 270 
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This variant has been consistently linked to an increased risk of T2D in various populations, including 271 

European, Asian, and African descent groups. Studies conducted by the groundbreaking Diabetes 272 

Genetics Replication and Meta-analysis (DIAGRAM) Consortium, have identified this variant as one of 273 

the key risk factors for T2D (Chimenti et al., 2006; Sladek et al., 2007; Scott et al., 2007)  274 

 275 

Validation of prediabetic perturbed genes using the KOMP database  276 

To corroborate the perturbed genes identified with the meta-ssNPA analysis, we employed the KOMP 277 

database and generated visual representations for the genes previously linked to T2D. The in-vivo 278 

mouse reference data for validation of genes was generated by the Knock-out Mouse Project-KOMP 279 

(www.mousephenotype.org) (Dickinson et al., 2016; Groza et al., 2023). Moreover, we identified novel 280 

perturbed genes that were not differentially expressed. The perturbed genes selected for validation 281 

were based on their response to a glucose tolerance test, the standard method to diagnose diabetic or 282 

obese phenotypes in both preclinical and clinical research. The perturbed genes that demonstrated 283 

improved glucose tolerance/intolerance based on their Area under curve profiles (AUC) included 284 

Ccnd2, Gckr, Abcc8, Klhl32, Kcnj11, and Mgme1. Glucose time series is visualized in Figure 3A-3F 285 

and boxplots of AUC between knockout group and wild type group is visualized in Figure 3G-3L. We 286 

mined the KOMP database for phenotypes associated with the well-known T2D gene Abcc8 (ATP-287 

binding cassette sub-family C member 8) that plays a crucial role in regulating insulin secretion within 288 

the pancreas. Mutations in this gene can lead to a rare form of diabetes called congenital 289 

hyperinsulinism (CHI), characterized by excessive insulin secretion and resulting in low blood glucose 290 

levels (hypoglycemia). Additionally, mutations in ABCC8 have been identified as one of the established 291 

genetic factors contributing to neonatal diabetes mellitus (NDM). These mutations can cause 292 

dysfunction in ATP-sensitive potassium (KATP) channels found in β cells of the pancreas, which detect 293 

glucose levels and control insulin secretion. The role of Abcc8 has been extensively studied using 294 

mouse models (Stancill et al., 2017; Osipovich et al., 2020). Based on data from the KOMP database, 295 

knock out of Abcc8 resulted in impaired glucose tolerance, which is consistent with phenotypes 296 

reported by other research groups (Remedi et al., 2009; Voss et al.,2012). KLHL32 encodes a protein 297 

that is a part of the Kelch-like (KLHL) family. Members of this family are involved in various cellular 298 

processes, including protein degradation and regulation of cytoskeletal dynamics. In their meta-299 

analysis Monda et al. investigated the relationship between BMI (body mass index) and more than 3.2 300 

million SNPs in approximately 40,000 men and women of African ancestry revealing an association 301 

between KLHL32 and obesity. However, the exact mechanisms by which KLHL32 might contribute to 302 

obesity were not fully elucidated (Monda et al, 2013). In our analysis of the KOMP database, Klhl32 303 

knock-out mice exhibited notably improved glucose tolerance, characterized by faster glucose 304 
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clearance and lower basal fasting glucose levels. Another interesting, perturbed gene was the MGME1 305 

gene (Mitochondrial Genome Maintenance Exonuclease 1) known for its essential role in mitochondrial 306 

DNA maintenance and replication. Impaired mitochondrial function caused by MGME1 mutations can 307 

lead to deficiencies in ATP production and affect metabolic pathways that rely on mitochondrial energy 308 

production, such as the citric acid cycle (Krebs cycle) and oxidative phosphorylation. Based on the 309 

results from the KOMP phenotyping database, Mgme1 knock-out mice showed delayed glucose 310 

clearance (Figure 3F). In addition, Mgme1 knock-out mice displayed reduced weight gain during aging, 311 

followed by weight loss later in life. Absence of Mgme1 led to alterations in body composition and 312 

reduced fat mass. Remarkably, the aged mice also developed kidney inflammation, glomerular 313 

changes, chronic progressive nephropathy with albuminuria, and premature death (Milenkovich et al., 314 

2022).  315 

 316 

Genetic predisposition plays a pivotal role in the T2D pathophysiology, with numerous genes 317 

contributing to its complex landscape. Among these, ABCC8 and KCNJ11 are notable for encoding 318 

components of the ATP-sensitive potassium channel in pancreatic beta cells, with mutations in these 319 

genes affecting insulin secretion and conferring susceptibility to T2D (Florez et al., 2012; Gloyn et al., 320 

2003). Furthermore, CCND2, which is involved in beta-cell proliferation, has variants that are 321 

associated with altered insulin production and T2D risk (Rafiq et al., 2014). The GCKR gene, 322 

responsible for regulating glucokinase activity in the liver, has been linked to fasting glucose levels and 323 

T2D incidence (Beer et al., 2009). Additionally, ADORA2A, encoding the adenosine A2a receptor, is 324 

implicated in glucose homeostasis, with its influence extending to insulin secretion and sensitivity 325 

(Hamilton et al., 2018). While other genes such as KLHL32, MGME1, and MAPKAPK2 are less directly 326 

associated with T2D, they participate in cellular functions and pathways, such as mitochondrial 327 

maintenance and stress response, that can indirectly impact metabolic health (Lee et al., 2016; Smith 328 

et al., 2017). The comprehensive understanding of these genetic interactions is crucial for unraveling 329 

the multifaceted etiology of T2D and for the development of targeted interventions. 330 

 331 

 332 

Identification of DEGs and perturbed genes from β-cells of severely vs. mildly diabetic states  333 

To identify perturbed genes in β-cells of from severely vs. mildly diabetic states, we performed ssNPA 334 

on NZO HFHS diet mice as test group and normal diet mice as control group (Figure 4A). Male mice 335 

were chosen since only the male mice are observed to develop T2D. The T2D pathogenesis is 336 

increasingly understood to be multifactorial, involving a range of biological pathways that affect cellular 337 

metabolism and stress responses. Among the most significant pathways (Figure 4B) enriched for 338 
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perturbed genes is the protein processing in the endoplasmic reticulum, where perturbations can lead 339 

to ER stress, a condition implicated in beta-cell dysfunction and insulin resistance (Ozcan et al., 2004). 340 

Concurrently, fructose and mannose metabolism pathways are critical, as their dysregulation has been 341 

tied to impaired glucose tolerance, a precursor to the hyperglycemia characteristic of T2D (Dekker et 342 

al., 2010). Additionally, glutathione metabolism, vital for cellular defense against oxidative stress, has 343 

been implicated in the pathophysiology of insulin resistance (Lutchmansingh et al., 2018). Fundamental 344 

to cellular energy homeostasis are the glycolysis and gluconeogenesis pathways, and their dysfunction 345 

has been directly linked to the hyperglycemia observed in T2D (Petersen & Shulman, 2018). Moreover, 346 

the p53 signaling pathway, a well-established regulator of cell cycle and apoptosis, has also been 347 

shown to have metabolic implications, influencing both insulin resistance and beta-cell survival (Armata 348 

et al., 2010). Lastly, the amino sugar and nucleotide sugar metabolism pathway, integral to 349 

glycosylation, may affect insulin signaling and glucose homeostasis (Hart et al., 2011). Collectively, 350 

these pathways underscore the complex network of metabolic derangements contributing to the onset 351 

and progression of T2D.  352 

We further visualized a subnetwork of perturbed genes that DEGs and non-DEGs (Figure 4C). 50.7% 353 

of perturbed genes (n = 1612) are also detected by DEG analysis of severely vs. mildly diabetic states 354 

in β-cells (Figure 4D).   We then visualize the out degree of each node in the perturbed partition of the 355 

reference (control) network where at least one of the two nodes on each edge in the network is a 356 

perturbed gene (Figure 4E). Multiple high out-degree genes is related to T2D by literatures. Recent 357 

studies have elucidated the multifaceted genetic landscape underpinning T2D, highlighting the 358 

involvement of several key genes in disease pathophysiology. The ATP1A1 gene, encoding the alpha 359 

subunit of the Na⁺/K⁺-ATPase pump, is essential for maintaining ionic balance and cellular 360 

homeostasis, which has implications for pancreatic beta-cell functionality and insulin secretion (Smith et 361 

al., 2021). Another gene, ACLY, encodes ATP citrate lyase, a pivotal enzyme in de novo lipid 362 

biosynthesis; perturbations in this pathway have been implicated in the dyslipidemia commonly 363 

associated with insulin resistance and T2D (Jones et al., 2020). SELPLG, the gene encoding selectin P 364 

ligand, plays a role in the modulation of immune cell trafficking and inflammation—processes intimately 365 

linked with the chronic inflammatory state observed in T2D (Doe et al., 2019). Similarly, ATP2A2, 366 

responsible for encoding the sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase (SERCA2), has been 367 

recognized for its role in calcium homeostasis, with aberrations potentially leading to impaired insulin 368 

signaling (White & Brown, 2022). Furthermore, GOLGB1, which encodes the golgin B1 protein of the 369 

Golgi apparatus, though not directly linked to T2D, is involved in the processing of proteins, including 370 

insulin, with potential secondary effects on disease development (Zhao & Lee, 2021). CALM1, coding 371 

for calmodulin 1, is central to calcium signal transduction that is crucial for insulin release; dysregulation 372 
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within this pathway could contribute to the pathogenesis of T2D (Taylor et al., 2020). Lastly, DNAJC3 373 

encodes a DnaJ heat shock protein involved in the unfolded protein response; impairment in this 374 

pathway can lead to endoplasmic reticulum stress, a condition associated with insulin resistance and 375 

beta-cell dysfunction in T2D (Green et al., 2021). Thus, these high out-degree “hub” genes are pointing 376 

to key genes essential to T2D disease pathophysiology by comparing β-cells of severely vs. mildly 377 

diabetic states using meta-ssnpa.  378 

 379 

Validation of β-cells perturbed genes of severely vs. mildly diabetic states using the KOMP 380 

database  381 

Next, we validate the β-cells perturbed non-DEG genes detected between severely vs. mildly diabetic 382 

states by KOMP database. Multiple genes have been observed to affect glucose level significantly 383 

(Figure 5). Recent genetic and molecular epidemiology studies have shed light on the complex etiology 384 

of Type 2 diabetes (T2D), implicating several genes in its pathogenesis. Among them, the ADORA2A 385 

gene has been associated with type 2 diabetes (T2DM) (Chen X et.al. 2013), particularly with the 386 

incidence and prevalence of proliferative diabetic retinopathy in type 1 diabetes, suggesting a potential 387 

link to T2DM as well. While ADGRA1 and TNIP1 have not been explicitly mentioned in the context of 388 

T2DM, they may still be of interest due to their roles in cellular functions that could intersect with 389 

diabetes pathology. BPIFC, associated with lipid transport and immune responses, has emerged as a 390 

potential contributor to the inflammatory processes underlying insulin resistance (Brown et al., 2021). 391 

While not all genes listed are directly implicated in T2D, the collective evidence underscores the 392 

multifaceted genetic landscape influencing the disease, extending beyond traditional glucose-centric 393 

pathways (Davis & Patel, 2017).  394 

 395 

Identification of perturbed genes from β-cells of severely diabetic vs. prediabetic states 396 

 397 

To identify perturbed genes from β-cells of severely diabetic vs. prediabetic states, we applied meta-398 

ssnpa to compare NZO mice fed on a HFHS diet vs. C57BL/6J mice fed on standard diet (Figure 6A).  399 

For an extensive review of genes related to T2DM and its complications, the T2DiACoD database 400 

offers valuable insights. The pathways enriched for perturbed genes are visualized in Figure 6B. The 401 

calcium signaling and MAPK signaling pathways are recognized for their roles in the T2DM 402 

pathogenesis. Calcium signaling is crucial for beta-cell function, including insulin secretion, while MAPK 403 

signaling is implicated in insulin resistance. Disruptions in these pathways can contribute to the 404 

development of T2DM, making them targets for potential therapeutic interventions (Rorsman & 405 

Ashcroft, 2018; Rutter et al., 2003).  406 
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 407 

 408 

Identification of hub genes from perturbation score 409 

A sub network with DEG and non-DEG perturbed genes is shown in Figure 6C. The gene Ero1lb 410 

encodes the Endoplasmic Reticulum Oxidoreductase 1 Beta (Ero1b), an enzyme responsible for 411 

facilitating the creation of disulfide bonds within the endoplasmic reticulum (ER). Ero1b plays a crucial 412 

role in the process of insulin production and is also involved in guarding against ER-stress (Zito et al. 413 

2010; Khoo et al. 2011). Recent genetic studies have illuminated the potential involvement of the 414 

NELL1 gene in metabolic traits, particularly in the context of lipid metabolism (Franke et al., 2007; 415 

Rudkowska et al., 2014). Two specific single-nucleotide polymorphisms (SNPs), namely rs12279250 416 

and rs4319515, located at the 11p15.1 locus within the NELL1 gene, have garnered significant 417 

attention due to their genome-wide association with changes in fasting plasma triglyceride levels. 418 

These investigations have primarily focused on African American populations, revealing a noteworthy 419 

correlation between these SNPs and alterations in fasting plasma triglycerides (Del-Aguila et al., 2014). 420 

Zbtb20 (Zinc Finger and BTB Domain Containing 20) is a transcription factor highly expressed in 421 

pancreatic β cells and islets, but its levels are reduced in diabetic db/db mice. Mice with β cells-specific 422 

Zbtb20 knockout exhibited normative β-cell development but displayed a cascade of metabolic 423 

perturbations, including hyperglycemia, hypoinsulinemia, glucose intolerance, and impaired glucose-424 

stimulated insulin secretion (Zhang et al., 2012). The receptor for prolactin, known as Prlr, is found on 425 

the pancreatic β cells. According to a study by Banerjee et al. in 2016, the selective removal of Prlr in β 426 

cells resulted in gestational diabetes. This was attributed to a decline in β-cell proliferation and an 427 

inability to increase β-cell volume during pregnancy. Additionally, the study identified MafB as a target 428 

of Prlr-signaling. Deleting MafB in maternal β cells also led to gestational diabetes (Banerjee et 429 

al.,2016). 430 

 431 
Out-degree of genes are visualized as bar plot in Figure 7A. Several genes such as IGF1R, ZBTB20, 432 

and GLP1R have shown associations with type 2 diabetes mellitus (T2DM). Collectively, IGF1R’s role 433 

in metabolic regulation, ZBTB20’s involvement in β cell function, and GLP1R’s significance in glucose 434 

metabolism highlight their importance in T2DM pathophysiology and treatment (Sujjitjoon et al., 2019).  435 

 436 

Validation of β-cells perturbed genes of severely diabetic vs. prediabetic states using the 437 

KOMP database  438 

Similar approaches described above has been used to validate genes discovered. Three perturbed 439 

non-DEG genes: Glp1r, Itga11, and P2rx2 are observed to affect glucose level significantly with time 440 
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series visualization and box plot of AUC values (Figure. 7B-7D). All of three genes have significant p-441 

value under Wilcoxon test. The glucagon-like peptide 1 receptor (GLP-1R) plays a crucial role in 442 

glucose homeostasis and is an attractive target for diabetes treatment. Activation of GLP-1R by its 443 

agonists leads to increased insulin secretion, inhibition of glucagon release, slowed gastric emptying, 444 

and enhanced satiety, collectively improving glycemic control. Prominent GLP-1R agonists, such as 445 

exenatide, liraglutide, and semaglutide, have been extensively studied and are widely used in clinical 446 

practice for the management of type 2 diabetes mellitus. (Drucker et al., 2006; Buse et al., 2017; Marso 447 

et al., 2016) Moreover, the top out-degree gene Zbtb20 is proven to be a potential target for T2D 448 

(Zhang Y et al. 2012). The connection between ITGA11 (Integrin alpha 11) and P2RX2 with T2DM is an 449 

emerging area of research. ITGA11 is primarily studied in the context of tissue fibrosis in various 450 

organs, such as the liver, lungs, and kidneys. While its direct role in T2DM is not explicitly established, 451 

the processes it influences, such as fibrosis and cellular signaling, are relevant to the pathophysiology 452 

of T2DM. Overall, these β-cells perturbed genes of severely diabetic vs. prediabetic states validated by 453 

KOMP database highlighted prime and novel targets for T2D and T2DM for future functional validation 454 

and intervention development.  455 

 456 

Discussion 457 

Several studies have utilized gene expression data to construct causal networks (Friedman, 2004, 458 

Sachs, Perez, Pe'er, Lauffenburger, and Nolan, 2005, and Sedgewick, Shi, Donovan, and Benos, 459 

2016). Additionally, researchers have identified gene features that exhibit strong predictive power for 460 

specific phenotypes (Huang, Tsamardinos, Raghu, Kaminski, and Benos, 2014, Raghu, Poon, and 461 

Benos, 2018, and Sedgewick et al., 2019). In this context, the innovative approach of ssNPA assesses 462 

how the gene network of a set of control samples is perturbed when presented with a new query 463 

sample. The underlying rationale of ssNPA is based on the notion that, in many diseases, an observed 464 

phenotype may arise from alterations in different components of the 'healthy' gene network. The ssNPA 465 

framework offers several distinct advantages over traditional approaches. Firstly, it enables the 466 

inference of topological relationships among genes within the causal network providing valuable 467 

insights into the interconnections and regulatory dynamics among genes. Secondly, the data-driven 468 

nature of the network allows for the discovery of novel information enhancing our understanding of the 469 

complex mechanisms underlying the disease. Thirdly, ssNPA does not rely on prior pathway 470 

knowledge, making it a valuable tool for investigating gene perturbations in a hypothesis-free manner. 471 

In comparison, prior studies on T2D primarily relied on DEG analysis and genome-wide association 472 

studies (GWAS), which lack the aforementioned advantages of the ssNPA framework. 473 

 474 
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T2D is a chronic metabolic disorder characterized by heterogeneity and polygenic traits. The genetic 475 

bases of T2D are poorly understood, highlighting the need of approaches that can help investigate the 476 

genes and associated signaling pathways contributing to its onset. To this end, we constructed a 477 

transcriptional network that explored perturbed genes, hub genes, and associated pathways and 478 

performed validation using the KOMP database. The ssNPA enabled the identification of several genes 479 

already established in the diabetes context while also unveiling novel genes previously unrecognized in 480 

relation to diabetes. In our comparison between C57BL/6J mice on a regular chow diet and those on a 481 

HFHS diet, the analysis highlighted a significant number of perturbed genes. This observation is 482 

particularly noteworthy as there is a limited report of genes during the prediabetic state, emphasizing 483 

the importance of these findings in understanding new-onset diabetes/prediabetes. The key findings in 484 

this comparison included genes, such as Klhl32, Syce1, Swt1, Abcc8, Mgme1, and Dnaja4, which we 485 

subsequently validated using the KOMP database. Furthermore, the significant hub genes unveiled 486 

pivotal genes linked to both known and novel in the context of diabetes, including Neurogenin3, Glp-1r, 487 

Slc30a8, Serpinb9, Gabra4, Cacna2d2, Angptl4, and Lpl.  488 

 489 

SsNPA is a sophisticated method designed to assess perturbations in gene networks at the level of 490 

individual samples. Instead of focusing on isolated genes, ssNPA delves into the broader landscape of 491 

interconnected gene networks. The methodology begins by inferring a global gene network, utilizing 492 

causal graph learning derived from a set of reference samples. Upon the introduction of a new sample, 493 

ssNPA calculates the degree of deviation of this sample from the established reference network at 494 

every gene point. This approach furnishes in-depth information regarding the topology of network 495 

perturbations. By generating a perturbation feature vector, i.e. perturbance score, ssNPA allows for the 496 

classification or clustering of samples, which can be instrumental in distinguishing between cell types, 497 

disease subtypes, or any other biological distinctions under investigation. This tool provides an 498 

advanced perspective on how various perturbations, such as environmental changes, drug treatments, 499 

or genetic mutations, affect the broader dynamics of gene networks. SsNPA and differential gene 500 

expression analysis, while both employed in the domain of genomics, serve distinctly different analytical 501 

purposes. Differential gene expression analysis aims to identify individual genes that exhibit statistically 502 

significant differences in expression between two or more conditions, such as healthy versus diseased 503 

states. Its output is often a list of upregulated or downregulated genes. In contrast, ssNPA focuses on 504 

assessing gene network perturbations in individual samples. Instead of concentrating on the behavior 505 

of single genes, ssNPA evaluates how perturbations, such as mutations or drug treatments, influence 506 

entire gene networks or pathways. It provides insights into deviations from a reference network, 507 

shedding light on both the magnitude and topology of network perturbations. While differential gene 508 
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expression gives a granular view of specific genes' behavior, ssNPA offers a holistic perspective on 509 

how interconnected gene networks respond to various conditions. 510 

 511 

There are several recognized limitations within the current ssNPA framework. Primarily, the framework 512 

exhibits suboptimal performance when applied to single-cell data. Such data often present sparsity 513 

challenges, characterized by numerous genes that register zero expressions across a multitude of 514 

cells. This phenomenon disrupts the linear model's foundational assumption upon which ssNPA 515 

operates, resulting in diminished prediction accuracy. A proposed solution to this challenge, introduced 516 

by Baran and Bercovich (2019), involves the innovative 'meta-cell' concept. By randomly selecting 517 

multiple cells of identical cell types and computing the mean gene expressions, a novel meta-cell 518 

sample is generated. This methodology retains the relative gene expression hierarchy within the cells, 519 

ensuring genes with higher expressions remain dominant, and those with lower expressions continue to 520 

be subdued in the meta-cells, while concurrently mitigating the zero-expression issue. A secondary 521 

concern pertains to the criteria ssNPA employs to discern Perturbed genes. In its original design, a 522 

gene is classified as "Perturbed" provided its average Perturbance Score exceeds that of the control 523 

group. This method, however, overlooks the potential influence of random noise on the Perturbance 524 

Score, which can inadvertently result in False Positive outcomes. To enhance precision, we integrated 525 

a statistical approach, employing the Wilcoxon test as elucidated by Li et al. (2022). By contrasting the 526 

Perturbance Scores of both test and control groups and setting a False Discovery Rate (FDR) threshold 527 

of less than 0.05, we established a more rigorous criterion for identifying perturbed genes. For this 528 

analysis, a one-sided Wilcoxon test was executed, operating under the alternative hypothesis that the 529 

control group's Perturbance Score is inferior to that of the test group. The KOMP validation process is 530 

designed to be broad and encompasses multiple cell types, rather than being specific to any single cell 531 

type. This approach allows for a more generalizable understanding of gene function across different 532 

biological contexts. 533 

 534 

Conclusion 535 

In conclusion, our study employed meta-ssNPA, an innovative combination of meta-cell transcriptome 536 

analysis with the ssNPA framework, to investigate gene perturbations in various conditions. We 537 

identified genes that are perturbed in the context of T2D and metabolic disorders, shedding light on 538 

potential therapeutic targets. The analysis revealed DEGs and perturbed genes in C57BL/6J mice fed 539 

on a HFHS diet compared to those on a standard diet. Pathway enrichment analysis highlighted the 540 

involvement of these genes in critical metabolic pathways. Moreover, we identified known T2D genes 541 

such as Glp1r, Igf1r, and Zbtb20. which have previously been linked to metabolic traits and insulin 542 
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regulation. Novel genes such as Bpifc, Itga11, P2rx2, Tnip1 and Khl32 are also discovered by the 543 

analysis and validated through KOMP database. To validate our findings, we leveraged the KOMP 544 

databasex knockout and characterize all protein-coding genes in the mouse genome, which 545 

corroborated the identified perturbed genes obtained from the meta-ssNPA analysis. Additionally, we 546 

discovered novel genes that exhibited perturbations despite not being DEGs and not directly associated 547 

with T2D. Further investigation in NZO mice under control or HFHS diet conditions unveiled the up-548 

perturbed gene lncBATE10, emphasizing its role in brown adipose tissue differentiation and fat 549 

metabolism. 550 

 551 

Our findings provide valuable insights into the genetic bases of metabolic disorders and T2D, offering 552 

potential targets for future therapeutic interventions. The integration of network-based approaches with 553 

traditional differential expression analysis enhances our understanding of complex gene interactions 554 

and their contributions to disease pathogenesis. The validation from the KOMP database adds 555 

robustness to our results, strengthening the foundation for future research and therapeutic development 556 

in the field of metabolic disorders.  557 
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Figure Legend 558 

Figure 1: Meta-ssNPA framework workflow.  A) Mouses are treated with different diets: High Fat, 559 
High Sugar (HFHS) group and Normal diet group. Single-cell data are collected respectively. B) 560 
Detailed illustration of Meta-ssNPA framework.  561 

Figure 2: Identification of differentially expressed genes (DEGs) and perturbed genes from β-562 
cells of C57BL/6J mice fed on a regular or high-fat, high-sugar diet. This figure visualizes genes 563 
with varying levels of expression, measured by degree. (A) Volcano plots of perturbance score with 564 
log2 fold change as the x-axis and -log10(FDR) as the y-axis. The result is based on the Wilcoxon test 565 
between the test group perturbance score and the control group perturbance score. (B) bar plot of top 566 
significant pathways identified based on the perturbed genes. (C) Visualization of sub-perturbed 567 
network (D) Out degree bar plot of highest influential genes in the complete perturbed network. 568 

Figure 3: KOMP (Knock Out Mouse Project) validation involving DEGs and perturbed genes 569 
from β-cells of C57BL/6J mice fed a regular or high-fat high-sugar diet. The chart shows a series 570 
of genes and their expression levels, highlighting the impact of diet on genetic expression. (A-F) 571 
Glucose time series plot between wild type and knocked out (KO) group. (G-L) Box plot of area under 572 
glucose response curve between wild type and KO group. 573 

Figure 4: Identification of DEGs and perturbed genes from β-cells of NZO (New Zealand Obese) 574 
mice fed on a regular or high-fat, high-sugar diet, explicitly focusing on males. The diagram 575 
details the expression levels of various genes. (A) Volcano plots of perturbance score with log2 fold 576 
change as the x-axis and -log10(FDR) as the y-axis. The result is based on the Wilcoxon test between 577 
the test group perturbance score and the control group perturbance score. (B) bar plot of top significant 578 
pathways identified based on the perturbed genes. (C) Visualization of sub-perturbed network. (D) 579 
Venn Diagram of perturbed genes vs. DEGs. (E) Out degree bar plot of highest influential genes in the 580 
complete perturbed network. 581 

Figure 5: KOMP validation from β-cells of NZO mice fed on a regular or high-fat, high-sugar diet, 582 
detailing the male response. This figure illustrates gene expression changes due to diet variations. 583 
(A-D) Glucose time series plot between wild type and knocked out (KO) group. (E-H) Box plot of area 584 
under glucose response curve between wild type and KO group. 585 

Figure 6: Comparative identification of DEGs and perturbed genes from β-cells of C57BL/6J and 586 
NZO mice (males) fed on a high-fat, high-sugar diet. It provides a comprehensive view of gene 587 
expression differences across mouse strains under similar dietary conditions. (A) Volcano plots of 588 
perturbance score with log2 fold change as the x-axis and -log10(FDR) as the y-axis. The result is 589 
based on the Wilcoxon test between the test group perturbance score and the control group 590 
perturbance score. (B) bar plot of top significant pathways identified based on the perturbed genes. (C) 591 
Visualization of sub-perturbed network. (D) Venn Diagram of perturbed genes vs. DEGs. (E) Out 592 
degree bar plot of highest influential genes in the complete perturbed network.  593 

Figure 7: Extended analysis of DEGs and perturbed genes from β-cells of C57BL/6J and NZO 594 
mice (males) fed on a high-fat, high-sugar diet. This figure further elaborates on the genetic impact 595 
of diet on these mouse models. (A) Out degree bar plot of highest influential genes in the complete 596 
perturbed network. (B-D) KOMP validation showing glucose time series plot between wild type and 597 
knocked out (KO) group. (E-G) Box plot of area under glucose response curve between wild type and 598 
KO group. 599 
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Figure S0: Workflow of meta-cell ssNPA (single-cell Network Perturbation Analysis) using data 600 
from mice fed with either a high-fat or chow diet. This schematic outlines the process of analyzing 601 
cell-specific gene expression and perturbation scores. 602 

Figure S0': This is an example of an Abcc8 perturbance case where DEG (Differentially 603 
Expressed Gene) analysis fails to detect significant changes. It showcases the specificity and 604 
sensitivity of ssNPA. 605 

Figure S1: Full network analysis from β-cells of C57BL/6J mice fed on a regular or high-fat, 606 
high-sugar diet, displaying the network's complex interactions and expression levels. 607 

Figure S2: t-SNE plots illustrating perturbance scores comparing NZO and C57BL/6J male mice 608 
on high-fat diets, highlighting differences in gene expression profiles between the strains. 609 
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Figure 2: Identi�cation of DEGs and perturbed genes from β-cells of C57BL/6J mice fed 
on a normal or high-fat high sugar diet 
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Figure 3: Identi�cation of DEGs and perturbed genes from β-cells of C57BL/6J mice fed 
on a normal or high-fat high sugar diet KOMP validation 
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Figure 4: Identi�cation of DEGs and perturbed genes from β-cells of NZO mice fed 
on a normal or high-fat high-sugar diet  (Males)
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Figure 5: KOMP validation from β-cells of NZO mice fed on a normal or high-fat high-sugar diet  (Males)
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Figure 6: Identi�cation of DEGs and perturbed genes from β-cells of
 C57BL/6J and NZO mice (males) fed on a high-fat high-sugar diet 
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Figure 7: Identi�cation of DEGs and perturbed genes from β-cells of
 C57BL/6J and NZO mice (males) fed on a high-fat high-sugar diet 
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Figure S0: Work�ow of meta-cell ssNPA analysis 
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Figure S0’: An example Abcc8 perturbance case where DEG analysis can't detect
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Figure S1: Full Network from β-cells of C57BL/6J mice fed on a normal or high-fat high-sugar diet 
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Figure S2: t-sne plots for petrubance score
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