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Abstract:

Geometric morphometrics is widely employed across the biological sciences for

the quantification of morphological traits. However, the scalability of these methods to

large datasets is hampered by the requisite placement of landmarks, which can be

laborious and time consuming if done manually. Additionally, the selected landmarks

embody a particular hypothesis regarding the critical geometry pertinent to the biological

inquiry at hand. Modifying this hypothesis lacks flexibility, necessitating the acquisition

of an entirely new set of landmarks on the entire dataset to reflect any theoretical

adjustments. In our research, we investigate the precision and accuracy of landmarks

derived from the comprehensive set of functional correspondences acquired through the

functional map framework of geometry processing. We use a deep functional map
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network to learn shape descriptors that effectively yield functional map-based and

point-to-point correspondences between the specimens in our dataset. We then

interrogate these maps to identify corresponding landmarks given manually placed

landmarks from the entire dataset. We assess our method by automating the

landmarking process on a dataset comprising mandibles from various rodent species,

comparing its efficacy against MALPACA, a cutting-edge technique for automatic

landmark placement. Compared to MALPACA, our model is notably faster and

maintains competitive accuracy. The Root Mean Square Error (RMSE) analysis reveals

that while MALPACA generally exhibits the lowest RMSE, our models perform

comparably, especially with smaller training datasets, suggesting strong generalizability.

Visual evaluations confirm the precision of our landmark placements, with deviations

remaining within an acceptable range. These findings underscore the potential of

unsupervised learning models in anatomical landmark placement, providing a viable

and efficient alternative to traditional methods.

1. Introduction

Landmark-based morphometrics constitutes a critical methodology in biological

research, enabling precise quantitative analysis of shape and size variation in

organisms (Adams et al., 2004; Webster and Sheets, 2010; Mitteroecker and Schaefer,

2022). Central to studies in developmental, evolutionary, and functional morphology,

landmark-based morphometrics allows researchers to rigorously test hypotheses

concerning genetic and environmental impacts on morphological traits (Dunn and Avery,

2021; Hobbs et al., 2021). Such studies deepen our understanding of phenotypic
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plasticity and adaptation, and are indispensable in phylogenetic analyses, helping trace

morphological changes across evolutionary timelines and clarifying taxonomic

relationships (Lawing and Polly, 2010).

As morphological data increasingly become pivotal in integrative biology,

automating measurement and standardizing landmark placement is becoming essential

(Porto et al., 2021; Thomas et al., 2023). This automation is crucial for supporting

large-scale studies and meta-analyses that require consistent data quality from diverse

sources. Emerging techniques, particularly those leveraging advancements in machine

learning and unsupervised algorithms, offer substantial improvements in processing

efficiency and robustness (MacLeod et al., 2010; Macleod, 2017). Such technologies

enable researchers to manage larger datasets with minimal bias and enhanced

throughput, significantly advancing the field (Adams and Otárola-Castillo, 2013; Boyer

et al., 2014; Maga et al., 2015).

The automation of anatomical landmark collection not only streamlines the

investigative process but also enhances precision and reproducibility, which are vital for

advancing our understanding of complex biological structures. Automated systems

reduce the subjectivity and inconsistencies typical of manual landmark identification,

ensuring that findings are robust and universally comparable. This integration saves

valuable resources and augments the capabilities of computational biology, enabling

intricate exploration of patterns and relationships within and across species.

Furthermore, these advancements improve the accessibility of detailed morphological

analyses, promoting a more inclusive and comprehensive approach to anatomical

research (Richtsmeier et al., 2002, 2005).
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However, automatic landmarking of biological specimens introduces significant

challenges that impact the reliability and validity of morphometric analyses. Biological

specimens often exhibit considerable variability due to genetic, developmental, and

environmental factors, challenging algorithms to consistently identify landmarks across

diverse samples (Devine et al., 2019). These issues are compounded by the potential

misinterpretation of subtle anatomical features by automated systems, which could

skew morphological analyses. The development of robust automatic landmarking

systems thus hinges on the availability of extensive, precisely annotated datasets

essential for training machine learning models to accurately generalize across the

natural diversity found within and between species. Addressing these challenges is

critical to enhancing the precision and utility of automatic landmarking tools in

anatomical and evolutionary biology research (Slice, 2006, 2007; Adams and

Otárola-Castillo, 2013).

The objective of this study is to develop and evaluate a deep learning-based

algorithm specifically designed for the automatic landmarking of morphological

specimens represented as 3D polygon meshes. Our methodology leverages advanced

geometry processing techniques to establish correspondences between biological

shapes using the Functional Map (FMap) framework. Geometry processing is a field

focused on the acquisition, representation, processing, analysis, and visualization of

geometric data. The FMap framework is an approach within this field that represents

maps between shapes as transformations of functions rather than direct point-to-point

correspondences. This method involves using the eigenfunctions of the

Laplace-Beltrami operator to create a compact and stable map representation, which
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simplifies the application of constraints and the inference process. The framework is

particularly useful for tasks such as shape matching, segmentation transfer, and the

joint analysis of shape collections, allowing for efficient and accurate manipulation of

complex geometries. Applications of this framework include improving shape matching

methods, transferring annotations between shapes, and facilitating the study of

anatomical structures through detailed comparative analysis (Ovsjanikov et al., 2012,

2017; Ovsjanikov, 2016; Thomas et al., 2023).

Our research builds on the foundational work of the MorphVQ pipeline introduced

by (Thomas et al., 2023). MorphVQ takes advantage of the FMap framework for

biological shape analysis, and was intended for landmark-free representation of shape

difference as it uses shape operators (latent shape variables) to represent differences in

morphology within a collection of bone shapes. Unlike the original MorphVQ, our

approach aims to generate accurate and precise dense point-to-point correspondences

from FMap correspondences, facilitating the acquisition of landmarks. Thomas et al.

2023 highlighted the efficacy of an FMap-based pipeline for biological shape analysis,

showing how this approach can successfully characterize both intra- and inter-group

variation for diverse research applications. Notably, the efficacy of MorphVQ was

evaluated by comparing the error between landmarks placed by the algorithm and those

ground-truth landmarks collected by an expert, demonstrating the pipeline's ability to

generate precise and accurate landmarks.

This paper advances the field of morphometric analysis by introducing significant

enhancements to the MorphVQ pipeline, improving both the efficiency and accuracy of

automatic landmarking in biological specimens. In addition to retooling MorphVQ
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primarily for landmark acquisition, we enhance the published MorphVQ model (Thomas

et al., 2023) in three critical areas: firstly, by eliminating the necessity for the rigid

pre-alignment of specimens; secondly, by reducing the time required to train the model;

and finally, by improving the quality of the FMaps and the precision of point-to-point

correspondences obtained. To achieve these objectives, we have integrated three key

algorithmic innovations into our framework. First, our model incorporates the

orientation-preserving properties of the newly developed Complex FMap method

(Donati et al., 2022). Second, the use of the DiffusionNet model for descriptor learning

improves the robustness and adaptability of functional mappings across varying mesh

resolutions and surface complexities (Sharp et al., 2020). Third, enforcing spatial and

spectral cycle consistency during the Deep Functional Maps (DFMaps) network training

process ensures more accurate and bijective point-to-point mappings, reducing the

need for post-processing refinement and improving generalization performance across

diverse biological datasets (Lähner et al., 2017; Litany et al., 2017; Halimi et al., 2018;

Sun et al., 2023). Collectively, these innovations not only augment the capabilities of

MorphVQ in morphometrics but also expand its potential for large-scale,

high-throughput studies, fostering deeper insights into the evolutionary and

developmental dimensions of organismal biology.

The remainder of this paper details the methods and subsequent results that

underpin our investigation into the enhanced MorphVQ pipeline. We commence with a

comprehensive description of the experimental setup, wherein the MorphVQ model is

meticulously evaluated using a mouse mandible dataset—a choice motivated by its

relevance and frequent use in morphometric research. This dataset provides a robust
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basis for assessing the precision and effectiveness of our landmark placement

methodology under realistic conditions.

In a joint results and discussion section, we present a thorough analysis of our

findings, primarily through an error study that quantifies the landmark placement

accuracy of our method. We achieve this by comparing the root mean square error

(RMSE) of landmarks estimated by our enhanced MorphVQ model against ground-truth

landmarks, with a particular focus on how our model's performance stands against

MALPACA, the current state-of-the-art method in automatic landmark placement. This

comparative approach not only highlights the improvements our method offers over

existing technologies but also provides a clear, empirical basis to discuss the

implications of our results for the broader field of morphological research.

2. Materials and Methods:

2.1 Dataset Description & Polygon Mesh Preprocessing

This study uses a dataset originally characterized by (Maga et al., 2015),

comprising 425 3D hemi-mandible models generated from the microCT scans of mouse

heads. This dataset was derived from a backcross ([A/J x C57BL/6J] x A/J) of two

commonly used inbred laboratory strains. All samples were collected at 28-day

postnatally. Briefly, heads of these mice were scanned at 18 micron resolution via

microCT. For specifics of the backcross design, husbandry and 3D imaging we refer the

reader to Maga et al, 2015, and specifically for generation of the mandibles and

associated mandibular landmarks to Navarro and Maga 2016. In this project, data

derived from these papers underwent a comprehensive preprocessing pipeline using
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several modules within the open-source platform, 3D Slicer and its SlicerMorph

extension (Fedorov et al., 2012; Rolfe et al., 2021). This initial phase involved the

segmentation of the mandibles from the surrounding cranial structures. Following

segmentation, we extracted surface polygon models (triangular meshes) from each

specimen. These models were then subjected to a cleaning process within 3D Slicer,

aimed at refining the data for subsequent analytical steps. We employed the Meshfix

python library to address and rectify any deficiencies in the polygon models, such as

gaps or non-manifold geometries (Attene, 2010). Meshfix facilitates the seamless filling

of holes and ensures that each model adheres to manifold criteria, thereby enhancing

the integrity and utility of the extracted models for our morphological analyses.

2.2 Ground-Truth Landmarks

The morphometric analysis incorporated in this study uses a set of landmarks

delineated and collected in (Navarro and Maga, 2016), comprising thirteen points

placed on each specimen's mandible, annotated on the hemi-mandibles derived from

the microCT images (Figure 2). This selection of landmarks aligns with the classical set

of landmarks traditionally employed in genetic studies of mouse mandibles (Klingenberg

et al., 2001; Workman et al., 2002; Leamy et al., 2008, 2015; Suto and Jun-ichi, 2009;

Burgio et al., 2012; Boell, 2013; Boell et al., 2013), offering a robust framework for

comparative analysis. To ensure the highest degree of measurement accuracy and

reproducibility, each specimen was landmarked twice by a single person. The resultant

measurements were then averaged, providing a refined estimate that mitigates potential

intraobserver errors inherent in single measurements.
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2.3 Implementation: Unsupervised Training Scheme and Loss Criterion

Initially, the polygon models representing each specimen were uniformly scaled

to unit area. For FMap estimation within our network, we derived the stiffness and mass

matrices for each mesh using the cotangent weighting scheme (Ovsjanikov et al.,

2016). This critical step facilitated the computation of the Laplace-Beltrami Operator

(LBO), executed through Eigen decomposition (Ovsjanikov et al., 2012, 2017;

Ovsjanikov, 2016). The process yielded essential eigenvectors and eigenvalues,

forming the basis for our analytical endeavors. We also computed the gradient operator

for each mesh as complex sparse matrices for use in descriptor learning and complex

functional map estimation within our network. These variables, in addition to the vertices

of each mesh, were retained for training.

For the unsupervised training of our model, we initially separated the dataset of

425 specimens into two principal groups. The primary group, comprising 322

specimens, was designated for the unsupervised training phase. The secondary group,

containing 103 specimens, was specifically reserved for post-training inference to

evaluate the model’s ability to generalize to unseen data. These specimens were

intentionally excluded from the training phase to provide a stringent test of the model's

generalizability to unseen data.

Further, we subdivided the primary group of 322 samples into two smaller

datasets, each consisting of 30 randomly selected specimens drawn without

replacement. These subsets, referred to as Dataset 30A and Dataset 30B, were created

to investigate the model’s performance under conditions of limited training data, which is
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common in case of non-model biological systems. This approach allows us to assess

the efficacy of unsupervised learning when applied to smaller datasets and to

understand the model’s capability in generalizing from minimal training examples to

novel data as well.

Our MorphVQ DFMap-based shape matching framework is inherently pairwise in

its operation, i.e., every sample is matched to every other sample. Consequently, we

structured both the training and inference processes to accommodate this design by

ensuring that each pair of shapes within the dataset was analyzed bidirectionally.

Specifically, for each of the four datasets, every possible pair was processed from each

shape acting as the source to the other as the target, and vice versa. An epoch within

our framework was defined as a complete cycle through all such bidirectional pairings.

Consequently, the computational complexity of completing one epoch is denoted by

O(n2), reflecting the intensive pairwise calculations required across the entire dataset.

We developed our model using Pytorch, as outlined by (Li et al., 2020), and

incorporated the DFMap component of the MorphVQ framework from Sun et al., 2023.

The core of our architecture, the DiffusionNet function approximator, comprised 12

DiffusionNet Block layers, each with an MLP width of 512. Notably, these layers

produced an output of 256 descriptor features in the final dimension. Input to the model

was provided as Wave Kernel Signatures (WKS), calculated using the first 128 bases of

the Laplace-Beltrami Operator (LBO) of each shape, generating 256 descriptor features

for each vertex dimension.

Our training regimen utilized a batch size of 4, while inference operated on a

batch size of 1. We used a NVIDIA RTX A6000 GPU to conduct all our experiments.
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We conducted training over 30 epochs across our comprehensive pairwise dataset,

which includes 322 specimens. Additionally, separate models were trained on datasets

30A and 30B. The learning process was driven by an initial learning rate of 2×10−4 with

the ADAM optimizer (Kingma and Ba, 2014), and was linearly reduced to 2×10−6 by the

30th epoch with our learning rate scheduler.

As depicted in Figure 1, our training scheme begins with the estimation of new

shape descriptors 𝐹 and 𝐺 for any pair of shapes within a dataset, specifically from the

source and target shapes 𝑆1 and 𝑆2, respectively. Initially, these descriptors are derived

from the wave kernel descriptors 𝐷1 and 𝐷2. Additional inputs for generating 𝐹 and 𝐺

include the precomputed Laplace and mass matrices (𝐿 and 𝑀), spatial gradient

matrices (𝐺), and the eigenvalues and eigenvectors of the Laplace-Beltrami operator

(LBO) for both shapes. These computations are facilitated by our Siamese DiffusionNet

function approximator. Further processing involves projecting 𝐹 and 𝐺 into the LB

eigenbasis Φ and Ψ corresponding to shapes 𝑆1 and 𝑆2, respectively. This step is

crucial for estimating the main branch functional maps via the regularized FMap block,

as highlighted by the black lines in Figure 1. The projections also facilitate spatially and

spectrally cycle consistent estimates from the cycle consistency block Π (depicted by

the red in figure 1). Additionally, 𝐹 and 𝐺 are projected into the connection Laplacian

basis for their respective shapes, which assists in estimating the complex functional

correspondence 𝑄 using the Complex FMap Block depicted in orange in Figure 1.
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With Functional map estimates from both the FMReg Block , and the(𝐶
12

𝐶
21
)

cycle consistency block Π , in both source-to-target and target-to-source(𝐶
12

𝐶
21
)

directions and we are able to compute the first portion of our unsupervised loss as:

eq. 1

Here, the first term promotes the orthogonality of our main branch functional map, and

the second term promotes the consistency of both maps from each branch. For

additional information on how , are obtained from the cycle consistency module𝐶
12

𝐶
21

Π see (Sun et al., 2023) section 4.1. The second portion of our unsupervised loss on the

complex functional map 𝑄 is meant to impose orthogonal (Donati et al., 2022):

eq. 2

Jointly with the laplacian regularizer implemented in the Complex FM block (Figure 1)

this loss in eq. 2 ensures that our model learns orientation-preserving isometric maps.

With these losses computed given any pair of shapes, we compute the gradients with

respect to the learnable parameters in our DiffusionNet function approximator and apply

an update given a specific learning rate.

2.4 Obtaining updated MorphVQ Landmark Estimates

After training the Deep Functional Mapping (DFMap) network within the updated

MorphVQ pipeline, we conduct pairwise inference on all specimens used in
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unsupervised training, as well as on a separate dataset of 103 unseen (validation)

specimens. We retain the functional maps (C12 and C21) and the Laplace-Beltrami

Operator (LBO) eigenvectors for each pair of specimens. Dense point-to-point maps T12

are computed by projecting the eigenvectors of the source shape 𝑆1 onto the

eigenspace of the target shape 𝑆2 using the functional map C12. The closest matches in

this transformed space are identified using a 1-nearest neighbor search, thus deriving

T12. Similarly, T21 is computed by reversing the roles of 𝑆1 and 𝑆2, thereby mapping each

point on 𝑆2 to its nearest counterpart on 𝑆1.

To derive landmark estimates based on the dense point-to-point

correspondences (T12 and T21) generated by our model, we utilized the VTK Python

library (Schroeder et al., 2013). For each of the 13 ground-truth landmarks on every

source shape, we identified the nearest vertex on the corresponding 3D model. The

vertex index was then used to query T12 and T21, obtaining corresponding vertices on

the respective target shapes. These target vertex coordinates were considered as the

best estimates of the configuration of homologous landmarks on the target specimens.

This procedure was repeated for each pair of source and target specimens within our

pairwise dataset, providing 𝑛−1 estimates of landmark configurations for each

ground-truth landmark set. From these 𝑛−1 estimates for each specimen, we selected

the median set of landmark estimates as our primary estimated landmark configuration,

as derived from our updated MorphVQ pipeline.
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2.5 Estimating landmarks with MALPACA

As an alternative method of automatically landmarking the same set of samples,

we used the MALPACA module in SlicerMorph (Zhang et al., 2022). MALPACA is the

multi-template implementation of ALPACA, in which a 3D model of a landmarked

specimen is used as a source model to transfer the same set of landmarks to target

models using point-cloud based linear and deformable registrations (Porto et al., 2021).

Multi-template version of ALPACA allows using more than one source model to

generate multiple estimates of what the landmark position should be for the target

sample. The median of these estimates were then used as the final estimate for the

target, which reduces the potential bias from using a single reference and often

provides estimates closer to the ground-truth (Zhang et al., 2022). For technical aspects

of ALPACA pipeline, and its multi-template implementation we refer to the reader Porto

et al., 2021 and Chi et al., 2022 respectively. For this study we used 7 randomly

selected mandibles as reference models. We executed the MALPACA run on the same

server as the geometric learning pipeline was run, but using only the CPU. During

MALPACA, we used the Bayesian implementation of the Coherent Point Drift

(https://github.com/ohirose/bcpd), which provides a significant speed up compared to the

standard implementation (the acceleration option in the ALPACA menu). All other

ALPACA settings were left as default. For clarity, MALPACA pipeline was not run on the

mandibles derived from the preprocessing pipeline described in Section 2.1 above, but

on the original mandibles models generated for Navarro and Maga 2016, as ALPACA

does not require those preprocessing steps.
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On average, final landmark positions for a target model were calculated from 7

templates in little less than 3.5 minutes; or in other words, obtaining a single ALPACA

run for one template took less than 30 seconds. The full MALPACA pipeline for

obtaining median estimates for all 425 samples was just over twenty four hours.

MALPACA estimated landmarks and the ground-truth points they were compared to are

provided in our github repository https://github.com/oothomas/SSC-MorphVQ.

2.6 Landmark error study

Once unscaled landmark estimates were obtained from both MALPACA and our

updated MorphVQ, we employed the numpy library to calculate the root mean square

error (RMSE) between our estimated points and the expert-measured ground-truth

points. This calculation was averaged over three dimensions and performed for all 322

specimens in our main dataset, the 425 specimens in the MALPACA dataset, and for

the landmark estimates derived from inference on the 103-specimen validation dataset

for each of the three versions of the updated MorphVQ. These results are detailed in

Table 2.

3. Results/Discussion:

Here, we evaluate our model's capacity to automatically and, in an unsupervised

way, yield accurate landmarks, comparing its performance against MALPACA, the

current state-of-the-art algorithm for automatic landmark placement. This critique

includes a detailed error analysis, highlighting areas where our model outperforms the

original MorphVQ.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2024. ; https://doi.org/10.1101/2024.05.22.595350doi: bioRxiv preprint 

https://github.com/oothomas/SSC-MorphVQ
https://doi.org/10.1101/2024.05.22.595350
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.1 Error-based Comparative Performance and Model Generalization

Our analysis focused on comparing the Root Mean Square Error (RMSE) of

landmark predictions relative to manually placed ground-truth landmarks from our

FMap-based models to those obtained from MALPACA, the state-of-the-art. The focus

of our analysis is on the robustness of these FMap-based models, particularly in their

ability to generalize to unseen specimens.

MALPACA generally exhibited the lowest Root Mean Square Error (RMSE)

across all landmarks with an average RMSE of 0.113 mm, indicating high precision in

landmark estimation on the full sample size. Despite this, our FMap-based models

showed competitive performance, especially when considering that they were trained in

an unsupervised manner on significantly smaller datasets (Table 1). Notably, the models

trained on random selections of 30 specimens (30-Random A and B) performed

comparably to the main model trained on 322 specimens in both training and validation

phases. This suggests a strong generalizability of the FMap-based approach even with

limited training data.

While MALPACA consistently showed low RMSE, the FMap-based models

exhibited lower RMSEs for specific landmarks in certain instances. For example,

landmarks LM3 and LM9 observed notably lower RMSEs in one or more of our models

compared to MALPACA, highlighting instances where FMap models potentially

outperform MALPACA in precision.

Interestingly, all FMap-based models, including those trained on just 30

specimens, maintained similar levels of performance when validated against the
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remaining 103 specimens not seen during training. This indicates not only the

robustness of the FMap models in dealing with unseen data but also indicates their

practical utility in scenarios where acquiring large volumes of training data is challenging

or impractical.

The distribution of RMSE values as visualized in the boxplots (Figure 4, 5, 6, and

7) corroborates these observations. Despite some variability and presence of outliers,

the overlap in the interquartile ranges between our FMap models and MALPACA across

several landmarks (e.g., LM4, LM7, LM10) suggests that our models are not only

efficient in training but also effective in achieving high accuracy comparable to

MALPACA. The ability of the FMap-based models to achieve similar accuracies to

MALPACA has wide-ranging implications for the utility of this updated MorphVQ. Not

only does it provide a more efficient alternative to existing methods but also extends the

accessibility of high-precision landmark detection to studies with limited resources.

The findings underscore the potential of unsupervised learning models in

anatomical landmark detection and placement, suggesting that they can offer a viable

alternative to more traditional, supervised methods in certain applications. The

scalability and efficiency of these models make them particularly suited for large-scale

morphometric studies where rapid processing and generalization to new specimens are

crucial.

3.2 Efficiency and Correspondence Quality of the new MorphVQ

Our updated MorphVQ demonstrates significant efficiency advantages over

MALPACA in both training and inference phases. We found that training the model on
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the entire dataset of 322 specimens was unnecessary, as models trained on just 30

specimens performed equivalently. Additionally, these 30-specimen models achieved

convergence within five epochs, rendering the full 30 epochs redundant. This reduction

in training duration does not compromise the model's effectiveness. Specifically, the

model trains on a dataset of 30 specimens, each with 12,000 vertices processed

pairwise, in approximately three hours. Inference on the remaining 395 specimens, also

processed pairwise, takes about 12 hours. This is significantly faster than MALPACA,

which would have taken 22 hours to generate landmarks for the same 395 specimens.

For a fairer comparison between our updated MorphVQ and MALPACA, the

preprocessing steps required by each approach must be considered. In both cases,

mandibles must be segmented properly to isolate them from the rest of the tissue in the

microCT scan. While both approaches require generating polygon models for each

specimen, the updated MorphVQ approach demands manifold polygon models and

additional preprocessing that is not required for ALPACA. A manifold polygon mesh is a

type of 3D model where the geometry is well-defined such that each edge belongs to

exactly two faces, ensuring that the mesh represents a continuous surface without holes

or self-intersections. This property is crucial for many computational algorithms,

including those used in functional map-based analysis. This additional preprocessing

can be automated in 3D Slicer with the help of Python libraries such as pyMeshFix, as

described in our methods (see the pre-processing directory of our repository at

https://github.com/oothomas/SSC-MorphVQ for additional details). This process took

approximately 1.5 hours to produce meshes with the properties needed for FMap-based

analysis.
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Additionally, both approaches require landmarking a small subset of specimens

to use as templates for generating landmarks, but for very different purposes. In

MALPACA, these landmarks are collected before the analysis. In our approach, these

landmarks can be chosen after training and are used to query the pairwise point-to-point

maps for corresponding landmarks across all specimens in the dataset, and as such, if

landmark configurations need to be modified (e.g., by adding new landmarks), it can be

easily accomplished by re-querying the point-to-point map for the new configuration .

Our approach yields full point-to-point correspondences between all pairs of shapes. As

a result, there is no need to re-train the model to obtain various landmark configurations

representing different biological hypotheses; the full point-to-point correspondences are

always valid and reusable. In contrast, in the current implementation of ALPACA, a new

landmark configuration requires rerunning the algorithm with new landmarks. Although,

the current implementation of ALPACA can be revised to achieve the same functionality.

The efficacy of our method is highlighted by the high quality of the FMaps and

point-to-point correspondences it produces. For example, Figure 3 illustrates the

bijectivity between a randomly selected pair of shapes, with similar colors on the source

and target shapes indicating corresponding anatomical or morphological regions. This

high level of correspondence has been consistently observed across all shape pairs that

we have manually reviewed. Although a complete manual review of all shape pairs is

impractical due to the sheer number, the sampled checks confirm the model's reliability

and accuracy. Notably, these point-to-point correspondences were obtained without any

post-processing refinement, which was essential in the original MorphVQ. By

incorporating spatial and spectral cycle consistency during training, this step is now
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unnecessary, enhancing correspondence quality and reducing the overall processing

time of the pipeline.

3.3 Visual Evaluation of Landmark Placement Accuracy

The precision of landmark placement on mouse mandibles by both the

MALPACA and our Functional Map (FMap)-based models was investigated with their

suitability for quantitative trait loci (QTL) analyses in mind. Despite MALPACA exhibiting

a marginally lower Root Mean Square Error (RMSE) on average across all landmarks,

both methodologies displayed a high level of precision that meets the requirements for

the intended applications.

As depicted in Figure 8, the landmarks placed by our FMap-based approach

(green spheres) generally coincide with those identified by the ground-truth (blue

spheres) and MALPACA (red spheres). This visual congruence reinforces the utility of

our model, particularly in the context of the biological studies for which these landmarks

are critical. Notably, while there are deviations in a few cases, these remain within an

acceptable range for our purposes, which is impressive considering that high precision

is critical for our particular morphometric application.

One of the most significant features of the updated model is the generation of full

point-to-point correspondence maps for all pairs of specimens. This functionality

enables researchers to select any landmark configuration from the dataset, facilitating

flexibility in testing various hypotheses or adapting the model to different applications.

Such versatility is particularly beneficial in dynamic research environments where

analytical needs can evolve over the course of a study.
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Also, our FMap-based approach generates comprehensive point-to-point

correspondences by considering correspondences between all pairs of shapes in the

dataset. This method offers a robust alternative to template-based methods, which may

introduce bias by relying on landmark estimations from a limited number of specific

template specimens. In future studies, the choice between these methods should

account for the precision requirements, potential bias in landmark estimation, and the

available sample size for landmarking.

3.4 A Refined MorphVQ Model

The model we introduce is a refined version of the MorphVQ model,

incorporating significant enhancements over its predecessor and addressing key

limitations in the shape matching portion of the MorphVQ pipeline.

The first improvement is its orientation-aware capability, which eliminates the

need for approximate rigid pre-alignment of specimens. Originally, the MorphVQ

pipeline required rigid pre-alignment using the Auto3DGM algorithm, which was

time-consuming for large datasets. Our study integrates the Complex FMap method,

which uses complex-valued functions to align tangent vector fields, bypassing the need

for pre-alignment and streamlining the workflow. This approach reduces issues such as

local and global symmetry flipping, preserves global orientation, and enables an

unsupervised learning framework without the need for supervised loss functions or

reliance on extrinsic descriptors (Donati et al., 2022).

The second improvement is the adoption of the DiffusionNet model (Sharp et al.,

2020) for descriptor learning, replacing the Harmonic Surface Network (Wiersma et al.,
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2020). DiffusionNet is designed for deep learning on 3D surfaces, using diffusion

processes for effective spatial information transfer. It overcomes limitations of traditional

convolutional networks on non-flat geometries, achieving robustness against variations

in resolution and surface sampling. DiffusionNet's ability to learn across different

geometric representations allows training on point clouds from polygon mesh models,

making it suited for establishing non-rigid correspondences among variable biological

3D shapes. Its integration of learned diffusion processes with spatial gradient features

simplifies the learning process and enhances performance in unsupervised learning

settings for deformable surfaces.

The third and most important innovation in MorphVQ is based on the work of Sun

et al. (2023) to enforce spatial and spectral cycle consistency during the Deep

Functional Maps (DFMaps) network training process. Cycle consistency is essential for

non-rigid shape matching as it ensures that mappings between shapes remain

consistent both in feature-based and point-wise domains when cycled through a series

of shapes. This robust regularizer optimizes mappings across a collection of shapes.

Traditionally, DFMaps project shape features into a spectral domain, using eigen

decompositions related to the shape's geometry. While these spectral mappings can be

consistent when cycling through shapes, they do not necessarily guarantee point-wise

consistency, resulting in lower quality point-to-point correspondences and ultimately

flawed landmarks. In the original MorphVQ, cycle consistency was used to improve

mappings in a post-processing step (Huang et al., 2020). However, the new approach

incorporates this during the training process, enhancing accuracy and reducing the

need for additional refinement.
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These advancements in the revised MorphVQ model represent a significant leap

forward for automated anatomical landmark placement. By reducing the need for

extensive preprocessing, enhancing model generalization, and increasing

computational efficiency, this model sets a new standard for automatic landmark

detection. It integrates modern computational methods with established morphometric

practices, reaffirming the relevance of Geometry Processing and FMap-based methods

in biological shape analysis while opening new opportunities for detailed anatomical

studies.

4. Conclusions:

In this study, we addressed the challenges of precise landmark acquisition on

morphological datasets through the development and evaluation of an enhanced

MorphVQ pipeline. Building on foundational techniques in geometry processing, our

approach has successfully leveraged Functional Map correspondences to enhance the

accuracy and efficiency of automatic landmark placement on morphological specimens

represented as polygon meshes.

Our findings indicate a marked improvement in the precision and reproducibility

of landmark placement. The integration of the DiffusionNet model, which harnesses the

robustness of diffusion processes across complex geometries, along with the

implementation of orientation-preserving complex functional maps, has substantially

reduced the need for pre-alignment. This not only streamlines the workflow but also

preserves the integrity of morphological data by avoiding distortions typically introduced

by errors during rigid pre-alignment steps. The efficacy of these enhancements was
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empirically validated, demonstrating that our approach could achieve landmark

placement accuracy with a Root Mean Square Error (RMSE) competitive with, and in

some instances superior to, the current state-of-the-art method, MALPACA.

Moreover, the incorporation of spatial and spectral cycle consistency has

significantly improved the bijectivity of mappings across highly variable biological

shapes. This improvement is evidenced by the fact that no post-processing refinement

of our correspondences between shapes was necessary, as our new MorphVQ provides

high-quality functional and point-to-point maps without that final step.

This study not only demonstrates the viability of our updated pipeline in achieving

high precision in landmark placement but also sets the stage for future research that

might explore new computational techniques or refine existing ones to further enhance

the capabilities of morphometric analysis. As we continue to unravel the complex

narratives of biological evolution, the tools we refine today will undoubtedly play a

pivotal role in the morphological studies of tomorrow.
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8. Tables and Figure Legends:

Table 1 - Root Mean Square Error Comparison across Datasets

This table presents a comprehensive summary of the Root Mean Square Error (RMSE)

for landmark placement across various models and datasets. The RMSE values for

each landmark (LM1 to LM13) and the overall mean RMSE are listed for the MALPACA

model (using all samples), the main model (trained on 322 specimens), and two subset

models (each trained on 30 random specimens from the main set). Results are divided

into training and validation phases, allowing for comparison of model performance in

learning and generalization contexts. The MALPACA model shows the lowest overall

mean RMSE on all samples, while the subset models and main model exhibit

competitive RMSE values, indicating robust performance even with reduced training

sets.
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Figure 1 - Network Architecture and Training Scheme.

This figure illustrates the architecture of the enhanced MorphVQ pipeline developed for

automatic landmark acquisition. The process begins with the acquisition of the

Laplace-Beltrami (LB) eigenvectors (Φ, Ψ) for shapes S1 and S2, respectively. Each

shape's point cloud or wave kernel signature is processed through a Siamese

DiffusionNet (Θ) to obtain improved shape descriptors (D1 for S1, D2 for S2). These

descriptors (F and G) are then projected onto the Laplacian Eigenbasis for the main

branch of the model, and the connection Laplacian eigenbasis for the complex

functional map branch.

The core of the pipeline, the FMReg Block, regularizes the functional map

estimation, ensuring robust mapping, by integrating both spectral and spatial cycle
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consistency modules (Π), we obtain additional functional maps needed to compute the

loss. The final output includes the complex functional map (Q) and estimation functional

maps from the main branch and the cycle consistency branch in both directions (C_12

and C_21). The network optimizes these outputs by minimizing a combined loss

function (L).
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Figure 2 - Mandibular landmarks used in the study

Three views of a landmarked mouse mandible. The landmarks are shown as blue

spheres. (A) Lateral view in the sagittal plane presenting the side profile of the

mandible, highlighting the overall shape and relative positions of the landmarks on the

lateral surface. Key landmarks are located at the condylar process, the angular process,

and the incisor region. (B) Dorsal view in the horizontal plane illustrating the superior

aspect of the mandible, providing a clear view of the dental arcade and alignment of the

teeth. (C) Mirrored medial view in the sagittal plane showing the inner side of the

mandible.
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Figure 3 - Point-to-Point Correspondence Quality

This figure shows the Point-to-Point correspondences obtained form our model for two

randomly chosen mouse mandible specimen. Regions with the same color indicate

point-to-point (morphological) correspondence
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Figure 4 - Comparison of Main Model to MALPACA Landmark Error Comparison

This figure presents a boxplot comparison of the Root Mean Square Error (RMSE) for

landmark placement between our enhanced MorphVQ model (trained on 322

specimens) and the ground truth provided by the MALPACA algorithm. Each boxplot

represents the distribution of RMSE values across different landmarks (LM1 to LM13)

for both the FMAP and MALPACA methods. The orange bars indicate the RMSE for the

FMAP method, and the green bars represent the RMSE for MALPACA, with outliers

shown as circles. The plots illustrate the variance and median error for each landmark,

providing a visual assessment of the precision and reliability of each method in

landmark placement.
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Figure 5 - Main Model (Validation) to MALPACA Landmark Error Comparison

This figure displays a boxplot comparison of the Root Mean Square Error (RMSE) for landmark

placement on 103 validation specimens, where the main model was used solely for inference. It

compares the performance of our enhanced MorphVQ model (orange) against the established

MALPACA algorithm (green) across thirteen landmarks (LM1 to LM13). This visual comparison

illustrates the generalization ability of our model in accurately predicting landmarks in unseen

data, highlighting its potential robustness and reliability in practical applications.
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Figure 6 - Model 30-Random A (Validation) to MALPACA Landmark Error

Comparison

This figure depicts the Root Mean Square Error (RMSE) comparison for landmark

placement using a second model, trained on 30 specimens selected from the original

322 used to train the main model. The comparison is made using the same 103

validation specimens. This visualization underscores the model's effectiveness in

generalizing from a smaller training set to unseen data, highlighting the potential

scalability and efficiency of using reduced training sets in landmark placement

applications.
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Figure 7 - Model 30-Random B (Validation) to MALPACA Landmark Error

Comparison

This figure shows the Root Mean Square Error (RMSE) comparison for landmark

placement based on a third model, trained on a different subset of 30 specimens from

the original 322 used to train the first and validated solely on the same 103 specimens

used previously. This analysis highlights the model's robustness and consistency in

generalizing from different small training sets to the same validation set, underscoring

the potential for using smaller, diverse training subsets to achieve reliable landmark

placement.
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Figure 8 - Visual Comparison of Landmark Placement Accuracy on a Mouse

Mandible

This figure presents a visual comparison of landmark placement on a mouse mandible,

illustrating the ground truth positions (blue), MALPACA estimated positions (red), and

estimates from our FMAP model (green). Insets zoom into selected landmarks to

highlight the proximity of the estimated positions to the ground truth. Despite the slightly

lower Root Mean Square Error (RMSE) associated with MALPACA, the landmarks

estimated by our FMAP model align closely with both the ground truth and MALPACA's

estimates, demonstrating high-quality landmark estimation. This visual representation
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underscores that the deviations between the methods are minimal and generally fall

within the range expected from human error in manual landmark placement. Thus, the

FMAP model offers comparable precision, reinforcing its utility and reliability in

morphometric analyses.
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