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Abstract 

Background: Volumetry of subregions in the medial temporal lobe (MTL) computed from automatic segmentation in MRI 
can track neurodegeneration in Alzheimer’s disease. However, image quality may vary in MRI. Poor quality MR images can 
lead to unreliable segmentation of MTL subregions. Considering that different MRI contrast mechanisms and field strengths 
(jointly referred to as “modalities” here) offer distinct advantages in imaging different parts of the MTL, we developed a muti-
modality segmentation model using both 7 tesla (7T) and 3 tesla (3T) structural MRI to obtain robust segmentation in poor-
quality images. 

Method: MRI modalities including 3T T1-weighted, 3T T2-weighted, 7T T1-weighted and 7T T2-weighted (7T-T2w) of 197 
participants were collected from a longitudinal aging study at the Penn Alzheimer’s Disease Research Center. Among them, 
7T-T2w was used as the primary modality, and all other modalities were rigidly registered to the 7T-T2w. A model derived 
from nnU-Net took these registered modalities as input and outputted subregion segmentation in 7T-T2w space. 7T-T2w images 
most of which had high quality from 25 selected training participants were manually segmented to train the multi-modality 
model. Modality augmentation, which randomly replaced certain modalities with Gaussian noise, was applied during training 
to guide the model to extract information from all modalities. To compare our proposed model with a baseline single-modality 
model in the full dataset with mixed high/poor image quality, we evaluated the ability of derived volume/thickness measures 
to discriminate Amyloid+ mild cognitive impairment (A+MCI) and Amyloid- cognitively unimpaired (A-CU) groups, as well 
as the stability of these measurements in longitudinal data. 

Results: The multi-modality model delivered good performance regardless of 7T-T2w quality, while the single-modality model 
under-segmented subregions in poor-quality images. The multi-modality model generally demonstrated stronger discrimination 
of A+MCI versus A-CU. Intra-class correlation and Bland-Altman plots demonstrate that the multi-modality model had higher 
longitudinal segmentation consistency in all subregions while the single-modality model had low consistency in poor-quality 
images. 

Conclusion: The multi-modality MRI segmentation model provides an improved biomarker for neurodegeneration in the MTL 
that is robust to image quality. It also provides a framework for other studies which may benefit from multimodal imaging. 
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1. Introduction 

Different MRI contrast mechanisms and field strengths (jointly referred to as “modalities”) offer distinct advantages in 
imaging different parts of the brain. Multi-modality analysis has been widely used in many brain disease-related tasks, such as 
brain tumor segmentation (Menze et al., 2015), ischemic stroke lesion segmentation (Lin & Liebeskind, 2016), brain tissue 
segmentation (Išgum et al., 2015) as well as  subregion segmentation in medial temporal lobe (MTL) (Xie et al., 2023).  5 
    The MTL, which includes the hippocampus and parahippocampal gyrus, is a frequent focus of research given its role in 
episodic memory, healthy aging (Maillet & Rajah, 2013; Raz et al., 2004) and brain disorders including neurodegenerative 
diseases, such as Alzheimer’s disease (AD), (Barkhof et al., 2007; Burton et al., 2009; Korf et al., 2004). The MTL is the 
earliest cortical region affected by tau proteinopathy, a hallmark pathology of AD (Bilgel, n.d.; Braak and Braak, 1995, 1991; 
Nelson et al., 2012). Its morphometric abnormalities are not only visible in magnetic resonance imaging (MRI) acquired from 10 
patients with AD, but also subtle loss in its subregions can be detected in patients with mild cognitive impairment (MCI) and 
preclinical AD (Duara et al., 2008; Visser et al., 2002; Xie et al., 2020). 

The MTL can be anatomically divided into hippocampal subfields and MTL cortical subregions (called MTL subregions 
together hereinafter). MRI-based MTL subregional volumetry and morphometry can provide highly sensitive measures for 
analyzing patterns of neurodegeneration in AD and related disorders (Barkhof et al., 2007; Burton et al., 2009) as well as for 15 
mapping of cognition and memory (Squire et al., 2004). 

T1-weighted (T1w) 3 tesla (3T) (combined as 3T-T1w) MRI at approximately 1x1x1mm3 resolution is the most commonly 
used MRI contrast for quantifying neurodegeneration. In most large AD neuroimaging studies, such as the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) (Petersen et al., 2010) or A4 (Sperling et al., 2020), 3T-T1w modality is the primary structural 
sequence. However, the appearance of the hippocampus in 3T-T1w MRI lacks sufficient parenchymal contrast, to reliably 20 
identify and label the subfields in the hippocampus (Wisse et al., 2021; Yushkevich et al., 2015). On the other hand, a 
“dedicated” 3T T2-weighted (T2w) (combined as 3T-T2w) sequence offers higher resolution in an oblique coronal plane 
perpendicular to the hippocampus's main axis with signal contrast allowing for visualization of subfields (Bonnici et al., 2012; 
Winterburn et al., 2013). Such dedicated 3T-T2w MRI is being collected in some research protocols, including ADNI, but is 
less common than 3T-T1w. 25 

The 7 tesla (7T) MRI provides higher resolution and contrast than lower magnetic field scanners for imaging the MTL (Cho 
et al., 2010; Derix et al., 2014; Prudent et al., 2010; Wisse et al., 2014), and therefore can trace the intricate anatomy of complex 
regions such as the hippocampal head. It has the potential to identify structural changes in brain disorders with greater accuracy 
than 3T MRI. Many recent studies utilize the MP2RAGE sequence which combines two volumes acquired at different inversion 
times, resulting in an image with more inhomogeneity but outstanding T1w tissue contrast in the brain (Forstmann et al., 2014). 30 
Although 7T-T2w MRI has a high contrast and resolution and can help us observe the subregion structure of MTL clearly 
(Kollia et al., 2009; Zwanenburg et al., 2011), it is also susceptible to the lateral signal dropout, making the image look like 
blurry, especially for the BA36 subregion (Grande et al., 2023). 
    More advantages and disadvantages of these modalities are shown in Table 1. 

Table 1. The advantages and disadvantages of different MRI sequences for MTL subregional morphometry. 35 
Sequence Advantages Disadvantages 
3T-T2w 

0.4 × 0.4 × 1.2	mm! 
• Clear dark band (The stratum radiatum, lacunosum 

and moleculare, SRLM) crucial for hippocampal 
subfields 

• Sharper visualization of sulci 
• Easier to separate dura from cortex (Xie et al., 2016) 

• More prone to motion 
• Only covers a part of the brain 

7T-T2w 
0.42 × 0.42 × 1	mm! 

• Clear SRLM 
• Higher resolution and contrast 
• Whole-brain coverage 

• Lateral signal dropout affecting 
MTL cortex 

3T-T1w 
0.8 × 0.8 × 0.8	mm! 

and 
7T-T1w 

0.69 × 0.69 × 0.69	mm! 

• Isotropic voxels which are better for thickness 
measurements 

• Whole-brain coverage but less prone to signal 
dropout 

• Difficult to separate dura from 
cortex 

• SRLM not clearly visible on 3T, 
affecting hippocampal subfield 
segmentation (Wisse et al., 
2021) 
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Segmenting the MTL subregions manually is a challenging and time-consuming task, which is prone to inter-rater 
differences and requires a lot of anatomical knowledge (Yushkevich et al., 2015). Automatic segmentation of the MTL 
subregions is less laborious and more reproducible.  

Atlas-based techniques are a subclass of supervised automatic medical image segmentation algorithms that rely on 40 
deformable registration to match expert-segmented example images (atlases) to target images, providing an implicit shape, 
intensity and context prior for segmentation (Iglesias & Sabuncu, 2015). Such complex priors are essential for MTL subregion 
segmentation, where there is high intersubject anatomical variability; and until the advent of deep learning, multi-atlas 
segmentation has been the leading approach for MTL subregion segmentation in MRI. Yushkevich et al. proposed the model 
named ‘Automatic Segmentation of Hippocampal Subfields (ASHS)’ in 3T-T2w, and the corresponding atlas set is open source 45 
(Yushkevich et al., 2015). It was also then developed for 3T-T1w sequence where hippocampal subfields combined into a 
single hippocampus label that is then split into anterior and posterior portions (Xie et al., 2016, 2019) and 7T-T2w sequence 
with a new 7T-T2w segmentation protocol (Wisse et al., 2016). Xie et al. combined a deep-learning method and an atlas-based 
segmentation pipeline to create the model named ‘deep label fusion’, which achieved a higher segmentation accuracy than the 
conventional ASHS (Xie et al., 2023), while also demonstrating better generalization ability from 3T to 7T than nnU-Net , a 50 
leading deep learning 3D image segmentation pipeline (Isensee et al., 2021). 

While 7T MRI offers distinct avantages over 3T MRI in terms of resolution and contrast, image quality of 7T MRI is more 
variable. In particular, higher magnetic field strength is associated with more severe susceptibility artifacts and therefore some 
kinds of MRI artifacts are more pronounced at 7T than at 3T. Based on its anatomical location relative to the sinuses, the MTL 
is particularly vulnerable, especially in the most inferior portion of the MTL with low contrast and low sharpness (see Figure 55 
1). The existing 7T-T2w ASHS-based model performs poorly on such poor-quality images. This issue cannot be addressed by 
improving the algorithm’s robustness or designing a specific model architecture to adapt to this particular type of image because 
most of the MRI scans in the ASHS atlas set have high image quality where manual labeling is possible, whereas manually 
labeling subfields and subregions is challenging even for experienced annotators in poor-quality images. Therefore, there is no 
training data with poor image quality available to train a segmentation model. On the other hand, the segmentation difficulties 60 
encountered in low-quality images are due to the lack of sufficient anatomical information for segmentation, so that neither 
experienced experts nor segmentation models can complete accurate segmentation. To overcome this issue, it is necessary to 
consider additional information outside of 7T-T2w. 

 

 65 
Figure 1 Examples of good image quality and poor image quality in 7T-T2w modality 

The current study presents an automated MTL subregion segmentation deep learning model for multi-scanner multi-modality 
MRI. The model combines all available modalities (3T-T1w, 3T-T2w, 7T-T1w, 7T-T2w) to fuse information and extract 
complementary information from other modalities when information from one or more modalities is missing or corrupted. This 
approach addresses the problem of poor segmentation driven by poor quality of the 7T-T2w modality.  70 

Our study is carried out in a large dataset (n=197) of 3T and 7T MRI in the same set of research study participants at the 
University of Pennsylvania Alzheimer’s Disease Research Center (ADRC). The input for the model consists of multi-modality 
images co-registered and resliced to the space of the 7T-T2w image. A modality augmentation scheme is proposed to force the 
model to extract useful features from all modalities. The nnU-Net, one of the most sophisticated segmentation models, is used 
as the segmentation backbone. The model's performance is first evaluated through cross-validation on the available set of 75 
manually-labeled atlases. However, recognizing that evaluation in this high-quality image dataset is likely not representative 
of real-world performance on individuals whose 7T-T2w scans are of poorer quality, we perform three additional indirect 
evaluations, including (1) volume comparison, (2) longitudinal comparison and (3) a task-based evaluation comparing the 
ability of different models to distinguish Amyloid- cognitively unimpaired (A-CU) and Amyloid+ MCI (A+MCI) individuals. 
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Together, these indirect evaluations demonstrate that the proposed multi-modality segmentation model outperforms the baseline 80 
single-modality model that only considers the 7T-T2w modality, especially for poor quality 7T-T2w images. 

This study is an application of using multi-modality images to reduce the impact of poor quality images on segmentation 
performance. Our evaluation focuses on coping with differences in image quality between the images for which expert 
annotations are available and on which models are trained on the one hand, and the images to which they are eventually applied 
on the other. The challenges addressed in this paper are relevant to other medical image analysis applications in which multi-85 
modality data is available, including other MRI contrasts such as diffusion tensor imaging (DTI) and susceptibility weighted 
imaging (SWI). 

2. Materials and Methods 

The flowchart of the training process of the segmentation model is shown in Figure 2. It includes whole-brain registration, ROI 
determination, local registration, modality augmentation, and nnU-Net training. In the model inference, the modality 90 
augmentation will be skipped and the model will use full modality as input. Details of each step are explained below. 

 
Figure 2 The flowchart of the training process of the segmentation model. All modalities are rigidly registered to 7T-T2w in the whole-brain 
registration step. Then, the MTL ROI (red region in ROI determination step) is mapped from 3T-T1w template to 7T-T2w space by deformable 
registration. MTL patches are cropped along the bounding box of the ROIs in all registered modalities and local registration step refines the 95 
misalignment between 7T-T2w and other modalities specifically on MTL. Before feeding into the nnU-Net segmentation model, two to four 
modalities (two modalities in this figure as examples) are randomly replaced by noise in modality augmentation step. Finally, the nnU-Net 
is trained using combined BCE and Dice as loss function 

2.1 Dataset 

2.1.1 Participants and MRI protocol 100 
    MRI scans were acquired from the ADRC at the University of Pennsylvania. Both 7T and 3T MRI were considered in this 
study. The 7T protocol included both T1w (MP2RAGE) and T2w (TSE) scans. The 7T-T1w scan contained two inversion 
contrasts with different T1 weightings, INV1 and INV2, which had a resolution of 0.69 × 0.69	 × 0.69	mm!. The 7T-T2w 
scan covered the whole brain and had in-plane resolution of 0.42 × 0.42	mm" and slice thickness of 1	mm.  

The 3T protocol included a ‘routine’ whole-brain T1w (MPRAGE) scan and a ‘dedicated’ T2w (TSE) scan with partial brain 105 
coverage. The resolution of the 3T-T1w scan was 0.8 × 0.8	 × 0.8mm!. The in-plane resolution and slice thickness of the 3T-
T2w scan were 0.4 × 0.4	mm" and 1.2	mm, respectively, with the slice orientation approximately orthogonal to the main axis 
of the hippocampi. 

The inclusion and exclusion criteria used in this study are shown in Supplementary Section S1. We finally obtained 25 
training participants and 172 test participants. The most recent diagnosis result and amyloid PET to the date of 7T scan of each 110 
participant were collected. Of these participants, 40 were diagnosed with MCI, while the remaining 157 were cognitively 
unimpaired (CU) individuals, 122 of them had Amyloid PET with 40 diagnosed as positive and 82 negative scans based on 
visual read. Table 2 shows specific cohort characteristics in this study. 

 
 115 
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Table 2 Characteristics of the cohort in this study 

 Training Set Test Set 

Number of participants 25 172 

Age at the time of 7T scan 59 – 97  
(72.2 ± 7.5) 

23 – 94  
(63.0 ± 16.7 ) 

Sex (female/male) 16/9 103/69 

High-quality 7T-T2w ROIs* 47 231 

Low-quality 7T-T2w ROIs 3 113 

CU participants 15 (Amyloid−: 9) 
(Amyloid+: 3) 

142 (Amyloid−: 65) 
(Amyloid+: 15) 

MCI participants 10 (Amyloid−: 2) 
(Amyloid+: 4) 30 (Amyloid−:   6) 

(Amyloid+: 18) 
Amyloid PET 18 104 

Longitudinal scan - 29 
* Because each participant has two ROIs, left and right, the total number of ROIs is twice the total number of 
participants. The quality assessment is described in section 2.1.3 

 
Among 172 test participants, some of them had more than one 7T scan. Using the inclusion and exclusion criteria described 

in Supplementary Section 1, longitudinal scans of 29 participants were collected. 
    The distributions of scanning date interval between 7T and 3T MRI of 172 test participants and 25 training set, respectively, 120 
scanning interval between two longitudinal 7T scans in 29 participants with longitudinal data are shown in Supplementary 
Figure S2. 

2.1.2 Ground-truth Annotation for Training Set 

A total of 25 participants were previously selected as the ASHS “atlas set” and underwent manual segmentation (Xie et al., 
2023). As shown in Table 2, most ROIs in atlas set had high quality (the quality assessment process is described in Section 125 
2.1.3). This subset also serves as the training set for the proposed segmentation model.  

The “Penn Aging Brain Cohort (ABC)” protocol, originally described in (Berron et al., 2017), and modified in (Xie et al., 
2023) was used to segment the hippocampal subfields and cortical MTL subregions manually on both left and right sides in 
7T-T2w scans of training set. The specific subregions segmented are as follows and shown in Figure 3. 
• Hippocampus subfields included cornu ammonis (CA) 1, CA2, CA3, dentate gyrus (DG), subiculum (SUB), and the tail 130 

of hippocampus. The tail is not partitioned into subfields because of its complex anatomy and curvature of the 
hippocampal axis relative to the imaging plane (Berron et al., 2017). 

• MTL cortical subregions included entorhinal cortex (ERC), Brodmann areas 35 and 36 (BA35/36) and parahippocampal 
cortex (PHC). 

• Four non-gray-matter labels including hippocampal sulcus (HS), collateral sulcus (CS), cysts and miscellaneous 135 
(MISC) were also annotated. 

 
Figure 3 Examples of ground-truth annotation in the training set 
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The remaining 172 participants without ground-truth (manual segmentation) were used as the test set to evaluate the model. 
The test set was not selected according to image quality, and therefore contained participants with poor 7T-T2w image quality, 140 
which is common in real-world 7T-T2w dataset. 

2.1.3 Quality Assessment  

To evaluate segmentation performance across different image qualities, the image quality of 7T-T2w modality for both 
training and test sets was assessed and labeled by author YL. The participants in the training and test sets were mixed together 
and randomly shuffled for assessment. The assessment process was blinded to the rater. The specific steps are as follows: 145 
• The MTL region of each participant was cropped from the 7T-T2w MRI.  
• The participants were inspected in random order. 
• The rater navigated through the ROIs in 3D in ITK-SNAP (Yushkevich et al., 2006) and rated them on a scale of 1 to 9 

based on the visibility and sharpness of hippocampus and cortical regions, with higher numbers indicating better image 
quality. When assessing, rater used the number 5 as a threshold, and all images considered to be of high quality would 150 
have a score greater than or equal to 5. 

• The assessments were conducted three times and the average rating of each ROI was calculated to minimize bias.  
• After rounding, the rating will be used as the final rating for each participant. 

2.2 Pre-processing 

2.2.1 Whole-brain Rigid Registration 155 
The different modalities had different resolutions (as displayed in Figure 2), voxel spacing and slice thicknesses. All 

modalities’ images were registered to primary modality (7T-T2w) space rigidly using the registration tool greedy (Venet et al., 
2021) in each participant. 

This process in each participant can be divided into three steps. 
• 7T-T1w to 7T-T2w: The 7T-T1w INV1 and 7T-T1w INV2 had same resolution and voxel spacing. They were registered 160 

together to 7T-T2w with normalized mutual information (NMI) as image similarity metric, center alignment by 
translation as initial registration, and 100, 50 and 10 as number of iterations at coarsest level (4x), intermediate (2x) and 
full (1x) resolution, respectively. 

• 3T-T1w to 7T-T2w: The 3T-T1w modality was registered to 7T-T2w rigidly with NMI as image similarity metric, 
center alignment by translation as initial registration, and 100, 50 and 10 as number of iterations at coarsest level (4x), 165 
intermediate (2x) and full (1x) resolution, respectively. 

• 3T-T2w to 7T-T2w: The 3T-T2w image was “dedicated” scan with partial brain coverage that targets the hippocampal 
region specifically. Performing registration from 3T-T2w to 7T-T2w directly could result in misalignment because the 
uncovered region (zero-value voxels) were involved in the calculation of registration similarity. Since 3T-T1w and 3T-
T2w were acquired in the same scan, they were roughly aligned. The rigid registration matrix calculated from 3T-T1w 170 
to 7T-T2w was used to map 3T-T2w image to 7T-T2w space. 

Registration accuracy was visually checked. The examples of successful and failed registrations are shown in Supplementary 
Figure S3. 

2.2.2 Region of Interest Determination 

The current study focuses on MTL subregions. Thus, the regions surrounding the left and right MTL were selected as regions 175 
of interest (ROI), respectively. An unbiased population template (Joshi et al., 2004) constructed using 29 3T-T1w MRI scans 
which were from a different population with this study, and template-space ROIs for the left and right MTL, generated as part 
of the 3T-T1w ASHS package (Xie et al., 2019), were used in this process. 

The ROI determination for each participant includes the following steps. 
• First, the neck was trimmed in the 3T-T1w image. 180 
• Then, the template was registered to the neck-trimmed 3T-T1w image using deformable registration (using greedy 

(Venet et al., 2021)) with the similarity metric of normalized cross-correlation (NCC) calculated with the neighborhoods 
of 5x5x5 voxels. The deformation field was saved and the left and right ROIs in template were mapped to the 3T-T1w 
image using the deformation field. 

• Since the 3T-T1w image had been registered to 7T-T2w space in step 2.2.1, these ROIs were further mapped to the 7T-185 
T2w space using registration matrix obtained in 2.2.1. 
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• Left and right MTL patches along the bounding box of the registered ROIs were cropped from 7T-T2w image and other 
modalities’ images in 7T-T2w space according to the ROIs in 7T-T2w. 

    Registration accuracy was visually checked. The examples of successful and failed registrations are shown in Supplementary 
Figure S4. 190 

2.2.3 Local Rigid Registration 

The whole-brain affine registration was not sufficient to align the local MTL region well due to modality-related non-linear 
deformations, e.g., MRI gradient distortion. This motived the need for further local registration. Therefore, a more reliable rigid 
registration that focused only on left and right ROIs, respectively, was performed by greedy (Venet et al., 2021).  

The local registration can be divided into three steps. 195 
• 7T-T1w to 7T-T2w: 7T-T1w inv1 had similar intensity distribution to 7T-T2w, so the NCC calculated in neighborhoods 

of 5x5x5 was chosen as similarity metric for the rigid registration from 7T-T1w INV1 patch to 7T-T2w patch. Then, 
the 7T-T1w INV2 patch was mapped to 7T-T2w using the same registration matrix as 7T-T1w INV1. 

• 3T-T1w to 7T-T2w: the 3T-T1w patch was rigidly registered to the 7T-T2w with NMI as similarity metric, identical 
alignment as initialization, and 100 and 50 as number of iterations at the coarsest level and intermediate resolution, 200 
respectively. 

• 3T-T2w to 7T-T2w: 3T-T2w image had similary intensity distribution as 7T-T2w. 3T-T2w patch was rigidly registered 
to 7T-T2w with weighted-NCC as similarity metric, identical alignment as initialization, and 100 and 50 as number of 
iterations at the coarsest level and intermediate resolution, respectively. 

This resulted in two ROIs for each participant with each ROI containing five well-registered modalities. Registration 205 
accuracy was visually checked. The examples of successful and failed registrations are shown in Supplementary Figure S5. 

2.3 Segmentation Model 

The current study focuses on leveraging multiple MRI field strengths and modalities in MTL subregion segmentation rather 
than on developing a novel segmentation backbone. We conducted experiments using the extensively validated nnU-Net 
framework (Isensee et al., 2021) as the segmentation model. Specifically, the 3D full-resolution version of nnU-Net was 210 
selected. 

The input of the model was a five-channel 3D input (as per the order, the five channels were 7T-T2w, 7T-T1w inv1, 7T-
T1w inv2, 3T-T2w, and 3T-T1w) which was formed by stacking all modalities in the same ROI with 7T-T2w. All ROIs on the 
right were flipped to the left side before feeding into the segmentation model. 

Due to the high quality of the 7T-T2w modality in the training set and the fact that manual segmentation was based on the 215 
7T-T2w, we would expect the nnU-Net model to primarily rely on the 7T-T2w to minimize its loss during training and largely 
ignore information from other modalities. However, when applied to the larger testing set, where the average quality of the 7T-
T2w is lower, we hypothesize that a model that primarily relies on 7T-T2w would underperform compared to a model that 
effectively synthesizes information from all available modalities. To encourage nnU-Net to use all available modalities during 
training, we incorporate an additional augmentation scheme, called modality augmentation (ModAug), which we employ 220 
together with the standard data augmentation schemes in nnU-Net. 

As shown in Figure 4, in each iteration of training process, there was a 50% chance that input data was fed into an 
augmentation branch. Otherwise, all five modalities were fed into the segmentation model. In the augmentation branch, there 
was an equal chance that data were processed by each of four different sub-branches, where one, two, three or four modalities 
in the input data would be replaced by random noise. This step was designed to force the model to extract critical information 225 
from all modalities, rather than focusing only on the information associated with the primary modality. 
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Figure 4. The pipeline of modality augmentation. When five channels were fed into the network, they would be processed by augmentation 
branch with probability of 50%. Othewise, the full modalities were used in the segmentation. In augmentation branch, there was equal 
probability that one, two, three and four modalities were replaced by noise randomly. 230 

    Combined Dice and binary cross-entropy (BCE) loss function was used to supervise the training process using deep-
supervision scheme. The model was trained in a five-fold cross-validation setting. In each fold, the training process was 
terminated after 400 epochs, where the validation loss of the validation set plateaued to constant. All other hyper-parameters 
remained at their default settings. When performing inference on the test set without manual segmentations (n=172), the five 
per-fold models were ensembled to generate the final prediction (Isensee et al., 2021). 235 

2.4 Model Evaluation 

2.4.1 Baseline Model 

To verify the advantage of using multiple modalities, another nnU-Net model which only used the primary modality (7T-
T2w modality) as input was trained as baseline model. It is referred to as the single-modality model. 

2.4.2 Cross-validation in the Annotated Training Set 240 
As a metric to measure the consistency between predicted segmentation and ground-truth, Dice similarity coefficient (Dice, 

1945) was used to evaluate segmentation accuracy in five-fold cross-validation in the training process. For each subregion, the 
average of Dice scores from all validation participants in five folds were calculated. 

2.4.2 Indirect Validation in the Test Set 

Due to the variable quality of the 7T-T2w, and the expert effort it would entail, we did not attempt to generate manual 245 
segmentations for the test set, which made direct quantitative evaluation, such as Dice coefficient, impossible. Three indirect 
evaluation methods were used to compare the segmentation performance of proposed model and baseline model. 
• Inter-model consistency: volume comparison. In order to discover the difference between multi-modality and single-

modality models, the volume of each subregion in each participant was calculated and was compared between models. 
Outliers (subregions with low consistency) were identified and analyzed to determine how they relate to image quality. 250 

• Longitudinal consistency. A good segmentation model should perform well regardless image quality. When presented 
with two longitudinal scans for the same participant in our study, a good model should provide largely consistent MTL 
subregion volume measurements, considering that the loss of hippocampal MTL volume in healthy aging and MCI in 
the range of 0.2-2.55% a year (Fjell et al., 2009; Jack et al., 2000; Kurth et al., 2017). Intraclass correlation coefficients 
(ICC) was used to evaluate longitudinal consistency for each model in the subset of 29 participants who had longitudinal 255 
3T and 7T MRI. 

• Classification between NC and MCI. Previous studies showed that regional measurements such as cortical thickness 
and subfield volumes had the ability to discriminate between A+MCI participants and A-CU participants (Whitwell et 
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al., 2007; Wolf et al., 2004). Correct computation of measurements relies on accurate segmentation of subregions, so 
the ability to separate A-CU and A+MCI was used as a metric for evaluating segmentation models.  260 

To make the volumes of subregions comparable across participants, volumes of hippocampus subfields were adjusted by the 
volume of hippocampal tail (for each subfield, the proportion of the tail volume was determined by proportion of the rest of the 
hippocampus) and the volumes of MTL cortical subregions were normalized by the length of their segmentation in the 7T-T2w 
slicing direction (number of slices spanned times slice thickness) (Yushkevich et al., 2015). 

3. Results 265 

3.1 Quality Assessment 

Image quality was first assessed so that we could evaluate the performance of the models in images of different quality. Left 
and right ROIs of all participants in the whole dataset were assessed. Figure 5 shows the distribution of image quality in the 
training set and the test set. The rating greater or equal to 5 represents the good quality and less than 5 represents the poor 
quality. 270 
    The average quality of the training set was 5.79, while the average quality of the test set was 5.04. The majority of the ROIs 
in the training set had good image quality. Only three ROIs in the training set (6%) had quality rating 4 and none were rated 
below 4. As expected, the test set had a substantially larger proportion of poor quality ROIs (32.85% with rating lower than 5). 
However, the distribution of the quality ratings in the [5,9] range was similar for the test set and the training set (the ratio of 
samples rated 5, 6 and 7 in both sets was approximately 3:4:2).  275 

 
Figure 5. The distribution of image quality in the training and test set respectively. 

3.2 Cross-validation in the Training Set 

Dice coefficient between automated and manual segmentation was calculated for each subregion in the cross-validation 
experiments. Table 3 compares the average Dice coefficient for each subregion among the single-modality (7T-T2w only) 280 
model, the multi-modality model trained without ModAug, and the multi-modality model with ModAug (proposed model). 
    For each subregion, the highest Dice value was obtained from multi-modality model, either with ModAug or without 
ModAug. It shows the advantage of involving other modalities in a segmentation model, which indeed provides more useful 
information than 7T-T2w alone. However, the difference between single-modality model and multi-modality model was not 
particularly large. The subregion Dice difference between single-modality model the best multi-modality model did not surpass 285 
0.023, which was quite close, and some subregions even did not have statistical significance. This was due to the fact that most 
ROIs in training set had high image quality, allowing the single-modality model to segment subregions effectively without 
assistance from multi-modality data. 
    The comparison between two mutli-modality models with and without ModAug, repectively, shows the model without 
ModAug performed better in hippocampus subfields and the model with ModAug performed better in extrahippocampal 290 
subregions. The p-value shows the segmentation on hippocampus was comparable between these two models in all subfields 
except for DG, while the model with ModAug significantly performed better in ERC, BA35 and BA36. This indicates the 
ModAug encouraged the model to learn multi-modality information better. 
 
 295 
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Table 3 Dice score (average Dice ± standard deviation) comparison of single-modality and multi-modality models in five-fold cross-validation 
(Bold numbers represent the highest values among all models) 

Subregions Single-modality model Multi-modality model 
without ModAug 

Multi-modality model 
with ModAug 

 Dice    Dice 

CA1 0.814 ± 0.036  0.817 ± 0.034  0.817 ± 0.036 

CA2 0.735 ± 0.059  0.747 ± 0.054  0.741 ± 0.055 

CA3 0.705 ± 0.064 ** 0.728 ± 0.058  0.724 ± 0.057 

DG 0.870 ± 0.026 ** 0.871 ± 0.026 ** 0.866 ± 0.023 

SUB 0.861 ± 0.026  0.862 ± 0.024  0.862 ± 0.026 

Tail 0.845 ± 0.053 *** 0.859 ± 0.053  0.861 ± 0.052 

ERC 0.846 ± 0.043 *** 0.845 ± 0.042 *** 0.855 ± 0.040 

BA35 0.730 ± 0.080 *** 0.727 ± 0.072 *** 0.751 ± 0.073 

BA36 0.812 ± 0.057 *** 0.802 ± 0.058 *** 0.825 ± 0.052 

PHC 0.815 ± 0.065  0.818 ± 0.064  0.822 ± 0.062 

** p < 0.01; *** p < 0.001 in paired t-test comparison between corresponding model and multi-modality model with 
ModAug 

 300 

3.3 Inter-model consistency: volume comparison 

The inference of the single-modality model and the inference of the multi-modality model with ModAug were carried out 
on the test set. Figure 6 shows the subregion volume comparisons between these two models. 

 
Figure 6 The volume comparison for different subregions on the left side. X-axis: subregion volume by the multi-modality model with 305 
ModAug. Y-axis: subregion volume by the single-modality model. Blue dots: participants with good image quality. Red dots: participants 
with poor image quality.  

The blue dots representing high quality ROIs (quality rating > 5) in each subplot of Figure 6 are distributed largely along 
the diagonal line. This demonstrates the consistency of segmentation results between single-modality and multi-modality 
models with ModAug in high-quality images. However, the red dots, which represent poor-quality ROIs, are not always 310 
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distributed along the diagonal line in each subplot in Figure 6. Most outliers fall below the diagonal line, indicating that the 
segmentation results of the single-modality model produce smaller subregions than those of the multi-modality model. As can 
be seen from the examples in Figure 6, these outliers were poor quality images and segmentations. The single-modality model 
had severe under-segmentation, while the segmentation results from multi-modality model had typical segmentation size and 
morphology. 315 

To show how the segmentation results varied with the quality of the image, seven examples with different image qualities in 
the test set and two examples with high quality in the training set were randomly selected. Segmentation results of the single-
modality and multi-modality models on these nine examples are shown in Figure 7. When the image quality was poor, the 
single-modality model exhibited under-segmentation while the multi-modality model could still segment all subregions 
resonably. As the image quality improved, the under-segmentation of single-modality model became less and its segmentation 320 
results approached the multi-modality model. In the high-quality images, these two models performed similarly. Further, the 
segmentation results of the two models were both similar to the ground-truth in the two training examples in Figure 7. This 
explains the high Dice score of each model in cross-validation. 

 
Figure 7 Subregion segmentation in examples with imaging quality from low to high. The segmentation in training examples are obtained 325 
by cross-validation. The higher the image quality, the more consistent between single-modality and multi-modality models. For the first 
example (E1), other modalities are shown in dashed box and the segmentation by multi-modality model aligns well in these modalities. (CA 
= cornu ammonis; DG = dentate gyrus; SUB = subiculum; ERC = entorhinal cortex; BA = Brodmann area; CS = collateral sulcus; HS = hippo 
sulcus; MISC = miscellaneous label) 

3.4 Longitudinal Comparison 330 
For the 29 test participants with longitudinal MRI scans, the ICC of volumes obtained from different timepoints of each 

subregion were computed. Additionally, the Bland-Altman plot for each subregion was plotted in order to visually compare the 
differences between the models. As shown in Figure 8, the multi-modality model had higher ICC values on each subregion 
compared to single-modality model, suggesting that multi-modality segmentation was more consistent across longitudinal 
scans.  335 

As can be seen from the Bland-Altman plot in Figure 8, the segmentation results of multi-modality model in the longitudinal 
scan pairs had smaller standard deviation, regardless of the quality of the image. The segmentation results of the single-modality 
model were less consistent across the two scans than those of the multi-modality model. In terms of the distribution of image 
quality, inconsistency was mainly in the low-quality images. 

 340 
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Figure 8. Longitudinal segmentation consistency comparison. For the 29 participants with two longitudinal scans, each scan was segmented 
using both the multi-modality model and the single-modality model, and the volume of each subregion was calculated from the 
segmentation. In this figure, the volume consistency between the two scans was represented by Bland-Altman plot and intra-class 
correlation (ICC) for each model. The multi-modality model had smaller volume mean values and smaller standard deviations of longitudinal 345 
volume difference in all subregions. For the single-modality model, the distribution of results from poor-quality data (red dots) was more 
scattered. . The multi-modality model provided much higher ICC values in all subregions. Higher ICC values are highlighted in bold 

3.5 Distinguishing CU and MCI 

To indirectly assess the segmentation accuracy of the model, a general linear model (GLM) was fitted in each subregion 
with the regional volume or thickness measure as the dependent variable and diagnostic group (A+MCI and A-CU) as the 350 
independent variable. For the subfields of the hippocampus, the dependent variable was volume adjusted by the volume of 
hippocampal tail and the GLM also included age and intracranial volume (ICV) as nuissance covariants; for the cortical 
subregions, the dependent variable was median thickness calculated by computing the pruned Voronoi skeleton (Ogniewicz & 
Kübler, 1995) of the MTL cortex and integrating the radius field over each MTL subregion, as implemented in the software 
CM-Rep (Pouch et al., 2015), and only age was included as the nuissance covariant. 355 

The p-value, AUC, and Cohen’s D for the fitted GLMs are shown in Table 4. The multi-modality model was associated with 
a greater difference and effect size between the two diagnostic groups, in absolute terms, compared to single-modality model. 

 
 
 360 
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Table 4. Amyloid+ MCI and Amyloid− CU comparison in the test set. The volumes of hippocampus subfields and median thicknesses of 
cortical subregions of 65 Amyloid− CU and 18 Amyloid+ MCI participants were calculated separately based on the segmentation results of 365 
single-modality and multi-modality models. The volumes of subfields were adjusted for the hippocampal tail. p-value, AUC and Cohen’s D of 
multi-modality model and single-modality model were compared. For each subregion, if the p-value of one of the two models was less than 
0.05, the smaller p-value as well as the larger AUC and Cohen’s D were marked bold. (MCI: mild cognitive impairment; CU: 
cognitively unimpaired; AUC: area under the ROC curve) 

   Single-modality Model Multi-modality Model 

Side Measure Subregion p-value AUC Cohen’D p-value AUC Cohen’s D 

Left 

Adjusted 
Volume 

CA1 0.047 0.73 0.48 0.00040 0.75 0.86 
CA2 0.0098 0.69 0.78 3.0E-05 0.78 1.25 
CA3 0.38 0.58 0.23 0.00029 0.76 0.93 
DG 0.057 0.71 0.49 7.4E-05 0.78 0.99 

SUB 0.080 0.73 0.48 0.00010 0.76 0.89 

Median 
Thickness 

ERC 0.43 0.50 0.24 0.033 0.65 0.67 
BA35 0.61 0.49 0.09 0.39 0.51 0.30 
BA36 0.28 0.41 0.26 0.71 0.46 0.01 
PHC 0.37 0.39 0.28 0.66 0.50 0.16 

Right 

Adjusted 
Volume 

CA1 0.033 0.66 0.46 0.0012 0.72 0.66 
CA2 0.043 0.69 0.60 0.00062 0.77 0.94 
CA3 0.45 0.62 0.15 0.026 0.67 0.48 
DG 0.013 0.71 0.63 0.0010 0.73 0.78 

SUB 0.012 0.68 0.56 0.0036 0.69 0.64 

Median 
Thickness 

ERC 0.45 0.47 0.16 0.21 0.58 0.42 
BA35 0.71 0.48 0.04 0.21 0.58 0.44 
BA36 0.54 0.45 0.10 0.91 0.52 0.14 
PHC 0.38 0.43 0.24 0.68 0.52 0.14 

 370 
 

4. Discussion 

We developed a multi-modality segmentation model for MTL subregions in structural MRI using 7T-T2w, 7T-T1w (INV1 
and INV2), 3T-T2w and 3T-T1w modalities and a modality augmentation scheme to guide the model to learn features from all 
available modalities. The multi-modality model showed stability in segmentation even when the quality of the primary imaging 375 
modality was poor, which is common in real-world MRI data but was not captured by the training set due to the demands of 
manual segmentation. The proposed multi-modality model also had higher  consistency in longitudinal scans and better ability 
to discriminate A+MCI and A-CU groups when compared with the single-modality model, which only considers the 7T-T2w 
modality. 

4.1 Considerations for segmentation evaluation metric 380 
When evaluating the accuracy of a segmentation model, it is common to report average metrics such as Dice coefficient in 

cross-validation experiments conducted on all available annotated data. However, there may be an inherent bias in image quality 
between images that are annotated for training and images on which the trained model is ultimately used. This was indeed the 
case in our dataset, where the proportion of low-quality images was much higher (32.85% vs 6%) for the non-annotated test 
images. If we only considered this type of evaluation, we would have concluded that there is no benefit from using multiple 385 
modalities in MTL subregion segmentation. The Dice coefficient computed in cross-validation experiments did not reflect the 
superior performance of multi-modality model because the data in the training set were selected from high quality images, and 
as demonstrated in Table 3 and Figure 7. The single-modality model also obtained good segmentation results from high-quality 
images. 

However, our indirect evaluation on the non-annotated test set clearly points to greater robustness of the multi-modality 390 
model. In order to compare the models’ performance in images with different qualities, we evaluated them in a test dataset that 
included low quality images. However, manual annotation of these data was not practical, or outright impossible, precisely 
because the image quality of the modality used for manual segmentation was low. Hence, quantitative analyses, including 
measuring Dice coefficient, could not be performed. Instead, we measured the robustness of the segmentations generated by 
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the two models in images with different qualities through a series of indirect tasks, where two aspects were verified: stability 395 
and accuracy. Specifically, by comparing the segmentation results of the two models and by comparing the segmentation results 
of the same model at different longitudinal time points, we verified that the multi-modality model likely had better segmentation 
stability, particularly in low-quality images. By demonstating greater separation between disease and control groups (higher 
AUCs) on a classification task, we also got strong evidence in the higher segmentation accuracy of the multimodality model. 

4.2 MTL Cortical Thickness Findings in A+MCI in the Context of Prior Work. 400 
When distinguishing between A+MCI and A-CU, difference in median thickness for BA35 was not significant and in ERC 

thickness was only significantly smaller on the left. This was inconsistent with our experience and with existing research (Duara 
et al., 2008; Hata et al., 2019; Ogawa et al., 2019; Wolk et al., 2017; Xie et al., 2020; Yushkevich et al., 2015), especially given 
that the volumes of hippocampus subfields were significantly smaller in A+MCI group. Since BA35 approximates the 
transentorhinal region, the site of earliest cortical tau tangle pathology and neurodegeneration in AD, we expect this region to 405 
show differences as pronounced as the hippocampus and hippocampal subfields. Earlier MTL morphometry studies using 
ASHS also showed results consistent with these expectations (Wolk et al., 2017; Yushkevich et al., 2015). 

We identified three possible reasons for this discrepancy. First, the definition of BA35 boundaries in the current protocol 
may not completely align with prior versions of procotol (Yushkevich et al., 2015) used in prior studies. Second, the 
segmentation by nnU-Net may have been less accurate (oversegmentation or undersegmentation) than ASHS. Third,  this lack 410 
of significant effect could have been due to the small sample size (18 A+MCI) and potentially idiosyncratic differences from 
prior populations studied. We conducted two additional experiments to better understand the source of the discrepancy. A 3T-
T1w atlas, labeled based on the “Penn Memory Center (PMC)” protocol (Xie et al., 2019), was used in these experiments. First, 
a 3T-T1w ASHS was trained on 3T-T1w atlas and run on the 3T-T1w images of the 83 test participants diagnosed as A+MCI 
and A-CU (same participants in Section 3.5), and the relationship between each cortical median thickness and diagnosis group 415 
was fitted using a GLM with age as covariate. Second, an nnU-Net was trained on 3T-T1w atlas and applied to the 3T-T1w 
images in the same dataset, and the same analysis was performed. The p-values of GLM in these models are shown in Table 5. 

Table 5 p-value of GLM with dependent variable of cortical subregion median thickness and independent variable of diagnosis group for 
different models in 3T-T1w 

Side Subregion ASHS nnU-Net 

Left 

ERC 0.012 0.0031 
BA35 0.030 0.00036 
BA36 0.28 0.18 
PHC 0.32 0.40 

Right 

ERC 0.58 0.051 
BA35 0.97 0.13 
BA36 0.79 0.13 
PHC 0.15 0.31 

 420 
Median thickness of BA35 segmented by 3T-T1w ASHS and 3T-T1w nnUNet was significant on the left (p-values: 0.030 

and 0.00036, repectively) although not so on the right. Since the same dataset was used in the analysis, the dataset was not the 
primary reason for the lack of effect using the proposed model, nor was the use of nnU-Net specifically. This leads us to 
conclude that the main difference between proposed mutli-modality model and 3T-T1w nnU-Net was probably the 
segmentation protocol. The 3T-T1w atlas is based on the “PMC” protocol described in (Yushkevich et al., 2015) and the 7T-425 
T2w atlas is based on the ABC protocol by (Berron et al., 2017). These protocols employ slightly different rules to label MTL 
subregions and these differences might explain the lack of group effects in BA35 and right ERC, even though they were 
developed in collaboration with the same neuronatomist (Ding & Van Hoesen, 2010).  

To demonstrate these differences, two participants’ segmentation of BA35 in 7T-T2w by multi-modality model trained by 
ABC protocol and 3T-T1w by nnU-Net trained by PMC protocol are shown in Figure 9. For the first participant in Figure 9, 430 
BA35 was located on the medial side (i.e., left) of the collateral sulcus in both 3T-T1w and 7T-T2w. For the second individual, 
the BA35 in 3T-T1w was mainly located on the medial side of the collateral sulcus and BA35 in 7T-T2w was on medial side 
in regions when the the sulcus was deep (the first slice in coronal view) and on both sides when more shallow (the second and 
third slices in coronal view).  

 435 
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Figure 9 Comparison of BA35 (dark blue) segmentation by nnU-Net trained in PMC protocol (3T-T1w) and multi-modality model trained in 
ABC protocol (7T-T2w). The first example had deep sulcus and segmentations for BA35 by both methods were at the medial side of collateral 
sulcus. The second example had shallow sulcus in slice 2 and 3 in coronal view and segmentations of BA35 by multi-modality model were on 
both sides of collateral sulcus. (The 3T-T1w images and segmentations have been registered to 7T-T2w here, making it possible to compare 440 
them with segmentations in 7T-T2w.) 

However, we have only verified that the difference in protocols was a possible reason for the difference in significance in 
the experiments, but have not found a specific way of how exactly the ABC protocol affects the thickness of the subregion. 
Further experiments are necessary in the future.  

4.3 The role of modality augmentation 445 
In cross-validation, the multi-modality model with and without ModAug did not show significant difference according to 

Dice scores in the training set, which had high-quality images. We expected that ModAug would have greater advantage in the 
test set. The subregion volume comparison of the multi-modality model trained with and without ModAug is shown in Figure 
10.  

 450 
Figure 10 Subregion volumes comparison between multi-modality model with and without ModAug. (Red dots: low-quality images; blue 
dots: high-quality images) 
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    In Figure 10, except for BA35 and BA36, high-quality dots and low-quality dots have similar distribution in the plots. In 
BA35 and BA36, there were more poor-quality images as outliers. Two outliers were picked and shown at the bottom of Figure 
10. In these two examples, the model trained without ModAug might have undersegmentation in BA35 and BA36. The model 455 
trained with ModAug output the results with more reasonable shape of MTL. This is in line with a common issue of signal drop 
out in more lateral regions in the primary modality 7T-T2w which mostly affects segmentation accuracy of BA35 and BA36. 
Relying more on the other modalities, which are less prone to signal drop out in these areas, should indeed provide a more 
complete segmentation of BA35 and BA36. 

4.3 Importance of each modality 460 
ModAug appeared to allow extraction of useful information from alternative modalities when image quality was poor in the 

primary one. It allowed the model to be robust to missing modalities, but we did not know how much information provided by 
each modality.  

In order to further verifiy the importance of each modality, we ran the inference of the multi-modality model with certain 
modalities discarded. Specificly, 3T, 7T-T1w and both 3T and 7T-T1w were replaced by noise images in the inference, 465 
respectively, and we observed the changes of segmentations after removing these modalities. 

The subregion volume consistency between these results and the model with complete input (no modality missing) was 
calculated by ICC. As shown in Table 6, when both 3T and 7T-T1w were missing, there was the most significant loss of 
information resulting in lower ICC values compared with input in which only one of these modalities was missing. The input 
missing 7T-T1w had higher ICC values than the input missing 3T, indicating that the model was more dependent on the 3T 470 
modality than the 7T-T1w. This conclusion can be also reflected in Figure 11, which shows two poor-quality examples 
segmented by the multi-modality model on input with different modalities missing. The results on input only missing 7T-T1w 
were closest to the complete input. 
 
Table 6 ICC values of subregion volume comparison between multi-modality model with certain modalities missing and model without 475 
modality missing 

Model Missing modality CA1 CA2 CA3 DG SUB BA35 BA36 ERC PHC 

Multi-modality 
Model with 

ModAug 

3T 0.995 0.989 0.981 0.972 0.992 0.971 0.98 0.988 0.986 

7T-T1w 0.998 0.994 0.99 0.997 0.998 0.986 0.998 0.993 0.992 

3T and 7T-T1w 0.871 0.811 0.793 0.869 0.854 0.758 0.767 0.851 0.804 
Single-modality 

Model 3T and 7T-T1w* 0.795 0.747 0.662 0.783 0.75 0.696 0.675 0.595 0.786 

* The single-modality model only used 7T-T2w as input. Therefore, there was no 3T or 7T-T1w fed into the model. We also call this situation as “missing 
3T and 7T-T1w” here. 

 

 
Figure 11 Two examples of poor-quality images segmented by multi-modality models with input missing 7T-T1w and 3T, missing 3T, 
missing 7T-T1w and input without modality missing. The segmentations by single-modality for these two examples are also compared 480 
here. 

Besides different situations of missing modality, the segmentation by single-modality model was also compared with other 
scenarios. The ICC values in Table 6 show that single-modality model had lowest consistency with multi-modality model with 
full modalities as input. The examples in Figure 11 also reflect the low consistency between the single-modality model and 
multi-modality model. Although we input the same amount of information into single-modality model and multi-modality 485 
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model with both 3T and 7T-T1w input missing, the single-modality model had more undersegmentation. The reason might be 
in the training process. For multi-modality model, the information of different modalities from training set was stored in the 
network parameters of nnU-Net. Therefore, when encountering missing modality, these embedded information can help the 
model make relatively better predictions. 

4.4 Limitations and future work 490 
One limitation of the present study is that it only considered the quality of the 7T-T2w in evaluation. The impact of poor 

quality of other modalities was not evaluated. The quality assessment for other modalities will be done in the future and we 
will evaluate how other modalities’ quality influences the segmentation. 

Another limitation is that the proposed multi-modality model required one modality to be selected as “primary”, in our case 
this was 7T-T2w. This modality is used as a target for registration and all other modalities are resampled in its space, causing 495 
loss of resolution, such as the isotropic resolution and finer plane thickness in 3T-T1w, and aliasing. In the future it may be 
possible to develop a model that allows all images to be analyzed in their own space. With the 3T-T2w ASHS atlas, which was 
developed using the same ABC protocol as 7T-T2w ASHS atlas, it is possible to develop a segmentation model which considers 
both 3T and 7T modalities as target spaces of segmentation. This can also solve the problem that other centers do not have 
mixed 3T and 7T MRI. In this case, for the participants with only 3T modality, the model should output the segmentation in 500 
3T space; for the participants with both 7T and 3T modalities, the model should output consistent segmentation in the spaces 
of both modalities.  

5. Conclusion 

This study developed a segmentation model for MTL subregions using 7T-T2w, 7T-T1w, 3T-T2w and 3T-T1w MR images. 
Incorporating these modalities during training with the help of together with modality augmentation led to a model that is more 505 
resilient to low image quality, resulting in more accurate segmentation. When the primary modality’s image quality was low, 
proposed multi-modality model still could generate stable segmentaitons by extracting useful information from other 
modalities. 

While the current study focused on a very unique dataset with four structural modalities collected at two MRI field strengths, 
the challenges and the insights gained in the evaluation regarding the utility of multi-modality models in the context of 510 
poor/variable image quality and the danger of only using cross-validation performance to select the best segmentation model 
when manually annotated data exhibit selection bias relative to the real-world data distribution are likely relevant to other image 
segmentation contexts with multiple modalities available, such as DTI, SWI. 
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