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Abstract  60 

Objective 61 

Long COVID, marked by persistent, recurring, or new symptoms post-COVID-19 infection, 62 

impacts children’s well-being yet lacks a unified clinical definition. This study evaluates the 63 

performance of an empirically derived Long COVID case identification algorithm, or 64 

computable phenotype, with manual chart review in a pediatric sample. This approach aims to 65 

facilitate large-scale research efforts to understand this condition better. 66 

Methods 67 

The algorithm, composed of diagnostic codes empirically associated with Long COVID, was 68 

applied to a cohort of pediatric patients with SARS-CoV-2 infection in the RECOVER PCORnet 69 

EHR database. The algorithm classified 31,781 patients with conclusive, probable, or possible 70 

Long COVID and 307,686 patients without evidence of Long COVID. A chart review was 71 

performed on a subset of patients (n=651) to determine the overlap between the two methods. 72 

Instances of discordance were reviewed to understand the reasons for differences. 73 

Results 74 

The sample comprised 651 pediatric patients (339 females, Mage = 10.10 years) across 16 75 

hospital systems. Results showed moderate overlap between phenotype and chart review Long 76 

COVID identification (accuracy = 0.62, PPV = 0.49, NPV = 0.75); however, there were also 77 

numerous cases of disagreement. No notable differences were found when the analyses were 78 

stratified by age at infection or era of infection. Further examination of the discordant cases 79 

revealed that the most common cause of disagreement was the clinician reviewers’ tendency to 80 

attribute Long COVID-like symptoms to prior medical conditions. The performance of the 81 
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phenotype improved when prior medical conditions were considered (accuracy = 0.71, PPV = 82 

0.65, NPV = 0.74).  83 

Conclusions 84 

Although there was moderate overlap between the two methods, the discrepancies between the 85 

two sources are likely attributed to the lack of consensus on a Long COVID clinical definition. It 86 

is essential to consider the strengths and limitations of each method when developing Long 87 

COVID classification algorithms. 88 

 89 
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Introduction   105 

Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), is a 106 

significant health concern characterized by ongoing, relapsing, or new symptoms emerging four 107 

or more weeks after the acute infection phase1. While post-viral syndromes like chronic fatigue 108 

syndrome following mononucleosis are well-documented in children2-3, understanding the 109 

clinical manifestations of Long COVID in pediatric patients remains incomplete. The variability 110 

of symptoms in children compared to adults complicates diagnosis and treatment4-9. Symptoms 111 

can range from fatigue and headache to loss of taste and smell and chest pain4- 9. Although rare, 112 

diagnosed conditions associated with Long COVID include myocarditis, myositis, postural 113 

tachycardia syndrome (POTS), and myalgic encephalomyelitis/chronic fatigue syndrome 114 

(ME/CFS), among other conditions10. Despite certain symptoms and conditions clearly 115 

attributable to a SARS-CoV-2 infection, like multisystem inflammatory syndrome (MIS-C), 116 

much remains to be understood about others11-12. These symptoms and conditions impose a 117 

substantial burden on children and their families, leading to missed school and the need for 118 

service referrals13-14. This highlights the importance of improved detection and treatment 119 

strategies. 120 

 Identifying children who suffer from Long COVID in research studies is crucial to better 121 

understand this disorder and ensuring timely detection and treatments in clinical settings. 122 

However, this task is challenging due to the inconsistency and heterogeneity of associated 123 

symptoms. To address this challenge, researchers have used large observational cohort studies 124 

that use repositories of electronic health record (EHR) data to identify patients5, 8, 9, 15, 16. These 125 

studies have primarily relied on EHR-based diagnosis codes15-16. The ICD-10-CM U09.9 code, 126 

introduced in October 202117-18, allows clinicians to assign a Long COVID diagnosis; however, 127 
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its utilization remains inconsistent and potentially biased across patients and healthcare settings 128 

16. Additionally, relying solely on this code may not adequately capture all patients due to the 129 

variety of symptoms associated with Long COVID. This poses a risk of misclassification if 130 

researchers exclusively use the U09.9 code for phenotyping.  131 

To improve identification of patients with Long COVID, computable phenotyping 132 

techniques, which involve developing a set of rules to identify patients with a disorder, have 133 

been used in Long COVID studies. Long COVID phenotypes for adult19 and pediatric20 patients 134 

have been developed using machine-learning approaches that leverage large numbers of clinical 135 

features. For example, in a recent pediatric study, a machine learning algorithm demonstrated 136 

high precision in classifying both general and MIS-C-specific forms of PASC, with recall rates 137 

of up to 70% 20. Training these supervised learning models requires a labeled cohort of patients 138 

who likely have Long COVID based on healthcare utilization or Long COVID diagnosis codes. 139 

Since there is no gold-standard definition of Long COVID, it is difficult to produce an unbiased 140 

labeled training set, which limits the generalizability of the models. 141 

In this study, we aimed to 1) identify children with Long COVID by utilizing a rules-142 

based computable phenotype approach and 2) assess the performance of this computable 143 

phenotype for Long COVID in a subset of children. This approach involves analyzing specific 144 

diagnosis coding and symptoms that occur more frequently after a COVID-19 infection. By 145 

doing so, we can more accurately identify a larger number of children with Long COVID. In 146 

addition, we have included clinician reviews of patient charts to gain a comprehensive 147 

understanding of patients’ experience with Long COVID. This combined approach represents a 148 

significant step in the automation of Long COVID clinical phenotypes using EHR data in the 149 

absence of a consensus definition. 150 
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Methods   151 

Data Source   152 

This retrospective cohort study is part of the NIH Researching COVID to Enhance 153 

Recovery (RECOVER) Initiative, which seeks to understand, treat, and prevent the post-acute 154 

sequelae of SARS-CoV-2 infection21. The RECOVER PCORnet EHR cohort includes clinical 155 

data from patients in 40 hospital systems across the United States. Data were extracted from 156 

version 6 of the pediatric RECOVER database, comprising more than 9 million children who 157 

were tested for SARS-CoV-2, diagnosed with COVID-19, or received a COVID-19 vaccine 158 

between 2019 and December 2022. Institutional Review Board (IRB) approval was obtained 159 

under Biomedical Research Alliance of New York (BRANY) protocol #21-08-508. BRANY 160 

waived the need for consent and HIPAA authorization. 161 

Study Population 162 

Inclusion criteria for our pediatric sample were as follows: 1) SARS-CoV-2 infection 163 

confirmed via clinical diagnosis or PCR, antigen, or qualifying serology test22 between March 164 

2020 and December 2022, 2) age less than 21 years at first COVID-19 infection, and 3) at least 165 

two contacts with the healthcare system (at least one being in-person or telehealth) to ensure 166 

adequate follow-up during the post-acute phase (28-179 days following infection). We defined 167 

clinically meaningful time periods surrounding the initial COVID-19 infection as shown in 168 

Figure 1. The acute phase spanned until the 27th day post-infection. The post-acute phase, which 169 

was the primary focus of our analyses, spanned from day 28 through day 179 post-infection, 170 

ensuring that symptoms were not directly related to the acute COVID-19 infection. For patients 171 

with a specific COVID-19 diagnosis or viral test, the initial infection date was the date of 172 

diagnosis or test. For patients with diagnoses indicating “history of” or “complication of” 173 
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COVID-19 or with a positive serology test, we used 28 days prior to the earliest diagnosis or test 174 

evidence of COVID-19 as a proxy for initial infection date.  175 

Phenotype classification 176 

Patients were identified as having conclusive, probable, or possible Long COVID 177 

according to the algorithm described in Figure 2, which used criteria documented in the EHR in 178 

the post-acute period. The algorithm accounts for diagnoses of Long COVID (ICD-10-CM code 179 

U09.9), diagnoses of MIS-C (ICD-10-CM code M35.81), diagnoses of sequelae of specified 180 

infectious and parasitic diseases (ICD-10-CM code B94.8), and 23 diagnosis clusters identified 181 

as probable indicators of Long COVID based on our prior work5,9 (Supplemental File 1). The 182 

diagnosis clusters were formed using a data mining approach that identified conditions more 183 

common in U09.9-diagnosed patients than in non-U09.9 diagnosed COVID-19+ patients in the 184 

post-acute period5. Clinicians then reviewed the diagnosis codes to create clusters of ICD-10-CM 185 

codes. Clusters included abdominal pain, abnormal liver enzymes, acute kidney injury, acute 186 

respiratory distress syndrome, arrythmias, autonomic dysfunction, cardiovascular 187 

signs/symptoms, changes in taste/smell, chest pain, cognitive function, generalized pain, 188 

fatigue/malaise, fever, fluid/electrolyte balance, headache, heart disease, myocarditis, 189 

musculoskeletal symptoms, myositis, respiratory signs/symptoms, and 190 

thrombophlebitis/thromboembolism. Any patient with two or more diagnoses within the same 191 

cluster separated by at least 28 days during the post-acute period was labeled as having probable 192 

Long COVID, regardless of whether the patient had a specific Long COVID or MIS-C diagnosis 193 

code. Figure 2 depicts the steps applied to classify patients according to the certainty of them 194 

having Long COVID. Any patient with conclusive, probable, or possible Long COVID detected 195 
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by the phenotype was labeled as “Long COVID Evidence” and all others were labelled as “No 196 

Long COVID Evidence”. 197 

Chart Review Sampling 198 

A manual chart review was performed on a subset of the study population at 16 199 

institutions. We sampled 702 patients split between the Long COVID Evidence and No Long 200 

COVID Evidence groups to ensure there was adequate representation across sites. The sampling 201 

strategy is laid out in Figure 3. Approximately 22 Long COVID Evidence patients were 202 

randomly sampled per institution. Each Long COVID Evidence sampled patient was matched 203 

1:1 without replacement with a No Long COVID Evidence patient using exact matching on 204 

institution, age at time of infection, calendar quarter of infection, and acute period hospitalization 205 

(yes/no). Ninety percent of the No Long COVID Evidence sample had SARS-CoV-2 infection 206 

while the remaining ten percent (35 patients) were patients with no evidence of SARS-CoV-2 but 207 

with at least two diagnoses of cluster conditions separated by 28 to 150 days. The latter group 208 

were additional patients included in the chart review to gather insight on the attribution of cluster 209 

diagnoses to conditions other than SARS-CoV-2 infection. A total of 651 children were 210 

ultimately included in analyses based on additional exclusions which will be discussed. The 211 

sampling strategy is laid out in Figure 3. 212 

Chart Review Procedure 213 

Clinical research teams from each participating institution conducted chart reviews using 214 

a REDCap23 (Research Electronic Data Capture) instrument with questions including 215 

information on COVID-19 diagnoses and testing, demographics, COVID-19 prevention and 216 

treatment strategies, vaccines, functional outcomes, and conditions post COVID-19 captured in 217 

the patient’s medical record. Each site had between 1 and 5 reviewers for a total of 44 reviewers 218 
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across sites. Table 1 contains a summary of patient information extracted from chart review, and 219 

the full case report form is included in Supplemental File 2.  220 

A secondary review was completed by a clinician who reviewed information extracted by 221 

the primary chart reviewer and answered questions regarding the level of confidence with which 222 

Long COVID could be assigned to the patient. The clinician was first asked if the patient met 223 

criteria for Long COVID based on the NIH definition21 which describes Long COVID as signs, 224 

symptoms, and conditions that continue or develop after initial COVID-19 or SARS-CoV-2 225 

infection, are present four weeks [28 days] or more after the initial phase of infection; may be 226 

multisystemic; and may present with a relapsing-remitting pattern and progression or worsening 227 

over time, with the possibility of severe and life-threatening events even months or years after 228 

infection. They were then asked if the patient met criteria for Long COVID based on the 229 

computable phenotype definition. The response to these questions (i.e., conclusive, probable, 230 

possible, no evidence) was used to assess concordance with the computable phenotype. The first 231 

question, which analyses focused on, asked the clinician to exercise clinical judgment, while the 232 

second question was focused on assessing the validity of the structured EHR data.  233 

For ease of assessing the performance of the computable phenotype compared with chart 234 

review, patients were collapsed into four overlapping groups: computable phenotype-positive 235 

(CP-positive), computable phenotype-negative (CP-negative), clinician review-positive (CR-236 

positive), and clinician review-negative (CR-negative). Patients identified by the phenotype as 237 

having conclusive or probable Long COVID were placed in the CP-positive group. Conversely, 238 

patients found to have possible evidence or no evidence of Long COVID were placed in the CP-239 

negative group. Patients with possible Long COVID were included in the CP-negative sample as 240 

the study team concluded that having only one post-viral sequelae code without a positive PCR 241 
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test to confirm SARS-CoV-2 infection did not provide enough evidence to conclude that the 242 

patient’s post-viral sequelae was caused by Long COVID. On the other hand, when examining 243 

the chart review, we determined that the reasons reviewers used to classify patients as possible 244 

for Long COVID were more similar to a positive than a negative Long COVID classification. 245 

Therefore, the CR-positive group consisted of patients labeled as conclusive, probable, or 246 

possible for Long COVID by the clinician reviewer. In contrast, the CR-negative group consisted 247 

of patients labeled as having no evidence of Long COVID by the clinician reviewer. 248 

Performance Assessment 249 

The performance of the computable phenotype was evaluated across various key metrics 250 

including sensitivity, specificity, positive predictive value (PPV), and negative predictive value 251 

(NPV). Additionally, we examined the accuracy and F1 score of the phenotype. Accuracy 252 

assesses the proportion of CR-positive patients who were also CP-positive. The F1 score 253 

combines precision and recall providing insight into the overall effectiveness of the phenotype.  254 

Next, we assessed whether concordance between the phenotype and clinician review 255 

classification differed by age (i.e., under vs. over 12 years old), variant period (i.e., alpha, delta, 256 

omicron), and number of symptom clusters through stratified analyses. Analyses were conducted 257 

using R version 4.1.2 (2021-11-01; 24). 258 

We conducted an assessment to identify discrepancies between the phenotype and chart 259 

review identification of Long COVID. We reviewed cases where the phenotype identified Long 260 

COVID, but the chart review did not, and vice versa. To understand the reasons behind these 261 

discrepancies, we reviewed the chart review form for each discordant patient, along with the 262 

clinician reviewer's explanation for assigning or not assigning Long COVID. We then generated 263 

themes that accounted for the discrepancy and assigned those themes to the remaining cases. We 264 
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next aimed to modify our model based the most common themes and perform a sensitivity 265 

analysis to assess whether the performance of our modified model was superior to our original 266 

model.   267 

To describe the sample and investigate the impact of patients with complex medical 268 

histories on the performance of the phenotype, we used the Pediatric Medical Complexity 269 

Algorithm25 (PMCA). We determined the chronic condition status of each patient by applying 270 

the more conservative version of the algorithm. This version requires that a patient have one 271 

diagnosis of a progressive or malignant condition or at least two diagnoses per body system for 272 

at least two body systems in the three years prior to the SARS-CoV-2 infection.  273 

Results   274 

Among patients with a positive SARS-CoV-2 infection (1,007,867), the computable 275 

phenotype detected Long COVID in 31,781 (3.2%) patients. Seven hundred and two patients 276 

were included in the chart review sample; however, sixteen charts were not completed due to 277 

limitations in the chart reviewers’ access to records and were excluded from the sample. In 278 

addition, the 35 patients with no evidence of SARS-CoV-2 infection according to the computable 279 

phenotype were not included in comparative analyses as a full chart review was not completed 280 

on them. Thus, our final sample consisted of 651 patients. Sample demographics and descriptive 281 

statistics are presented in Table 1. Sociodemographic characteristics were similar among those 282 

classified with and without Long COVID by the phenotype and by the clinician chart reviewer 283 

(Supplemental Table S1). 284 

There was 73.33% agreement between the responses to the two questions the clinician 285 

chart reviewers answered. Table 2 presents statistics assessing the performance of the 286 

computable phenotype with chart review. The two methods had substantial but incomplete 287 
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overlap. Analyses assessing whether concordance differed by selected variables showed similar 288 

results across age, era associated with infection, and number of symptom clusters (Supplemental 289 

Tables S2-4).  290 

Computable Phenotype-Only and Clinician Review-Only Long COVID Positive Review 291 

A review was conducted to assess the reasons for disagreement between the two methods. 292 

The initial focus was cases where the phenotype identified Long COVID, but the chart review 293 

did not (CP+/CR- cases) as there were many of these cases. Results are presented in Figure 4. In 294 

most CP+/CR- cases, the clinician reviewer agreed with the symptoms the computable 295 

phenotype identified but attributed those symptoms to another viral infection or preexisting 296 

disorder (Figure 4a). This was especially true for symptoms common to other respiratory 297 

infections and symptoms with occurrences both pre and post COVID-19 infection. In other less 298 

common cases, the reviewer did not see the diagnostic codes that the phenotype saw, or the 299 

reviewer made a conclusion based on incomplete information. 300 

An assessment of CR+/CP- cases showed that in many cases the reviewer considered 301 

symptoms, visits, and time frames that differed from our phenotype (Figure 4b). For example, 302 

clinician reviewers considered symptoms beyond 180 days post-infection (up to 11 months in 303 

some cases) while the computable phenotype considered symptoms in the one month to 180 days 304 

following infection. In addition, reviewers considered symptoms beyond those included in the 305 

computable phenotype definition, such as mental health symptoms. For example, clinician 306 

reviewers used clinical judgment and identified anxiety as a qualifying symptom, but it is not 307 

included in the phenotype definition due to inconsistent recording in structured data.  308 

Sensitivity Analysis 309 
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The review of CP+/CR- patients showed that comorbidities were a large factor 310 

contributing to discordance between the two methods. Given the difficulty of distinguishing 311 

symptoms due to preexisting conditions and symptoms due to Long COVID, we performed a 312 

sensitivity analysis to assess concordance with a modified model in which preexisting conditions 313 

and comorbidities were accounted for. First, we censored prior symptoms. In other words, we 314 

assessed phenotype classification when non-incident diagnoses were excluded. Patients who met 315 

criteria for the computable phenotype with only preexisting symptom clusters that persisted after 316 

their COVID-19 diagnosis were labeled as having no evidence of Long COVID (n = 32 patients). 317 

Second, given the high prevalence of symptoms reported in the setting of non-COVID-19 318 

respiratory infections, we excluded respiratory or fever cluster diagnoses that occurred 2 weeks 319 

prior to or after a diagnosis of a non-COVID-19 respiratory infection. This led to exclusion of 31 320 

patients who did not otherwise meet the criteria for probable long COVID. Finally, it was 321 

difficult to attribute post-acute symptoms to a COVID-19 diagnosis versus underlying medical 322 

conditions in patients with multiple chronic medical conditions. Therefore, we identified patients 323 

with complex medical histories using the PMCA25. We reclassified patients with a complex 324 

chronic condition as having no evidence of Long COVID (n = 67 patients) as we believed that 325 

our phenotype could not accurately identify these patients as having Long COVID. 326 

Concordance was assessed again after incorporating these alterations into a modified 327 

model, and results showed a higher positive predictive value and specificity but lower sensitivity 328 

(Table 3). The negative predictive value remained high. Given the difficulty in adequately 329 

attributing diagnoses to Long COVID in patients with complex medical histories, we also 330 

completed a sensitivity analysis where these patients were removed from the sample, and 331 
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performance was reassessed (Table 3). Results showed similar performance to the modified 332 

model overall, but a higher F1 score. 333 

Discussion  334 

We conducted a study to assess the performance of a rules-based computable phenotype 335 

for identifying pediatric patients with Long COVID in a large EHR database compared to 336 

clinician chart review. Results showed moderate overlap between the two methods. Specifically, 337 

the computable phenotype was moderately sensitive in detecting patients with Long COVID and 338 

specific in detecting those without Long COVID, in comparison to chart review. However, there 339 

were several cases where the methods disagreed, with some patients being classified as having 340 

Long COVID by the phenotype but not by chart review, and vice versa. The main reason for 341 

these discrepancies was due to underlying comorbidities and subsequent respiratory infections. 342 

Patients with comorbidities posed a challenge for the computable phenotype and the 343 

clinician reviewer. This was likely due to the lack of clinical guidelines for attribution and the 344 

difficulty in discerning exacerbation of preexisting symptoms. Clinicians were more likely to 345 

attribute post-COVID-19 symptoms to preexisting conditions when comorbidities were present, 346 

which likely resulted in the misattribution of Long COVID symptoms and may have been 347 

influenced by the provider involved in clinical care. However, the overlap between the two 348 

methods increased when the CP accounted for preexisting medical conditions by focusing on 349 

incident diagnoses and censoring existing conditions. Nevertheless, because our phenotype was 350 

not initially designed to assess exacerbation of preexisting conditions, we caution against its use 351 

to diagnose Long COVID in patients with medical complexity. Another source of disagreement 352 

between the computable phenotype and chart review stemmed from subsequent non-COVID-19 353 

respiratory infections, which are common in children. Although there may be an increased risk of 354 
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secondary infections due to SARS-CoV-226-27, the symptoms are caused by a different agent. 355 

Therefore, we removed these circumstances as indicators of Long COVID in our phenotype. 356 

An analysis of chart review-only positives (i.e., those the clinician reviewer classified as 357 

having Long COVID that the phenotype did not) showed that differences in the computable 358 

phenotype guidelines and the clinician’s framework for identifying Long COVID were the main 359 

reasons for discordance. While the computable phenotype only assessed symptoms up to 180 360 

days post SARS-CoV-2 infection, clinicians may use a longer time window in practice. This 361 

suggests an extended time frame for assessing post-acute symptoms may be necessary, but also 362 

may increase the risk of later onset of symptoms not being clearly attributable to a SARS-CoV-2 363 

infection. In addition, clinician reviewers identified conditions beyond those included in our 364 

phenotype as providing evidence for Long COVID. For example, the computable phenotype did 365 

not consider mental health conditions due to reporting inconsistency of these conditions using 366 

diagnosis codes and the difficulty in distinguishing between biologic and social causes of mental 367 

health conditions. However, clinicians tended to include them in their framework for identifying 368 

Long COVID. Therefore, constructing computable phenotypes that incorporate subphenotypes of 369 

interest (e.g., physiological vs psychological manifestations of Long COVID) may be useful in 370 

accounting for different manifestations of Long COVID.  371 

Many of the differences in identifying Long COVID are due to the lack of a clear and 372 

consistently used definition for Long COVID. The novelty of Long COVID in children, as well 373 

as the overlap of symptoms with other acute and chronic disorders such as headache and fatigue, 374 

contribute to these differences. Similar difficulties have been encountered when defining other 375 

post-viral syndromes. Although chart review is often viewed as the best method for detecting 376 

patients with a specific disorder, the lack of a consistent definition for Long COVID by 377 
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healthcare providers poses significant challenges. Moreover, the chart review and EHR research 378 

are prone to errors such as biases, missed codes, misdiagnoses, incomplete information due to 379 

fragmented care, and a lack of availability of a unique medical code for certain Long COVID-380 

related conditions. For example, a unique ICD code for POTS did not exist until October 202228, 381 

and many clinicians remain unaware of its existence, making it difficult to pick up the presence 382 

of POTS in the phenotype or chart review. Therefore, comparing our computable phenotype with 383 

chart review provided insight into the clinician’s view of a patient’s status, but it did not allow us 384 

to validate against a gold standard, as we cannot confidently conclude that either method 385 

accurately detects Long COVID.  386 

 Our two-pronged approach to identifying Long COVID using clinician chart review and a 387 

computable phenotype is a strength of the study as previous research that used diagnosis codes or 388 

machine learning algorithms did not incorporate a review of patient charts19-20. By incorporating 389 

both methods, we were able to qualitatively review cases of discordance. In addition, we focused 390 

on pediatric patients, in whom Long COVID is understudied. Research suggests that Long 391 

COVID has a lower prevalence in children; however, the current diagnostic tools may not be 392 

sensitive enough to detect all cases. Our study design is a strength as it uses data-driven 393 

symptom clusters for identifying Long COVID and specific diagnosis codes. This approach 394 

allowed us to capture patients who may not have a clear Long COVID presentation but have 395 

Long COVID-like symptoms. Although it allowed for our phenotype to be more inclusive, it also 396 

resulted in a computable phenotype that was less inclusive than a clinician may be when 397 

subjectively assessing whether a patient has Long COVID. As more symptoms of Long COVID 398 

are identified, it may be necessary to update the symptom clusters.  399 
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Our study has limitations, but it also brings attention to some significant areas for future 400 

work to focus on. Due to the challenge of distinguishing the progression of a chronic condition 401 

from symptom exacerbation due to COVID-19 using EHR data and chart review, we were 402 

unable to evaluate the worsening of preexisting symptoms. Instead, we examined differences in 403 

concordance after excluding pre-COVID-19 symptoms. This approach provided increased 404 

certainty that symptoms were due to Long COVID but may have been too restrictive. Future 405 

research should consider cluster-specific washout windows and develop reliable methods to 406 

identify patients with Long COVID-related worsening of preexisting conditions. Additionally, 407 

our sampling strategy focused on edge cases and rare occurrences to develop and refine the 408 

phenotype. This approach was useful for identifying patients with a range of Long COVID-409 

related symptoms and diagnoses, but limits generalizability and underestimates the performance 410 

of the phenotype. Future iterations should use random sampling to obtain a more generalizable 411 

patient sample. Finally, because our study was based on EHR data and we imposed a two-visit 412 

requirement in the post-acute period, our sample may be biased towards patients who have the 413 

means to obtain healthcare at the population level.  414 

Conclusion   415 

This study describes a computable phenotype approach to identify children with Long 416 

COVID in EHR data. Our study highlights the complexity of identifying and diagnosing Long 417 

COVID due to its heterogeneity and overlap with other conditions, which leads to substantial 418 

differences observed across methods. To address this challenge, future work could include 419 

additional data sources, such as unstructured data, and further refine algorithms with clinical 420 

expertise to develop a reliable definition of Long COVID. It is also essential to develop a revised 421 

phenotype that can identify Long COVID through the worsening of pre-existing conditions. The 422 
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development of a reliable CP for Long COVID in children allows for studying large data 423 

networks, which has future applications for both observational studies and clinical trials. Further 424 

research assessing the presentation of Long COVID in children and the interplay between Long 425 

COVID and comorbidities is vital to continue to understand this emerging chronic illness and 426 

evaluate interventions that can prevent or mitigate its effects.  427 
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578 

Figure 1. Study Timeline. 579 
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581 
Figure 2. Flow chart depicting attrition and algorithm used to identify patients with Long COVID.582 
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583 

Figure 3. Sampling strategy for the chart review cohort. The numbers reported in parentheses 584 

represent sample sizes. 585 
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Table 1. Demographics of children with and without Long COVID based on the computable 596 

phenotype definition. 597 

 
CP-Detected Long 

COVID  
(N=318) 

No CP-Detected Long 
COVID 
(N=333) 

Overall 
(N=651) 

Approx. CED age (years)   
Mean (SD) 10.10 (6.32) 10.10 (6.28) 10.10 (6.30) 

Median [Min, Max] 11.0 [0, 21.0] 10.3 [0.1, 21.0] 10.9 [0, 21.0] 
CED Age Group (years) 

<1 24 (7.5%) 25 (7.5%) 49 (7.5%) 
1-4 70 (22.0%) 76 (22.8%) 146 (22.4%) 
5-9 52 (16.4%) 55 (16.5%) 107 (16.4%) 

10-15 98 (30.8%) 100 (30.0%) 198 (30.4%) 
16-20 74 (23.3%) 77 (23.1%) 151 (23.2%) 

Patient Sex   
Male 147 (46.2%) 167 (50.2%) 314 (48.2%) 

Female 171 (53.8%) 166 (49.8%) 337 (51.8%) 
Race   

Asian/Native 
Hawaiian/Pacific 

Islander 
12 (3.8%) 14 (4.2%) 26 (4.0%) 

Black 57 (17.9%) 58 (17.4%) 115 (17.7%) 
White 175 (55.0%) 182 (54.7%) 357 (54.8%) 

Multiracial 12 (3.8%) 9 (2.7%) 21 (3.2%) 
Unknown 62 (19.5%) 70 (21.0%) 132 (20.3%) 

Ethnicity   
Hispanic 78 (24.5%) 99 (29.7%) 177 (27.2%) 

Non-Hispanic 214 (67.3%) 210 (63.1%) 424 (65.1%) 
Unknown 26 (8.2%) 24 (7.2%) 50 (7.7%) 

Payer*    

Private 139 (43.7%) 143 (42.9%) 282 (43.3%) 

Public 124 (39.0%) 134 (40.2%) 258 (39.6%) 
Other/Unknown 55 (17.3%) 56 (16.8%) 111 (17.1%) 

Note. CP = computable phenotype. *=at time of COVID-19 infection. 598 

 599 

 600 

 601 
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Table 2. Statistics comparing computable phenotype and clinician review identification of Long 602 

COVID. 603 

 CR-Positive 
(N = 239) 

CR-Negative 
(N = 412) 

 

CP-Positive (N = 318) 156 162  
CP-Negative (N = 333) 83 250  

Performance Statistics* 
 Accuracy Sensitivity Specificity PPV NPV F1 
 0.624 0.653 0.607 0.491 0.751 0.560 
Note. PPV = positive predictive value. NPV = negative predictive value. CP = computable 604 
phenotype. CR = chart review.  605 
*Reported as CP relative to CR. 606 
 607 

 608 

 609 

 610 

 611 

 612 

 613 
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615 

Figure 4. Qualitative review of a.) CP+/CR- Long COVID patients and b.) CR+/CP- Long 616 

COVID patients.  617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 
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Table 3. Statistics comparing modified computable phenotype and clinician review identification 628 

of Long COVID. 629 

Modified 
 CR-Positive 

(N = 239) 
CR-Negative  

(N = 412) 
 

Modified CP-Positive 
(N=188) 

123 65  

Modified CP-Negative 
(N=463) 

116 347  

No Medically Complex Patients 
 CR-Positive 

(N = 210) 
CR-Negative 

(N = 308) 
 

Modified CP-Positive (N 
= 188) 

123 65  

Modified-CP Negative 
(N = 330) 

87 243  

Performance Statistics* 
 Accuracy Sensitivity Specificity PPV NPV F1 
Modified 0.722 0.515 0.842 0.654 0.749 0.576 
No Medically Complex 
Patients 

0.707 0.586 0.789 0.654 0.736 0.618 

Note. PPV = positive predictive value. NPV = negative predictive value. CP = computable 630 
phenotype. CR = chart review.  631 
*Reported as CP relative to CR 632 
 633 
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