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ABSTRACT 28 

Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with 29 
distinguishable but also overlapping features. The growing interest in using these compounds 30 

as therapeutics necessitates preclinical assays that can accurately screen psychedelics and 31 
related analogs. We posit that a promising approach may be to measure drug action on markers 32 

of neural plasticity in native brain tissues. We therefore developed a pipeline for drug 33 

classification using light sheet fluorescence microscopy of immediate early gene expression at 34 
cellular resolution followed by machine learning. We tested male and female mice with a panel 35 

of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, 36 

chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified 37 
with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one 38 

classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute 39 
fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain 40 

regions driving the machine learning predictions. Our results support a novel approach for 41 
characterizing and validating psychoactive drugs with psychedelic properties. 42 
 43 

INTRODUCTION 44 
Psychedelics include classic serotonergic psychedelics, such as psilocybin and 5-methoxy-N,N-45 
dimethyltryptamine (5-MeO-DMT), and related psychoactive compounds, such as ketamine and 46 
3,4-methylenedioxymethamphetamine (MDMA). These compounds have recently gained 47 

widespread interest as potential therapeutics for neuropsychiatric disorders1, 2. Psilocybin with 48 
psychological support is under active investigation as a treatment for major depressive disorder 49 
and treatment-resistant depression3, 4, 5, 6, 7. Subanesthetic ketamine has long been studied for 50 

its efficacy for treating depression8, 9, 10 and post-traumatic stress disorder (PTSD)11. The 51 
research efforts culminated in the approval of esketamine nasal spray by the FDA in the United 52 

States for treatment-resistant depression12, 13. Finally, MDMA-assisted psychotherapy has 53 

undergone phase III clinical trials for the treatment of moderate to severe PSTD14, 15. The clinical 54 

relevance has sparked intense interest in understanding the shared and distinct aspects of 55 

these compounds’ mechanisms of action. 56 

 57 
Beyond the known psychedelics, there is also growing excitement for synthesizing novel 58 

psychedelic-inspired analogs that can be new chemical entities for therapeutics16, 17, 18. Ideally, 59 

the novel compounds would retain therapeutic effects while improving pharmacokinetics, 60 
minimizing perceptual effects, and eliminating cardiovascular risks. A major roadblock in this 61 
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pursuit lies in developing screens that can filter thousands of psychedelic-inspired analogs to a 62 

manageable list of the most promising compounds for further in-depth characterizations. 63 
Currently, most screens operate at the molecular or behavioral level. At the molecular level, 64 

candidate compounds can be docked in silico with the structure of the 5-HT2A receptor, followed 65 
by biochemical measurements of receptor engagement and activation of downstream G-protein 66 

and beta-arrestin pathways. This target-based approach has yielded exciting leads19, 20, 21, 22, but 67 

assumes that the 5-HT2A receptor is the key mediator of the therapeutic effect, which has not 68 
been proven conclusively. At the behavioral level, candidate compounds may be tested in 69 

animals for defined phenotypes. Simple characterizations such as changes in animal movement 70 

patterns may be automated to increase throughput and accuracy23, 24. However, more complex 71 
behavioral assays relevant for depression suffer from limitations including poor construct validity 72 

and weak predictive power for drug efficacy in humans25.  73 
 74 

The development of a new screening method may complement current molecular and 75 
behavioral approaches to accelerate preclinical drug discovery. Classic psychedelics and 76 
ketamine share the ability to enhance neural plasticity in the brain26, as evidenced by the rapid 77 

and persistent growth of dendritic spines in the rodent medial frontal cortex after a single dose 78 
of ketamine27, 28, psilocybin29, and related serotonergic receptor agonists30, 31, 32, 33. A promising 79 
approach may thus focus on quantifying indicators of neural plasticity in native brain tissues. To 80 
this end, immediate early genes are activated in a cell in response to increased firing activity or 81 

an external stimulus34. The immediate early genes are a key part of neural plasticity, because 82 
they enable neurons to adapt to stimuli by regulating gene expression, which is crucial for 83 
protein synthesis that are needed for synaptic modifications and learning35, 36. Taking classic 84 

psychedelics as an example, drug administration induces robust increases in the expression of 85 
immediate early genes37, 38, including c-Fos, that can be detected starting in as few as 30 86 

minutes in multiple brain regions39, 40. More recently, technological advances in tissue clearing, 87 

light sheet fluorescence microscopy, and automated detection of nuclei have enabled high-88 

throughput mapping of the expression of immediate early genes such as c-Fos in the whole 89 

mouse brain41, 42. We and others have applied this method to characterize the impact of 90 

psilocybin and ketamine43, 44, 45, joining a rapidly growing number of studies using brain-wide 91 
imaging of fluorescence signals to study drugs46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57. Although these early 92 

studies have provided valuable biological insights, only one or two drugs were typically included 93 

in each study thus far. Developing the method as a drug screen requires evaluating its feasibility 94 
and accuracy on a larger panel of compounds. 95 
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  96 

In this study, we measured brain-wide c-Fos expression in male and female mice for 8 drug 97 
conditions, including a variety of psychedelics, related psychoactive compounds, and vehicle 98 

control. We developed a pipeline for analysis and classification based on explainable machine 99 
learning, determining performance in one-versus-rest and one-versus-one classification tasks. 100 

We implemented Shapley additive explanation to interpret the machine learning models to 101 

identify the brain regions driving the classifications. Collectively the results demonstrate brain-102 
wide imaging of immediate early gene expression as a promising approach for preclinical drug 103 

discovery. 104 

 105 
RESULTS 106 

 107 
Psychedelics and related drugs in the study 108 

For this study, we evaluated 8 drug conditions: psilocybin (PSI, 1 mg/kg, i.p., single dose), 109 

ketamine (KET, 10 mg/kg, i.p., single dose), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT or 110 

5MEO, 20 mg/kg, i.p., single dose), 6-fluoro-N,N-diethyltryptamine (6-fluoro-DET or 6-F-DET, 20 111 
mg/kg, i.p., single dose), 3,4-methylenedioxymethamphetamine (MDMA, 7.8 mg/kg, i.p., single 112 
dose), acute fluoxetine (A-SSRI, 10 mg/kg, i.p., single dose), chronic fluoxetine (C-SSRI, 10 113 

mg/kg, i.p., one dose every day for 14 days), and saline vehicle (SAL, 10 mL/kg, i.p., single 114 
dose) (Fig. 1a). 115 
 116 
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Fig. 1. Imaging brain-wide c-Fos expression at cellular resolution following drug administration. a. 
Chemical structures for the 8 conditions included in this study: psilocybin (PSI), ketamine (KET), 5-MeO-DMT 
(5MEO), 6-fluoro-DMT (6-F-DET), MDMA, acute fluoxetine (A-SSRI), chronic fluoxetine (C-SSRI, daily for 14 
days), and saline vehicle (SAL). b. Time course of head-twitch response following the administration of 5-MeO-
DMT, psilocybin, 6-fluoro-DET, or saline vehicle. Line, mean. Shading, 95% confidence interval based on 1000 
bootstraps. N = 3 males and 3 females for each drug, except 4 males and 3 females for saline. c. Box plot of the 
total number of head twitches detected within a 2-hour period after drug administration. Wilcoxon rank-sum test. *, 
P < 0.05, **, P < 0.01. d. Experimental timeline. e. Box plot of the total number of c-Fos+ cells in the brain for each 
drug condition. Cross, female individual. Circle, male individual. N = 64 mice, including 4 males and 4 females for 
each drug. f. An example of the fluorescence images of c-Fos+ cells in the mouse brain for a psilocybin-treated 
mouse acquired by light sheet fluorescence microscopy. Inset, magnified view of the dorsal anterior cingulate 
cortex. For b and c, the psilocybin and saline vehicle data had been shown in a prior study33. 

 117 

We elected to investigate these compounds for several reasons. Psilocybin is a classic 118 
psychedelic that acts on the 5-HT2A receptor. Psilocybin stands at the forefront of ongoing late-119 

stage clinical trials evaluating psychedelics’ efficacy for treating depression3, 4, 5, 6, 7. Ketamine is 120 

primarily a NMDA receptor antagonist58. Despite the distinct molecular targets, ketamine and 121 
psilocybin have similarities in their plasticity-promoting action and behavioral effects59, 60, making 122 

ketamine an intriguing compound to contrast with psilocybin. The doses and route of 123 
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administration for psilocybin and ketamine were chosen based on prior studies showing 124 

behavioral effects in mice29, 61. 125 
 126 

5-MeO-DMT is a classic serotonergic psychedelic in the same tryptamine chemical class as 127 
psilocybin16. There is clinical interest in evaluating 5-MeO-DMT as a treatment for depression62, 128 
63. At a dose of 20 mg/kg in mice, 5-MeO-DMT induces head-twitch response and evokes 129 

structural rewiring in the mouse medial frontal cortex33. Compared to psilocybin, 5-MeO-DMT is 130 
shorter-acting and has higher affinity for the 5-HT1A receptor than for the 5-HT2A receptor. Thus 131 

5-MeO-DMT serves as a useful case of another tryptamine psychedelic with distinct 132 

pharmacokinetics and receptor target profile. 6-fluoro-DET is also a tryptamine like psilocybin 133 
and 5-MeO-DMT. Although bioavailable in the brain and a 5-HT2A receptor agonist64, 65, 6-fluoro-134 

DET induces autonomic effects without causing perceptual changes in humans66. Therefore, it 135 
has been used as an active, non-hallucinogenic control in a clinical study67. Concordantly, 6-136 

fluoro-DET provided ineffective as a substitute compound for rats trained to discriminate LSD or 137 
2,5-dimethoxy-4-iodoamphetamine (known as DOI)64, 68. To corroborate these prior results, we 138 
measured the effect of 6-fluoro-DET on head-twitch response in mice using magnetic ear tags 139 

for automated detection of head movements. Our results showed that, unlike 1 mg/kg psilocybin 140 
and 20 mg/kg 5-MeO-DMT which elicited robust head-twitch responses33, mice administered 141 
with 20 mg/kg 6-fluoro-DET were not statistically different from controls (Fig. 1b, c). Our study 142 
adds to other recent studies20, 21 that included 6-fluoro-DET as a non-hallucinogenic tryptamine 143 

for comparison. The dose of 6-fluoro-DET was chosen to match the dose of 5-MeO-DMT. 144 
 145 
MDMA is different from psilocybin: it is a member of the phenethylamine chemical class and has 146 

distinct pro-social and euphoric qualities69. MDMA can act on monoamine transporters to 147 
enhance release and inhibit reuptake of neuromodulators including serotonin, thus it has been 148 

characterized as an entactogen rather than a classic psychedelic70. MDMA holds clinical 149 

relevance particularly for PTSD14, 15. We selected a dose of 7.8 mg/kg for MDMA based on prior 150 

work showing that this dose facilitates fear extinction learning in mice71. Fluoxetine is a 151 

commonly prescribed antidepressant that is a selective serotonin reuptake inhibitor (SSRI). 152 

Clinical interest lies in understanding the relative efficacies of SSRIs versus psilocybin4 and 153 
whether ketamine or psilocybin is suitable for treatment-resistant depression5, 12, 13. SSRIs 154 

require chronic administration to exert therapeutic effects, therefore likely engage a mechanism 155 

of action distinct than that of psilocybin and ketamine. For these reasons, we included acute and 156 
chronic fluoxetine for this study. We chose a dose of 10 mg/kg, which was used for acute and 157 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.05.23.590306doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.23.590306
http://creativecommons.org/licenses/by-nc-nd/4.0/


chronic administration of fluoxetine in mice previously72, 73. Control animals received a single 158 

injection of saline vehicle. 159 
 160 

Light sheet fluorescence imaging of cellular c-Fos expression 161 
For each of the 8 drugs, we tested 4 male and 4 female C57BL/6J mice, totaling 64 animals for 162 

the entire data set. Brains were collected 2 hours after the administration of the single dose or 2 163 

hours after the administration of the last dose for the chronic fluoxetine condition (Fig. 1d). The 164 
2-hour interval was chosen assuming drug penetrance to the brain by 0.5 hours and peak c-Fos 165 

expression after an additional 1.5 hours74. Brains were processed for tissue clearing and c-Fos 166 

immunohistochemistry (see Methods). Light sheet fluorescence microscopy was used to image 167 
each brain at a resolution of 1.8 µm per pixel in the x- and y-axis and at 4 µm intervals in the z-168 

axis, which allowed for sampling of all cells in the entire brain without any gap. The images were 169 
analyzed using neural nets for automated detection of fluorescent puncta corresponding to c-170 

Fos+ cells (see Methods). The number of c-Fos+ cells detected in each brain for each condition 171 
is presented in Figure 1e. An example image collected from a mouse administered with 172 
psilocybin is shown in Figure 1f.  173 

 174 
To investigate the regional distribution of c-Fos+ cells, we aligned the images of each brain to 175 
the Allen Brain Atlas and segmented the images into summary structures based on the Allen 176 
Mouse Brain Common Coordinate Framework75 (see Methods; Supplementary Table 1). The 177 

number of c-Fos+ cells in each brain region for all animals is provided in Supplementary Table 178 
2. To visualize the entire data set, we normalized the c-Fos+ cell count in each brain region by 179 
the total number of c-Fos+ cells of each brain and by the spatial volume of the brain region. 180 

Figure 2 is a heatmap of the resulting c-Fos+ cell density for all the samples. We observed that 181 
c-Fos+ cell density was generally high in the isocortex, olfactory area, hippocampal area, 182 

striatum and pallidum, and thalamus, whereas expression was lower in the midbrain and 183 

hindbrain, and cerebellum. There were individual differences across samples from the same 184 

drug, but also notable contrasts across different drugs. This begets questions such as: How 185 

does the individual variability compare with the differences across drugs? How well can whole-186 

brain c-Fos maps be used to discriminate the different drugs? 187 
 188 

 189 
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Fig. 2. c-Fos+ cell density listed by brain region for all samples by drugs. The c-Fos+ cell density was 
defined as the c-Fos+ cell count in each brain region divided by the total number of c-Fos+ cells in each brain and 
the spatial volume of the brain region. The pixels in the heatmap are positioned by brain region (row) and animal 
grouped by drug (column). The intensity of the pixel is pseudo-colored by the value of the c-Fos+ cell density. The 
brain regions including acronyms and other details are provided in Supplementary Table 1. 

 190 
 191 
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Machine learning pipeline for classifying drugs based on brain-wide c-Fos distribution 192 

To answer these questions, we developed a pipeline for quantitative comparison of the brain-193 
wide c-Fos expression data between different drug conditions. We posited that different 194 

compounds may elicit distinct regional distribution of cellular c-Fos expression that can serve as 195 
fingerprints for classifying drugs. The pipeline starts with a matrix of c-Fos+ cell counts for 196 

different brain regions from different samples (first panel, Fig. 3a). This matrix of c-Fos+ cell 197 

counts undergoes preprocessing, starting with normalization (dividing the c-Fos+ cell count in 198 
each region by the total c-Fos+ cell count of the brain) (second panel, Fig. 3a). Normalization is 199 

important because there may be batch effects across samples. The data were then processed 200 

to scale the input data to a standard range such that the values across brain regions are more 201 
comparable and amenable to fitting machine learning models (second panel, Fig. 3a), using 202 

Yeo-Johnson transformation (monotonic transformation of data using a power function) and 203 
robust scaling (median subtraction and interquartile range scaling). We will herein refer to the 204 

values after this preprocessing step as the c-Fos scores. 205 
 206 

 
 
Fig. 3. A machine learning pipeline for drug prediction and performance of one-versus-rest classification. 
a. The pipeline consisted of three steps. First, c-Fos+ cell counts for each brain region undergo normalization, Yeo-
Johnson transformation, and robust scaling, into c-Fos scores. Second, the Boruta procedure is used to select the 
set of informative brain regions. Third, c-Fos scores from this set of brain regions were used to fit a ridge logistic 
regression model. For each iteration, 75% of the data in each drug condition were used for region selection and 
training through the three steps, and the remaining 25% of the data were withheld initially, but then processed and 
tested with the ridge logistic regression model. The entire process was iterated using different splits of the data for 
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100 times. b. Linear discriminant analysis of the c-Fos scores to visualize the data in a low dimensional space. c. 
The confusion matrix showing the mean proportion of predicted labels for each of the true labels across all splits. 
d. The composite precision-recall curves for each drug condition across all splits and the grand average across all 
drugs. The values in parentheses are the area under the precision-recall curve for the compounds.  

 207 

Next, we adapted the Boruta feature selection procedure19 to determine which brain regions to 208 
include for model fitting and testing (third panel, Fig. 3a). The Boruta procedure is a 209 

permutation-based method for determining feature importance. It starts by creating “shadow 210 

features”: for example, if the data contains 48 c-Fos scores for brain region 1 for various 211 
conditions, then the corresponding shadow feature will be those same 48 c-Fos scores with 212 

scrambled drug labels. Shadow variants were created for all brain regions to create the 213 

expanded Boruta dataset. A random forest classifier was built using this Boruta dataset to 214 
determine a feature-importance value for each brain region. If a brain region has a higher 215 

feature-importance value than the largest feature-importance value from shadow features, then 216 
brain region 1 is a “hit”. This permutation process is iterated 100 times. Given that each brain 217 
region can achieve only one of two outcomes (hit or no hit) in each iteration, the distribution of 218 

outcomes across all iterations is a binomial distribution, and a brain region is included by the 219 
statistical criterion of exceeding 95th percentile of the binomial distribution. Why Boruta? We 220 
used the Boruta procedure in lieu of including all brain regions, because many regions likely 221 

contribute little or nothing towards differential drug action and their inclusion in the model would 222 

increase noise and lead to overfitting. A distinctive advantage of Boruta is that brain regions do 223 
not compete with each other, but rather with the shadows. As a result, the number of brain 224 

regions selected by Boruta is not pre-determined but instead dictated by the data as needed. 225 
 226 
For the last step, the c-Fos scores from the selected brain regions are used to construct a ridge 227 

logistic regression model (fourth panel, Fig. 3a). The entire pipeline is evaluated using 4-fold 228 

splits, where 75% of the data in each drug condition was used to train and fit the model, while 229 
the remaining 25% of the data is used to test the model. Importantly, we emphasize that we 230 

used only the training data to optimize the preprocessing parameters, run feature selection, and 231 
construct regression model. The same optimized preprocessing parameters and selected 232 

features were then later applied for the test data, ensuring no data leakage. The splits were 233 

repeated 100 times to evaluate the prediction accuracy of the pipeline. 234 
 235 

One-versus-rest classification shows drug prediction accuracy well above chance 236 
We performed a linear discriminant analysis on the c-Fos scores of all 64 samples, just after the 237 

preprocessing step. We plotted the data for the top two linear discriminants (Fig. 3b). This 238 
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visualization clearly shows that the differences in c-Fos scores across drugs are more separable 239 

than the differences in c-Fos scores across samples within the same drug condition. Drugs that 240 
alter the serotonergic tone via different mechanisms of action are positioned differently along the 241 

first linear discriminant. By contrast, 5-MeO-DMT, 6-fluoro-DET, and psilocybin are separable 242 
along the second linear discriminant. 243 

 244 

We first tested the pipeline with the entire data set and asked the models to predict the exact 245 
drug condition. The confusion matrix shows how the predicted drug labels compared with the 246 

true drug labels (Fig. 3c). Because there were 8 conditions, the chance-level accuracy was 247 

12.5% (1 out of 8). We found that the model was the most accurate at identifying the MDMA, 248 
chronic fluoxetine, and 5-MeO-DMT samples, with 100%, 89%, and 81% accuracy respectively. 249 

Performance for other conditions were lower, yielding an overall mean accuracy of 67% for all 250 
drugs. Performance was the lowest for saline and acute fluoxetine at 38% and 47% 251 

respectively. Our interpretation for the low-performance conditions is that tradeoffs must be 252 
made to solve this 8-way classification problem. The machine learning model uses the cross-253 
entropy loss function, which seeks to maximize the probability of labeling training data correctly 254 

across the entire training set, rather than drawing boundaries in a one-vs-rest fashion. In this 255 
global approach, individual decision boundaries may be placed in a way which under performs 256 
on one label, such as saline, while leading to a greater improvement on others. In other words, 257 
the model was fitted with the goal of maximizing the overall mean classification accuracy, which 258 

was not necessarily the most ideal for distinguishing any one specific condition such as saline. 259 
Nevertheless, the mean accuracy of 67% was still substantially higher than chance level of 260 
12.5%. 261 

 262 
Confusion matrices are calculated based on a single decision threshold, which may exaggerate 263 

true positive rate for one drug type at the expense of more false positives for another drug type. 264 

To understand our model performance from a different perspective, we plotted precision-recall 265 

curves (Fig. 3d). These curves consider performance across all possible decision thresholds 266 

and summarize the results in terms of precision (true positives relative to false positives) and 267 

recall (true positives relative to false negative). The perfect classifier would have an area under 268 
the precision-recall curve (precision-recall AUC) of 1. Across all drugs, the pipeline yielded a 269 

mean precision-recall AUC value of 0.75. This is well above the theoretical chance-level of 270 

0.125 for 1 out of 8 drugs and the empirical chance-level of 0.12 calculated with shuffled data. 271 
The performance based on precision-recall AUC for predicting different drugs corresponds in 272 
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rank order to the accuracy in the confusion matrix. Overall, these results provide evidence that 273 

brain-wide c-Fos maps can be leveraged to identify the exact drug administered out of a panel 274 
of related psychoactive compounds. 275 

 276 
A likely use case for the pipeline is to determine how a novel chemical entity may be positioned 277 

in the pharmacological space based on the c-Fos expression pattern. To simulate this scenario, 278 

we performed a leave-one-drug-out analysis, in which we trained a model using 7 conditions 279 
(psilocybin, ketamine, 5-MeO-DMT, MDMA, acute fluoxetine, chronic fluoxetine, and saline), but 280 

then tested it on all conditions including 6-fluoro-DET. We found that 6-fluoro-DET was most 281 

frequently classified as psilocybin at 44% chance but could also be detected as saline at 29% 282 
chance (Fig. S1), which is in general agreement with 6-fluoro-DET being a non-hallucinogenic 283 

5-HT2A receptor agonist. 284 
 285 

One-versus-one classification suggests a small list of brain regions drives drug 286 
prediction 287 
We reasoned that one-versus-one classification, where the machine learning pipeline solves a 288 

binary problem of deciding between two drugs (Fig. 4a), may provide deeper insights into the 289 
factors that distinguish specific drug classes. Given the prominence of psilocybin in clinical trials 290 
and drug discovery, we were particularly interested in comparisons between psilocybin and 291 
other conditions that differ in serotonergic receptor affinities (5-MeO-DMT), mechanism of action 292 

(MDMA, acute fluoxetine, ketamine), or hallucinogenic potency (6-fluoro-DET). We trained the 293 
same machine learning pipeline using subsets of data involving only two or three drugs. The 294 
binary classifiers achieved near-perfect accuracy reflected by precision-recall AUC values at or 295 

exceeding 0.90, with the notable exception of psilocybin versus 6-fluoro-DET which had a 296 
precision-recall AUC of 0.59 (Fig. 4b). The difficulty in discerning between a classic 297 

serotonergic psychedelic and the non-hallucinogenic 5-HT2A receptor agonist extended beyond 298 

psilocybin: 5-MeO-DMT versus 6-fluoro-DET as well as psilocybin and 5-MeO-DMT versus 6-299 

fluoro-DET also yielded modest precision-recall AUC values at 0.80 and 0.57 respectively, 300 

relative to chance level of 0.5 for one-versus-one classifications. These results suggest that 301 

brain-wide cellular c-Fos expression is effective at discriminating between exemplars from 302 
different drug classes, such as a classic psychedelic versus an entactogen, a classic 303 

psychedelic versus a dissociative, and a classic psychedelic versus SSRI. It also effectively 304 

distinguishes between the two classic psychedelics psilocybin and 5-MeO-DMT. However, the 305 
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prediction is less reliable for the specific problem of predicting a non-hallucinogenic 5-HT2A 306 

receptor agonist relative to a classic psychedelic. 307 
 308 

 
 
Fig. 4. Performance of one-versus-one classification. a. Schematic illustrating the one-versus-one 
classification problem. b. The mean area under the precision-recall curve across all splits for different binary 
classifiers. Dark gray, real data. Light gray, shuffled data. c. The number of brain regions selected via the Boruta 
procedure for inclusion in the regression model. d. Heatmaps showing the fraction of splits when a cortical (left) or 
thalamic (right) region was included in the regression model. The regions are sorted based on usage in all 
classifiers. Regions that were included in <75% of the splits across all conditions are not shown. 

 309 

As mentioned, a feature of the Boruta procedure is that a different number of regions may be 310 
included depending on the data and the desired classification. Indeed, there were differences in 311 

the brain regions chosen for the various drug prediction problems and different training and 312 
testing splits of the same data (Fig. 4c). Most classifiers relied on <35 brain regions for drug 313 

prediction, except for the two comparisons involving MDMA which included around 40 - 70 brain 314 

regions. Furthermore, we plotted how often various cortical and thalamic regions were selected 315 
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by the machine learning models (Fig. 4d). Regions such as retrosplenial areas (RSPd, RSPv), 316 

somatosensory areas (SSp-m, SSp-tr, SSp-II), and lateral networks (VISC, AId) were included 317 
often, but different classifiers relied on them to different extents. We will explore the importance 318 

of specific brain regions quantitatively in the next section using Shapley additive explanation. 319 
Many thalamic regions were consistently included in comparisons involving MDMA, which 320 

contributed to the higher total number of brain regions used by classifiers when MDMA was 321 

involved. Overall, the results suggest that one-versus-one drug classifications based on brain-322 
wide c-Fos expression is highly accurate, with the machine learning models only needing data 323 

from a small number of brain regions to produce the prediction. 324 

 325 
Using Shapley additive explanation to highlight key brain regions driving drug prediction 326 

A brain region selected by Boruta in the pipeline suggests that it is informative, yet it does not 327 
communicate the importance of its contribution to the final prediction. To better understand how 328 

the c-Fos scores in individual brain regions contribute to decisions in one-versus-one drug 329 
classifications we used Shapley additive explanation (SHAP) (Fig. 5a). SHAP uses a game-330 
theoretical approach to determine how the brain regions contribute to driving the machine 331 

learning regression model from a starting base value to the final output value for decision21. To 332 
illustrate, we present the force plot of two test brain samples in one of our cross-validation splits 333 
(Fig. 5b). The top half of the plot shows the c-Fos scores in selected brain regions for the 334 
sample of psilocybin and their additive contributions to the decision. In this instance, regions 335 

such as posteromedial visual area (VISpm, c-Fos score = 0.44) and lateral habenula (LH, c-Fos 336 
score = -0.78) were among the drivers leading to an overall positive SHAP value to predict 337 
psilocybin. The posteromedial visual area is located between the primary visual cortex and 338 

retrosplenial cortex76 and has been suggested to mediate visual information between the 339 
neighboring regions77. Lateral habenula neurons had spiking activity associated with 340 

undesirable outcomes78, 79, which is consistent with their posited role in mediating depression-341 

related symptoms80 and contributing to antidepressant response81. Intriguingly, another driver 342 

was the parafascicular nucleus (PF, c-Fos score = -1.74), which is implicated in arousal and 343 

head movements82. By contrast, the c-Fos scores in the same set of selected brain regions 344 

sums to an overall negative SHAP value for the 5-MeO-DMT sample, providing the basis for the 345 
correct prediction in this case. Across all splits tested for the psilocybin-versus-5-MeO-DMT 346 

comparison, we identified regions that were included in >75% of the machine learning models, 347 

and then ranked these regions by mean SHAP value difference, which highlight the brain 348 
regions most responsible for driving the classification (Fig. 5c, d). 349 
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 350 

 
 
Fig. 5. Shapley additive explanation for identifying brain regions driving the prediction of 5-MeO-DMT from 
psilocybin. a. Diagram illustrating the concept behind SHAP values. The ridge regression model is akin to a black 
box that takes c-Fos scores as inputs to produce a prediction. SHAP values can be computed to quantitatively 
assess how strong and in what direction the c-Fos score of each brain region contributes to the prediction. b. 
Example force plots for a psilocybin sample and a 5-MeO-DMT sample from one split, illustrating how actual c-Fos 
scores of brain regions add to shift the model's output from the base value to the final value. c. Plot relating a 
region's c-Fos scores to the SHAP values across individual splits of the 100 iterations for the 5-MeO-DMT-versus-
psilocybin classification. Brain regions were shown only if they were used by >=75% of the splits and listed in rank 
order by the absolute value of the mean difference in SHAP values between the two drug conditions. The values in 
parentheses are the absolute value of the mean difference in SHAP values between the two drug conditions.  d. 
Visualization of the brain regions included in c, color coded according to the compound which evoked higher c-Fos 
score in the region.   

 351 
We also analyzed other one-versus-one classification problems using Shapley additive 352 

explanation. For MDMA versus psilocybin, there was a longer list including 32 brains regions 353 

that were used in at least 75% of the cross-validation splits (Fig. 6a, b). Half of these regions 354 
(16/32) were in the thalamus. Given the larger number of regions in each model, the SHAP 355 

value differences tended to be smaller, because there is redundancy in the information provided 356 

by the regions.  357 
 358 
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Fig. 6. Brain regions driving the prediction of MDMA, ketamine, or fluoxetine from psilocybin. a, b. Similar 
to Fig. 5c, d for MDMA-versus psilocybin classification. c, d. Similar to Fig. 5c, d for ketamine-versus psilocybin 
classification. e, f. Similar to Fig. 5c, d for acute fluoxetine-versus psilocybin classification. 

 359 
For ketamine versus psilocybin, the top 5 regions that were consistently included in >96% of the 360 

cross-validation splits and had the highest SHAP value differences were the visceral area 361 

(VISC), gustatory area (GU), dorsal agranular insular area (AId), xiphoid thalamic nucleus (Xi), 362 

and nucleus of reuniens (RE) (Fig. 6c, d). VISC and GU have direct connections to AId, all of 363 

which are part of the lateral subnetworks of the mouse neocortex83, 84. The mouse insular cortex 364 

contains various cell types that express an abundance of 5-HT2A and 5-HT1A receptors85, which 365 
may predispose it to stronger activation by psilocybin. Indeed, the higher c-Fos scores in these 366 

lateral cortical regions informed the model to predict psilocybin. Of note, the insular cortex is 367 

considered a core region in the mouse homolog of the salience network86, 87, which has been 368 
implicated in mood regulation and depression in humans88. Xi and RE are part of the midline 369 

thalamus, which receives visual inputs to mediate behavioral responses to threat89. 370 
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Interestingly, higher c-Fos scores in these midline thalamic regions are routinely used by the 371 

machine learning models to predict ketamine.  372 
 373 

Finally, we also plotted SHAP value differences comparing acute fluoxetine and psilocybin (Fig. 374 
6e, f). Here, the strongest differences were detected by in regions involved in somatosensation 375 

and motor control, including cortical somatosensory regions (SSs, SSp-m), primary motor cortex 376 

(MOp), substantia nigra (SNr), and caudoputamen (CP). These effects may relate to the 377 
previously noted effects of psychedelic on the integration of tactile sensory inputs90. Other 378 

implicated regions are the interpeduncular nucleus (IPN) and medial mammillary nucleus (MM), 379 

which are deep midbrain regions that are component of the limbic midbrain circuitry with long-380 
range connections to habenula, amygdala, and hippocampus. 381 

 382 
DISCUSSION 383 

In this study, we evaluated the possibility of using whole-brain imaging of cellular c-Fos 384 
expression for drug classification. We developed a machine learning pipeline with key features 385 
including adapting the statistical Boruta procedure to select informative brain regions and using 386 

Shapley additive explanation to identify features that drive the classifications. We tested the 387 
approach using 64 mice that were administered with a panel of psychedelics and related 388 
psychoactive drugs. The results demonstrated high accuracy in various one-versus-rest and 389 
one-versus-one classification problems, supporting the utility of the approach for preclinical drug 390 

discovery. For dissemination, the data and code are available at a public repository.  391 
 392 
Immunohistochemistry can be influenced by factors such as fixation method, incubation time, 393 

antibody quality, and antigen retrieval techniques. Consequently, the c-Fos antibody staining 394 
can differ from sample to sample. Here, the issue of inter-sample variability was mitigated by not 395 

using the absolute c-Fos+ cell counts for analysis, but instead using the proportional distribution 396 

in each brain region by dividing c-Fos+ cell counts in each region by the total count in each 397 

brain. For instance, if the entire brain was stained poorly and the total c-Fos+ cell count is low, 398 

the proportion distribution should remain unchanged. This normalization step is possible when 399 

whole-brain data is acquired via light sheet fluorescence microscopy. Experimentally, the 400 
variation in antibody staining is also reduced because active electrotransport methods were 401 

used for immunolabeling. Although the normalization step is expected to help with inter-sample 402 

variability, we note that the 64 samples were processed for imaging over 3 batches (details are 403 
provided in Methods), and some differences may arise from batch effects. 404 
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 405 

On average, only a small number of brain regions (~25 brain regions, except for the two 406 
comparisons involving MDMA which included ~50 brain regions) out of the >300 summary 407 

structures in the brain were included in the machine learning models. From our prior study 408 
comparing psilocybin and ketamine43, we know that both compounds induce increases in c-409 

Fos+ expression in numerous brain regions including dorsal and ventral anterior cingulate 410 

cortex (ACAd, ACAv), prelimbic area (PL), primary visual cortex (VISp), retrosplenial cortex 411 
(RSP), mediodorsal thalamus (MD), locus coeruleus (LC), lateral habenula (LH), claustrum 412 

(CLA), basolateral amygdala (BLA), and central amygdala (CEA). These brain regions are likely 413 

important for drug action, but shared targets of ketamine and psilocybin are not helpful for 414 
distinguishing the compounds. By design, the machine learning pipeline emphasizes brain 415 

regions with c-Fos expression changes that can discriminate between drug conditions, for which 416 
we found a short list of brain regions. 417 

 418 
We anticipate the pipeline to be useful for classifying new chemical entities. For instance, when 419 
a novel psychedelic-inspired compound is synthesized, we may predict its action in the brain by 420 

its position in the linear discriminant axes (Fig. 3b) and the proximity to existing drug labels 421 
(Fig. 3c). We simulated how such a scenario could work by fitting the pipeline with 7 422 
compounds and testing 6-fluoro-DET as if the classifier has never seen it previously (Fig. S1). 423 
For the full panel of drugs tested, we show that the exact drug could be identified with mean 424 

accuracy of 67%, significantly above the chance level of 12.5%. It is instructive to ask how the 425 
pipeline’s performance compared with other approaches to classify drugs. For humans, 426 
psilocybin, ketamine, and MDMA exert comparable acute behavioral effects in metrics such as 427 

experience of unity, oceanic boundlessness, and changed meaning of percepts69. However, 428 
MDMA preferentially induce blissful state, whereas ketamine evokes disembodiment and 429 

psilocybin induces elementary imagery and audio-visual synesthesia69, 91. In one study, human 430 

participants were asked to guess the administered drug, choosing between mescaline (500 mg 431 

and 300 mg), LSD, and psilocybin92. The accuracy for identifying the correct drug ranged from 432 

48% to 58% during the session and 69% to 81% after the study. For animals, there has been 433 

recent progress in capturing videos of freely moving mice and analyzing their motion using 434 
unsupervised machine learning methods. One study used motion sequencing method to 435 

investigate a larger panel of 30 psychoactive compounds and doses from a wide range of drug 436 

classes including benzodiazepines, antidepressants, antipsychotics, and stimulants (but not 437 
psychedelics and the compounds tested in the current study) to show a F1 precision-recall 438 
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score of 0.6223. Our pipeline based on brain-wide cellular c-Fos expression and machine 439 

learning therefore performed at a level comparable to earlier methods based on human and 440 
animal behaviors.  441 

 442 
As with any analysis pipeline, there are methodological choices that can affect the outcome, 443 

which can plague the interpretation as demonstrated in the field of neuroimaging93. Our 444 

codebase is available online for anyone to freely use, adapt, and test. We used a statistical 445 
method with the Boruta algorithm, rather than a strict threshold, for region selection. We were 446 

careful about data leakage, using only the training data for parameter optimization and feature 447 

selection, such that the prediction accuracy for test data would not be inflated. We implemented 448 
Shapley additive explanation to decipher the factors driving the decisions, which is a general 449 

approach that should find great utility in neuroscience94, and has already seen applications in 450 
behavioral classification95 and spike waveform analyses96. There are areas of improvement for 451 

the pipeline. While we opted for the simplicity of treating each brain region on its own, regions 452 
may have correlated responses to drug administration. There may be biological reasons, such 453 
as anatomical proximity or synaptic connectivity, for clustering brain regions prior to region 454 

selection, which may outperform our procedure. Network analyses may be used to explore 455 
potential correlated responses to drugs. Furthermore, the pipeline will benefit from testing a 456 
larger range of compounds including enantiomers, other drug classes, and different doses. The 457 
drugs may be administered in conjunction with a receptor antagonist and a stress or behavioral 458 

manipulation, which will all lead to a richer and more refined picture of the ‘drug space’. Finally, 459 
c-Fos is one immediate early gene. It is well characterized as an activity-dependent gene and 460 
has the advantage of nuclear labeling that permits automated detection. However, there are 461 

other immediate early genes and plasticity-related biomarkers that can provide complementary 462 
information. 463 

 464 

Here we only demonstrated moderate throughput by performing the whole-brain imaging 465 

approach for a sample size of 64 brains. This falls short of other current screening methods, 466 

which typically involve hundreds of conditions including more compounds, different doses, and 467 

additions of antagonists for competitive assays. For whole-brain imaging, the main issue was 468 
cost, which precluded us from testing at a larger scale. At the moment, the drug injection and 469 

tissue extraction steps are straightforward. The cell counting procedure is mostly automated. 470 

However, the cost per brain is high due to tissue processing and imaging, which may drop in the 471 
future because of the rapid advances in brain clearing methods97 and the development of 472 
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inexpensive light sheet fluorescence microscopes98, 99. Thus, there is hope that whole-brain 473 

imaging can become a practical method for screening drugs within the next several years. 474 
 475 

In summary, there is intense interest in using psychedelics for the treatment of neuropsychiatric 476 
disorders. Progress hinges on knowing more about existing psychedelics and finding new 477 

psychedelic-inspired drugs with improved characteristics. However, there is currently a paucity 478 

of reliable methods to screen psychedelics and related analogs. Here we developed and 479 
characterized an approach based on whole-brain imaging of cellular c-Fos expression. We 480 

demonstrated high prediction accuracy for drug classifications using a machine learning 481 

pipeline. We expect this and other neuroscience-based approaches to play an important role for 482 
accelerating the preclinical development of psychiatric drugs. 483 
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 515 
METHODS 516 

 517 
Animals. We used adult, 8-week-old male and female C57BL/6J mice (#00064, The Jackson 518 

Laboratory). Tissues were collected and imaged in three batches. The first batch performed in 519 
August 2021 included 2 males and 2 females for psilocybin (1 mg/kg, i.p.), 2 males and 2 520 
females for ketamine (10 mg/kg, i.p.), and 2 males and 2 females for saline (10 mL/kg, i.p.). 521 

Data from these mice were included in a previous study12. The second batch performed in May 522 
2022 included 2 males and 2 females for psilocybin (1 mg/kg, i.p.), 2 males and 2 females for 523 
saline (10 mL/kg, i.p.), 4 males and 4 females for 5-MeO-DMT (20 mg/kg, i.p.), 4 males and 4 524 
females for 6-fluoro-DET (20 mg/kg, i.p.), 4 males and 4 females for acute fluoxetine (10 mg/kg, 525 

i.p.), 4 males and 4 females for chronic fluoxetine (10 mg/kg, i.p.; daily for 14 days). The third 526 
batch performed in December 2022 included 4 males and 4 females for MDMA (7.8 mg/kg, i.p.) 527 
and 2 males and 2 females for ketamine (10 mg/kg, i.p.). All animals were housed and handled 528 

according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) 529 
at Yale University and Cornell University. Tissue collection for all batches was done at Yale 530 

University, except for ketamine in the third batch that was done at Cornell University. For all 531 

batches, the brain samples were shipped for clearing and imaging at LifeCanvas Technologies 532 

(Cambridge, MA). 533 

 534 

Drugs. Psilocybin, 5-MeO-DMT succinate, and 6-fluoro-DET solids were obtained from Usona 535 
Institute’s Investigational Drug & Material Supply Program. We used the succinate salt form of 536 

5-MeO-DMT100 (at equivalent amount to freebase 5-MeO-DMT) because it can be dissolved in 537 

saline. Ketamine hydrochloride injection vial (055853, Henry Schein; or Dechra), fluoxetine 538 
hydrochloride solid (F132, Millipore-Sigma), 3,4-MDMA hydrochloride (13971, Cayman 539 
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Chemical), and saline (NDC: 0409-4888-03, Hospira) were purchased from supply vendors. 540 

Psilocybin, 5-MeO-DMT succinate, 6-fluoro-DET, MDMA, and fluoxetine were prepared by 541 
dissolving powders into saline. Ketamine was prepared by diluting from the injection vial. For 542 

ketamine, 5-MeO-DMT succinate, 6-fluoro-DET, MDMA, and acute fluoxetine, the working 543 
solutions were prepared fresh on the day of experiment. For psilocybin, a stock solution was 544 

made and then the working solution was made from stock solution, with both solutions prepared 545 

within 1 month from the day of experiment. For chronic fluoxetine, the working solution was 546 
prepared on the first day of administration and then kept in 4°C and used for the remainder of 547 

the chronic treatment.  548 

 549 
Tissue collection and imaging. All the samples underwent the same tissue collection and 550 

imaging protocols. Two hours following the single-dose injection or injection of the last dose for 551 
chronic fluoxetine, mice were deeply anesthetized with isoflurane and transcardially perfused 552 

with phosphate buffered saline (P4417, Sigma-Aldrich) followed by paraformaldehyde (PFA, 4% 553 
in PBS). Brains were fixed in 4% PFA for 24 hours at 4°C, after which they were transferred to 554 
0.1% sodium azide in PBS for storage until clearing. The SHIELD protocol was used to process 555 

the whole mouse brains. A stochastic electrotransport device101 was used to clear samples for 4 556 
days at 42°C, followed by active immunolabeling using eFLASH technology integrating 557 
electrotransport101 and SWITCH102. Each brain sample was stained with 3.5 μg of rabbit anti-c-558 
Fos monoclonal antibody (Abcam, #ab214672), followed by 10 μg of mouse anti-NeuN 559 

monoclonal antibody (Encor Biotechnology, #MCA-1B7) and then by fluorescently conjugated 560 
secondaries in 1:2 primary:secondary molar ratios (Jackson ImmunoResearch). Following 561 
active labeling, refractive index matching (n = 1.52) was done through incubation in EasyIndex 562 

(LifeCanvas Technologies). Samples were then imaged at 3.6× magnification with a SmartSPIM 563 
light sheet fluorescence microscope (LifeCanvas Technologies) at a resolution of 1.8 µm/pixel 564 

for XY sampling with 4 µm step size for Z sampling over the entire brain. Imaging was done 565 

blinded to treatment conditions. 566 

 567 

Atlas registration and cell counting. Fluorescence images were tile-corrected, de-striped, and 568 

registered to the Allen Brain Atlas using an automated process. For each brain, the image from 569 
the NeuN channel was registered to 8-20 atlas-aligned reference samples using 570 

SimpleElastix103, which implemented successive rigid, affine, and b-spline warping algorithms. 571 

The final atlas alignment value for each sample was determined by taking the average 572 
alignment generated across intermediate reference samples. Cell detection was automated by 573 
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using a custom convolutional neural networked designed using the TensorFlow python package. 574 

First, a U-Net-based detection network was used to locate fluorescent puncta corresponding to 575 
c-Fos-immunolabeled cells. Second, a ResNet-based network was used to filter putative cells to 576 

arrive at a final list of cell locations. Each cell location was projected onto the Allen Brain Atlas to 577 
identify its anatomical region. We segmented the brain into 316 summary structures based on 578 

the Allen Mouse Brain Common Coordinate Framework75. We omitted the ‘fiber tracts’ summary 579 

structure in the analysis to focus on grey matter structures. Counts were then generated on a 580 
per-region basis for each sample. 581 

 582 

Batch effect correction. We observed differences in the total number of c-Fos+ cells in 583 
psilocybin samples across batch 1 and 2, saline samples across batch 1 and 2, and ketamine 584 

samples across batch 1 and 3. Batch effects are common and, in this study, may arise from 585 
differences in antibody quality, microscope condition, and/or subtle changes in the automated 586 

cell counting procedure. To correct for these differences, a scaling factor was calculated for the 587 
psilocybin, ketamine, and saline conditions individually. This factor was calculated by taking the 588 
mean total c-Fos+ cell counts of the batch 2 (psilocybin, saline) or 3 (ketamine) mice belonging 589 

to the same drug condition and dividing by mean total c-Fos+ cell counts of the batch 1 590 
(psilocybin, saline, ketamine) mice belonging to the same drug condition. The factor was 2.78 591 
for psilocybin, 4.94 for ketamine, and 3.11 for saline. These factors were applied to the per-592 
region c-Fos+ cell count data in batch 1 to shift the c-Fos+ cell counts to be more comparable to 593 

the later batches. All analyses were performed after the batch effect correction. We emphasize 594 
that this batch correction step should not affect the machine learning analysis pipeline described 595 
below. This is because the first step of the pipeline is to divide per-region count by total count in 596 

each brain, meaning that the absolute values of the cell count should have minimal influence on 597 
model fits but instead it is the relative values of the cell count (e.g., proportion of c-Fos+ cell 598 

residing in one brain region over another brain region in a sample) that mattered for analysis 599 

and prediction.  600 

 601 

Head-twitch response. Head movements were recorded using a magnetic ear tag system as 602 

described in detail previously33. Briefly, an ear tag consisted of a neodymium magnet (N45, 3 603 
mm diameter, 0.5 mm thick, #D1005-10, SuperMagnetMan) that was adhered to an aluminum 604 

ear tag (La Pias #56780, Stoelting) with cyanoacrylate glue (Super Glue Ultra Gel Control, 605 

$1739050, Loctite). The neodymium magnet was coated with a nitrocellulose marker (#7056, 606 
ColorTone) and dried for >2 h, which helped to reduce ear irritation for the mice. This magnetic 607 
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ear tag was applied to the mouse’s ear using an ear tag applicator (#56791, Stoelting). For 608 

measurement, the animal was put inside a plastic cube (4” x 4” x 4”). A spool of enameled 609 
cooper wire (30 AWG) was used to wind around the cube like a solenoid, with the ends of the 610 

wire connected to a current-to-voltage preamplifier (PP444, Pyle) where the voltage was 611 
captured with a computer via a data acquisition device (USB-6001, National Instruments). Each 612 

mouse was recorded using one cube. Up to four cubes could be used to record from four mice 613 

at once inside a soundproof chamber. Data acquisition and analysis were done using custom 614 
software written in MATLAB (Mathworks). The voltage signal was sent through a 70 – 110 Hz 615 

bandpass filter because head twitch response had a characteristic ~90 Hz frequency. The 616 

filtered signal was then processed for peak detection to identify individual head-twitch events. A 617 
protocol including parts list for the setup and the MATLAB code is available at https:// 618 

github.com/Kwan-Lab/HTR. 619 
 620 

Machine learning pipeline – preprocessing. The analysis pipeline used the Python package 621 
sci-kit learn (Version 1.2.1)104. The first step of the pipeline was preprocessing, which entails 622 
three steps: normalization, transformation, and scaling. For normalization, we divided each 623 

region’s c-Fos+ cell count by the total c-Fos+ cell count across all summary structures used. 624 
This was done to mitigate influence of batch effects across samples. For transformation, each 625 
brain region’s normalized c-Fos+ cell counts across different drug conditions were transformed 626 
using Yeo-Johnson power transformation105. The Yeo-Johnson transformation is a generalized 627 

form of the Box-Cox transformation. The transformation leads to data values that more closely 628 
approximate a Gaussian distribution. The Yeo-Johnson transformation was implemented in 629 
scikit-learn: PowerTransformer(method=’yeo-johnson’, standardize=False). The Yeo-Johnson 630 

transformation is parameterized by one variable, lambda. The optimal lambda parameter was 631 
calculated for each brain region independently using maximum likelihood estimation to optimize 632 

for normality. For scaling, for each brain region, the RobustScaler module in scikit-learn was 633 

used to subtract the median value and scales values by the range of the 25th to 75th percentile 634 

(quartile scaling). We decided to do this, rather than subtracting mean value and standard-635 

deviation scaling, because it is less sensitive to outliers. The c-Fos+ cell counts of each brain 636 

region after undergoing the normalization, transformation, and scaling steps are referred to as 637 
the c-Fos scores. To visualize the data, we performed dimensionality reduction on c-Fos scores 638 

across all samples using scikit-learn’s LinearDiscriminantAnalysis function and plotted the top 639 

two linear discriminants (Fig. 3b). 640 
 641 
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Machine learning pipeline – region selection. Based on Allen Institute definition of summary 642 

structures, the brain was divided into 315 regions (316 summary structure and then ‘fiber tracts’ 643 
removed). We were concerned that a model involving c-Fos scores from 315 regions may be 644 

overfitting due to our limited sample size of 64 brains. Many regions are likely not informative 645 
and only contribute noise to the machine learning models. Therefore, we implemented a method 646 

to filter out features (i.e., the brain regions) which were not informative for distinguishing the 647 

desired drug conditions. Region selection was carried out using the Boruta algorithm, as 648 
implemented in the BorutaPy package106. The Boruta algorithm is an ‘all relevant features’ 649 

selection method which seeks to identify all the features with information relevant to a task. This 650 

was done by creating scrambled versions of each feature, which are called shadow features, 651 
and appending them to the original data set. This expanded data set was then used to fit a 652 

random forest classifier, as implemented in scikit-learn. We used the BorutaPy package to 653 
automatically select the number of trees for the RandomForestClassifier() module based on the 654 

size of the feature set. Following this, a threshold was established based on the highest feature 655 
importance amongst shadow features. Features exceeding this threshold were considered ‘hits’ 656 
and recorded. This procedure was repeated 100 times. The distribution across these 100 657 

iterations created a binomial distribution. The BorutaPy package rejected features based on the 658 
cumulative distribution function of a binomial distribution where p = 0.5, alpha = 0.05, and n = 659 
number of hits. Features (i.e., brain regions) that were not rejected by this criterion were the 660 
feature included for the next stage of the pipeline. 661 

 662 
Machine learning pipeline – classification. We used the c-Fos scores of the selected brain 663 
regions to fit a ridge regression model (L2 normalized logistic regression). The regularization 664 

parameter C is a hyperparameter used to modulate the penalty strength. Given the 665 
interconnected nature of the exact feature set and hyperparameter, as well as our desire to 666 

eventually merge results across many cross-validation splits of the data, we opted to fix this 667 

parameter to its default value of 1. The ‘multinomial’ setting was used to generalize from binary 668 

classification to multi-class classification.   669 

 670 

Cross validation to determine prediction accuracy. The data were evaluated using the 671 
aforementioned pipeline using 4-fold splits, where 75% of the data (i.e., 6 brain samples) in 672 

each drug condition was used to train and fit the model, while the remaining 25% of the data 673 

(i.e., 2 brain samples) was used to test the model. Importantly, preprocessing parameters (e.g., 674 
lambda in Yeo-Johnson transformation) and feature selection (brain regions to be included) 675 
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were chosen using only the training data to ensure no data leakage. Nevertheless, after those 676 

stages were fixed, the test data would undergo the same preprocessing and feature selection 677 
steps before being inputted into the ridge regression model to generate the prediction of the 678 

drug condition. We performed 100 iterations, each time using a randomized splits for each drug 679 
condition, generated by scikit-learn’s StratifiedShuffleSplit() function. Combining the outcome 680 

across the 100 iterations, the predicted classifications were used to generate a mean confusion 681 

matrix (Fig. 3c). The probabilities assigned to each label for each test data point were combined 682 
to create a composite precision recall curve, generated using scikit-learn’s 683 

precision_recall_curve function (Fig. 3d, Fig. 4b). The scikit-learn’s auc function was used to 684 

calculate the area under the curve for each composite precision recall curve (legend of Fig. 3d). 685 
We used numpy’s random seeds and state objects (numpy.random.RandomState()) to generate 686 

reproducible results. The cross validation splitting function was seeded with an integer, per 687 
scikit-learn’s recommendations. Remaining random states were set using a random state 688 

object. A null distribution for area under the precision recall curve was established by shuffling 689 
labels during each cross validation split prior to model fitting and label prediction (Fig. 4b). 690 
 691 

Shapley additive explanation. SHAP values were generated by the LinearExplainer object 692 
from the SHAP package, which accepted test data points and the fit model. We set the feature 693 
perturbation parameter of the LinearExplainer to ‘correlation_dependent’. SHAP values were 694 
generated in part by breaking dependencies across features and testing the influence of 695 

perturbations on individual features. This ran the risk of creating unrealistic feature 696 
combinations, because many brain regions which would normally change in lockstep may be 697 
changed individually by the algorithm to infer feature importance, which would lead to inflated 698 

feature importance scores107. By using the “correlation dependent” intervention, additional 699 
measures were taken to address correlations in the feature space and credit was distributed 700 

more appropriately. The SHAP values for each test data point were combined across the data 701 

splits from the 100 iterations to arrive at composite SHAP summary plots (Figs. 5c, 6a, 6c, 6e). 702 

We determined which brain regions were included in >=75% of the cross-validation splits of the 703 

data (Figs. 4c, 4d). Regions meeting this criterion were visualized using the brainrender 704 

package108 (Figs. 5d, 6b, 6d, 6f). 705 
 706 

Leave-one-drug-out analysis 707 

The fitting of the pipeline (pipelineObj.fit) was performed on a reduced dataset of cFos scores, 708 
excluding all samples in the 6-fluoro-DET condition. That is, for each split, training data were c-709 
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Fos+ cell count from 75% of the samples from 7 conditions (psilocybin, ketamine, 5-MeO-DMT, 710 

MDMA, acute fluoxetine, chronic fluoxetine, and saline). The test data consist of c-Fos+ cell 711 
count from the remaining 25% of the samples from those 7 conditions and 25% of the samples 712 

drawn from the left-out condition of 6-fluoro-DET. For linear discriminant analysis, the full 713 
dataset was transformed (pipelineObj.transform) and plotted using multiple calls to the seaborn 714 

scatterplot function (sns.scatterplot). 715 

 716 
SUPPLEMENTARY INFORMATION 717 

 718 

Supplementary Table 1. Table of the brain regions in the analysis. 719 
Supplementary Table 2. Number of c-Fos+ cells per brain reion for each sample in the 8 drug 720 

conditions. 721 
Supplementary Figure 1.  722 
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