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Abstract  

A central challenge in chemical biology is to distinguish molecular families in which small structural 

changes trigger large changes in cell biology. Such families might be ideal scaffolds for developing cell-

selective chemical effectors – for example, molecules that activate DNA damage responses in malignant 

cells while sparing healthy cells. Across closely related structural variants, subtle structural changes have 

the potential to result in contrasting bioactivity patterns across different cell types. Here, we tested a 600-

compound Diversity Set of screening molecules from the Boston University Center for Molecular Discovery 

(BU-CMD) in a novel phospho-flow assay that tracked fundamental cell biological processes, including 

DNA damage response, apoptosis, M-phase cell cycle, and protein synthesis in MV411 leukemia cells. 

Among the chemotypes screened, synthetic congeners of the rocaglate family were especially bioactive. 

In follow-up studies, 37 rocaglates were selected and deeply characterized using 12 million additional 

cellular measurements across MV411 leukemia cells and healthy peripheral blood mononuclear cells. Of 

the selected rocaglates, 92% displayed significant bioactivity in human cells, and 65% selectively induced 

DNA damage responses in leukemia and not healthy human blood cells. Furthermore, the signaling and 

cell-type selectivity were connected to structural features of rocaglate subfamilies. In particular, three 

rocaglates from the rocaglate pyrimidinone (RP) structural subclass were the only molecules that activated 

exceptional DNA damage responses in leukemia cells without activating a detectable DNA damage 

response in healthy cells. These results indicate that the RP subset should be extensively characterized 

for anticancer therapeutic potential as it relates to the DNA damage response. This single cell profiling 

approach advances a chemical biology platform to dissect how systematic variations in chemical structure 

can profoundly and differentially impact basic functions of healthy and diseased cells.   
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Introduction 

Improving the quality of per-cell biological measurements has been a focus of cytometry over the last 20 

years and has led to significant improvements in understanding cellular processes governing life, death, 

and specification of cell identity 1-4. However, in preclinical drug discovery and chemical biology it is 

common to use either well-based readouts, or alternatively, to deploy imaging or label free approaches 

that are neither single cell nor multiplexed, or lack in resolution or throughput. Suspension cytometry 

assays could potentially address these issues by balancing these factors while quantifying multiple 

features per cell 5,6.  

Phospho-specific flow cytometry (phospho-flow) was developed to quantify a range of cellular functions at 

the single cell level both within and across different populations of cells in parallel 7-9. The technique 

involves quantifying one or more features of individual cells that have been stained with a panel of 

fluorescently tagged antibodies directed against specific epitopes, such as surface proteins, transcription 

factors, and phospho-proteins. This approach can therefore assess multiple signaling pathways 

simultaneously in mixtures of cells without the need to physically isolate different cell subsets present in 

human tissue samples. Thus, phospho-flow offers a platform for chemical biology that combines clinical 

relevance and multi-parameter single cell data. Throughput, consistency, and costs have been improved 

by a technique called fluorescent cell barcoding (FCB) that labels cells from a given well or sample with a 

unique signature of fluorescent dye levels - a barcode - so that they can be mixed, stained, and analyzed 

as a single sample 10-12. Phospho-flow and FCB protocols have evolved over the last two decades to 

closely align with drug discovery and translational research workflows 13-15. Phospho-flow-based single 

cell profiling has been used to screen sets of small molecules and metabolite extracts and has identified 

pathway- and cell-selective inhibitors in cell lines and primary samples 3,6,16-19. These prior studies focused 

on sets of diverse molecules; thus, there is an opportunity to explore multiplexed phospho-flow as a 

platform for dissecting structure-activity relationships (SAR).  

Here, we aimed to develop bench and computational methods to apply single cell profiling to SAR studies. 

This approach aims to draw on quantitative structure-activity relationship (QSAR) approaches 20 and bring 

in single cell bench techniques and modern data science tools that draw on machine learning. 

Computational methods like t-distributed stochastic neighbor embedding (t-SNE) 21-23, UMAP 24,25, and 

PHATE 26 are used to analyze cytometry data 24 and are now growing in use in computational chemical 

biology 6,16,26. Recently developed algorithms, such as Tracking Responders EXpanding (T-REX) and 

Marker Enrichment Modeling (MEM), might be used to augment analysis and facilitate identification of rare 

cells and quantification of contextual protein enrichment 27,28. Tools like these that can resolve cellular 

heterogeneity and consider many readouts simultaneously may help to reveal connections between 

chemical structure and cellular bioactivity and accelerate development of molecules that selectively 

modulate chosen cell subsets and improve patient outcomes.  
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Here, we describe a multiplexed, single cell phospho-flow-based test of a chemical diversity library 

(Diversity Set) that identified a natural product chemotype that was next tested extensively for structure-

activity relationships using single cell profiles of fundamental cellular processes (Figure 1). Here, the term 

‘chemotype’ will be used to describe a set of molecules that share a molecular scaffold 29-31. The chemical 

family whose members most often displayed exceptional anti-leukemia bioactivity in initial tests with the 

Diversity Set was the rocaglates (flavaglines), a family of plant-derived translation inhibitors whose 

founding member, rocaglamide A (RocA), was identified for its anticancer activity 32. The Boston University 

Center for Molecular Discovery (BU-CMD) houses a series of synthetic rocaglate structural variants 33 

which can be informally categorized into three subclasses: 1) regular rocaglates (RR), exemplified by 

natural products RocA (Supplementary Figure 1A), silvestrol, and eliptifoline, containing a cyclopenta[b]-

benzofuran scaffold and no other ring fusions, 2) rocaglate pyrimidinones (RPs), exemplified by natural 

products aglaroxin C (Supplementary Figure 1B) and aglaiastatin, containing a mono- or bicyclic 

pyrimidinone ring system fused to the cyclopenta[b]-benzofuran core, 34,35 and 3) amidino-rocaglates 

(ADRs), a novel rocaglate subclass not found in nature, which contains an amidine ring fusion to the 

cyclopenta[b]benzofuran core and has been shown to exhibit the most potent translation inhibition for any 

rocaglate to-date 36,37. Following selection of rocaglates as a class for in-depth study, a representative 

Rocaglate Set of members, both natural and synthetic, of these rocaglate subclasses was assembled 

and deeply characterized for structure-activity relationships using a high dimensional single cell profiling 

panel.  

Ultimately, this work reveals subclasses and individual molecules with desirable and reproducible 

bioactivity in leukemia cells and not in healthy human blood cells. Additionally, this study shows the value 

of using single cell profiling to characterize a large network of fundamental cell signaling processes, as 

striking differences in bioactivity and cell type selectivity were observed between different rocaglate 

classes. In particular, rocaglate pyrimidinones (RPs) stand out as a subgroup that exclusively targeted 

leukemia cells and not healthy cells, with individual members displaying exceptional ability to activate 

intrinsic DNA damage responses that lead to the selective destruction of malignant cells. These 

exceptional RPs should now be prioritized in SAR and pre-clinical translational studies.  
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Results 

Rocaglates are highly bioactive in leukemia cells.  

An initial test of 600 diverse molecules from the BU-CMD compound collection, with representation from 

120 distinct chemotypes (Diversity Set), was conducted at 10 μM in MV411 leukemia cells using phospho-

flow cytometry in combination with FCB for multiplexing. The goal of this experiment was to identify 

chemotypes with exceptional leukemia cell bioactivity. Exceptional activity following treatment with a 

compound or signaling input can be measured by phospho-flow in different ways, including exceptional 

potency (i.e., activity at nM or lower concentration)38, bioactivity (i.e., orders of magnitude greater 

responses in a measured proteins; e.g., high per-cell γH2AX indicating exceptionally strong DNA damage 

response)16,18,38,39, pathway selectivity or signature profile (i.e., a specific combination of activities per cell, 

such as activation of γH2AX without inhibition of p-4EBP1, indicating a DNA damage response without a 

halt to protein synthesis)38,39, and/or exceptional selectivity (i.e., targeting a specific subpopulation of cells, 

such as targeting cancer cells without targeting healthy cells)16,38,40-42. Here, the order of evaluation was 

first on bioactivity and selectivity, then on profile, and finally on evaluation of potency.  

The panel selected for this initial test was designed to measure cell death, division, and translation and 

included post-translational modifications of proteins representing four fundamental cell processes: cleaved 

Caspase3 (c-CAS3, representing apoptosis), the gamma phosphorylation of H2AX (γH2AX, representing 

a DNA damage response), phosphorylated Histone H3 (p-HH3, representing M phase and cell cycle 

activity), and S235/S236 phosphorylated S6 (p-S6, representing active protein synthesis and cell growth) 

(Supplementary Table 1). The arcsinh fold change in median fluorescence intensity vs. vehicle was 

calculated for each compound across each of the four functional readouts (Figure 1E). For more details 

on standard arcsinh scaling using the inverse hyperbolic sine in cytometry analysis, see original use in the 

Supplement of 41 and recent implementations 16,27,43,44. While few compounds decreased the fold change 

in MFI vs. vehicle for any readout, 65 molecules were found to increase p-S6, c-CAS3, and γH2AX 

significantly compared with vehicle. Of the 65 bioactive molecules selected, 13.8% (9/65) were rocaglates, 

a chemotype which comprised only 3.2% of the initial set of 600, and predominant in the bioactive set 

(Figure 1F). Nearly half (9/19) of the rocaglates tested in the Diversity Set were selected as bioactive. Of 

the bioactive rocaglates, driving activities included c-CAS3 and γH2AX. Based on their high frequency of 

triggering c-CAS3 and/or γH2AX in MV411 leukemia cells, rocaglates were prioritized for further 

investigation.  

All 19 rocaglates in the initial 600 compound Diversity Set were RRs. To investigate whether rocaglates 

from different structural subgroups were bioactive in MV411 leukemia cells and whether this bioactivity 

extended to healthy cells, we tested an expanded library of 37 rocaglates, intentionally weighted toward 

known bioactive molecules, with representation from each of the three subclasses at 10 µM on MV411 

and healthy peripheral blood mononuclear cells (PBMCs) (Figure 2A). The primary staining panel was 
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selected to test a range of cell functions including cell growth, translation, and death and has been 

validated in previous work: Ki67 (cell proliferation 45,46), phospho-S6 ribosomal protein at serine 240/244 

(p-S6 S240/244) (growth, AKT/mTORC1 specific 47,48), phosphorylation of gamma H2AX at serine 139 

(γH2AX) (DNA damage response 49), phosphorylation of STAT3 at serine 727 (p-STAT3) (amplified 

transcriptional activity, downstream mTOR 50), phosphorylation of STAT5 at tyrosine 694 (p-STAT5) (cell 

survival, highly phosphorylated in cancer cells 51,52), phospho-S6 ribosomal protein at serine 235/236 (p-

S6 235/236) (growth, activated by ERK/RSK and AKT/mTORC1 47,48), phosphorylation of ERK1/ERK2 at 

threonine 202, tyrosine 204 (p-ERK1/2) (proliferation, activated by MAP kinase cascade 53,54), 

phosphorylated histone H3 at serine 28 (p-HH3) (growth, cell cycle M phase 55), phosphorylation of 4EBP1 

at threonine 37/46 (p-4EBP1) (growth, activated by mTORC1 56), phosphorylation of lymphocyte-specific 

protein tyrosine kinase at tyrosine 505 (p-LCK) (SRC-family kinase involved in T-cell receptor signaling 
57), and  phosphorylation of Akt at serine 473 (p-Akt) (Upstream of mTOR 41,58)  (Supplementary Table 

1) 59,44,60.  

Next, the t-SNE algorithm was used to reduce the dimensionality of the data from 11-dimensional space 

to 2-dimensional space for visualization and analysis. The t-SNE plot was made using MV411 data from 

all 45 conditions tested (37 rocaglates, 3 vehicles, and 5 controls which are not shown) and then 

subdivided based on the subclass of origin (and vehicle) for comparison of high dimensional signaling 

profiles (Figure 2B). Striking differences were apparent in t-SNE plots for each of the three rocaglate 

subclasses when compared to the pooled vehicle data: vehicle cell density was localized to the upper left 

side of the map, whereas cell density for the rocaglate subclasses was nearly absent from this region. 

These differences were quantified by T-REX. Specifically, the t-SNE from each of the three respective 

rocaglate subclasses was compared to the pooled set of the 3 vehicle wells (Figure 2C). The T-REX plots 

revealed the cell populations enriched in vehicle-treated cells (blue) and rocaglate subclass-treated cells 

(red). For each T-REX plot, the T-REX degree of difference [(number of red cells + number of blue 

cells)/total number of cells] was computed to quantify how different subclass-treated cells were from 

vehicle-treated cells. All rocaglate subclass-treated cells had a T-REX degree of difference that was 

greater than 60%, indicating substantial change upon 16 hours of rocaglate treatment, relative to vehicle. 

In comparison, when T-REX was performed on vehicle 3 vs. the pooled set of vehicles 1 and 2, the T-REX 

degree of difference was <1%, indicating the vehicles were highly similar to each other. The contrast in 

cell density apparent in t-SNE and quantified by T-REX arises from phenotypic differences in MV411 cells 

treated with molecules from the three subclasses, as compared to vehicle, and confirms the original 

observation (Figure 1) that the three rocaglate subclasses display outstanding activity against leukemia 

cells.  

To investigate the variation in bioactivity within each subclass, T-REX was applied by comparing the t-

SNE from each compound to the pooled set of the 3 vehicle wells. As a representative of this analysis, the 

T-REX plot for CMLD013342 vs. vehicle is shown in Figure 2D (data for remaining compounds are shown 
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in Supplementary Figure 2). Then, a T-REX degree of difference calculation was performed for each of 

the 40 comparisons (37 rocaglates + 3 vehicles). All 37 rocaglates had a T-REX degree of difference 

above a threshold of three times the interquartile range of the vehicle data over the vehicle median (+3 x 

IQR). Taken together, these results indicated that all tested rocaglates were bioactive against MV411 

leukemia cells.  

Rocaglates have distinct, subclass-specific bioactivity patterns in leukemia and healthy blood. 

To further explore signaling patterns within and across the rocaglate subclasses, the field standard log-

like arcsinh ratio of the median phospho-protein signal in treated cells as compared to the signal in the 

first vehicle (i.e., arcsinh [MFItreated/MFIvehicle1]) was performed for each marker and compound. This 

resulted in values that range from 0 (no change) to +1 arcsinh unit (an increase of X-fold, yellow) or -1.5 

(a decrease of 1.5X-fold, blue). In Figure 3A, compounds were arranged according to rocaglate subclass 

to allow comparison of phenotypic differences within and between subclasses. In Figure 3B, the same 

data were arranged by hierarchical clustering of the signaling profile (below). When organized by subclass, 

RPs displayed a more consistent signature than other subclasses (median IQR across all markers for RP 

= 0.07, RR = 0.2, and ADR = 0.2). The RP signature, which was also observed in some RRs, included 

exceptionally strong γH2AX and inhibition of p-ERK, a signature indicating activation of DNA damage 

response and inhibition of MAPK proliferative signaling. In contrast to RPs, most ADRs inhibited γH2AX 

and p-4EBP1 and activated p-AKT and p-STAT5, a signature suggesting activation of cell survival 

signaling that would be undesirable in an anti-cancer compound. RRs were heterogeneous in the pattern 

of phosphorylation seen following rocaglate treatment and had members that displayed patterns that were 

similar to either RPs or ADRs. Grouping by unsupervised clustering of bioactivity led to the successful 

separation of RPs into clusters 2 and 3 and ADRs into clusters 4 and 5 (except for CMLD012600); RRs 

were interspersed throughout clusters 2 - 5. One readout that strongly contrasted between clusters was 

γH2AX; while cluster 3 had the highest γH2AX compared to vehicle, cluster 2 had moderately high γH2AX 

compared to vehicle, cluster 5 had similar γH2AX compared to vehicle, and cluster 4 had low γH2AX 

compared to vehicle. Structures for the 37 rocaglates grouped according to rocaglate subclass and 

hierarchical clustering can be found in Supplementary Figure 3 and Supplementary Figure 4, 

respectively.  

To investigate how γH2AX induction patterns by rocaglates compared between MV411 leukemia cells and 

healthy blood, the percentage of γH2AX positive (% γH2AX+) cells for each compound (and vehicle) was 

quantified for each cell type (Figure 4A). A threshold of 15% γH2AX+ cells was selected to distinguish 

compounds that trigger significant DNA damage in MV411 and PBMC. Only the vehicles and three RRs 

did not trigger significant DNA damage in either cell type. Nearly all ADRs and one RR (SDS-1-021 61-65, 

represented twice in the set as both racemic (CMLD011880) and enantioenriched (CMLD010508) stocks) 

triggered significant DNA damage in PBMC alone. Distinctly, two ADRs induced significant DNA damage 

in both cell types. Lastly, all RPs and some RRs led to leukemia-specific induction of γH2AX. Quantification 
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of γH2AX induction in both cell types further illuminated rocaglate structural subclass bioactivity signatures 

and outlier compounds within each subclass.  

To identify compounds with desirable anti-leukemia activity, the compounds with the greatest leukemia-

specific induction of DNA damage were next identified. The log2 fold ratio of the percentage of γH2AX+ 

cells was compared between MV411 and healthy PBMC cells (i.e., log2 [% γH2AX+
MV411/ γH2AX+

PBMC], 

Figure 4B). The ADRs that had PBMC-specific induction of DNA damage in Figure 4A were in the lower 

left quadrant, as they had the lowest leukemia-specificity of DNA damage induction and low induction of 

DNA damage in MV411. All RPs and the select RRs that were demonstrated to have leukemia-specific 

induction of γH2AX in Figure 4A were found to be in the top right quadrant, as they had maximal DNA 

damage induction in MV411 and a specificity of this induction to leukemia cells. Three RPs, CMLD012390, 

CMLD013342, and CMLD013348 had the highest log2fold ratio of % γH2AX+ in MV411 to % γH2AX+ 

PBMC. The representative contour plot of CMLD013342 depicted in Figure 4C demonstrated a distinct 

population of γH2AX hyperactivated cells that was not seen in the contour plot for CMLD012600, a 

rocaglate with a similar % γH2AX+ cells. This γH2AX hyperactivated population of cells by CMLD013342 

was also not present in the PBMC contour plot. The uniform induction of a leukemia-specific DNA damage 

response associated with cell death and γH2AX hyperactivated population of cells, helped establish RPs 

as an interesting subclass of rocaglates for further investigation as potential leukemia therapeutics.  

The rocaglate RP subclass selectively induces a γH2AX+ p-4EBP1+ bioactivity pattern seen only 

in leukemia cells. 

To visualize the differences in high-dimensional signaling profiles across rocaglate subclasses, a T-REX 

analysis was performed by comparing the t-SNE from each of the three respective rocaglate subclasses 

to the pooled set of the other rocaglate structural subclasses (including vehicle) (Figure 5A). These T-

REX plots identified the cell populations that were enriched in (red) and absent from (blue) a given 

subclass. Notably, T-REX illuminated a subpopulation of cells specifically induced by RPs (RP island). 

Coloring the grouped t-SNE for all 45 compounds based on measurements for each functional readout 

suggested that the RP island was a region of cells with high median fluorescence intensity of p-4EBP1 

and γH2AX (Supplementary Figure 5). 

To determine the true specificity of this island to RPs, the percentage of cells in the RP island for each 

rocaglate was calculated (Figure 5B). A Wilcoxon rank sum test of the percentage of cells in the RP island 

for RPs vs. the remaining subclasses was conducted as a test of significance and generated a p-value of 

0.015. The percentage of cells falling into the RP island was also correlated with transformed 98th 

percentile fluorescence intensity for γH2AX and p-4EBP1 (Supplementary Figure 6). A Marker 

Enrichment Modeling (MEM) 28 analysis was performed on the RP island to characterize contextual protein 

enrichment (absolute MEM labels range from 0 = no enrichment to +10 = highest enrichment). The 

resulting MEM label was: γH2AX+10, p-4EBP1+7, Ki67+5, p-ERK+5, and p-S6 - S240/244 +5 (Figure 
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5C). The enrichment for γH2AX and p-4EBP1 indicated that RP island cells had exceptionally high 

bioactivity, seen in the activation of the DNA damage response (γH2AX), and a distinct signature, seen in 

retention of some mTOR pathway activity (p-4EBP1).  

To assess the leukemia-specificity of the RP-island, as activation of the DNA damage response in healthy 

cells would be detrimental, a t-SNE analysis was performed on the MV411 and PBMC together to generate 

a new embedding with corresponding x and y axis scales (Figure 5D). After dimensionality reduction with 

t-SNE, cells were separated based on origin (MV411 or PBMC) (Figure 5D). The MV411 t-SNE analysis 

revealed a distinct island of cells from the remaining cell density on the lower right side of the plot. When 

quantified, this cell population was >99% specific to MV411. This leukemia-specific island was confirmed 

as the RP island after a MEM analysis generated the same protein enrichment label as displayed in Figure 

5C (Figure 5E). Together, these results established that RPs activate a strong and leukemia-specific DNA 

damage response through the RP island.  

RP structure correlates with exceptional DNA damage responses in leukemia cells. 

While the Wilcoxon rank sum test provided a subclass-level validation of the RP specificity of the RP 

island, further investigation of bioactivity and structure at the compound level was necessary for 

understanding which compounds shifted cells to the RP island and why. To address this, the t-SNE map 

of pooled RPs was further subdivided based on compound of origin, and the percentage of total cells 

falling into the RP island was quantified for each RP (Figure 6). This compound-level analysis highlighted 

three RPs, CMLD012390, CMLD013342, and CMLD013348, as the only compounds with greater than 

5% of cells in the RP island gate. Markedly, these are the same compounds with the highest log2fold ratio 

of % γH2AX+MV411/% γH2AX+ PBMC as reported in Figure 4B. These three compounds commonly 

possess three unique structural features that are found in isolation in the other six RPs, specifically a non-

aryl pyrimidinone ring substituent (termed the RP “R-group”), a 4′-methoxy substituent on the rocaglate 

“B”-ring, and a monocyclic, N-unsubstituted pyrimidinone ring. This suggested that a combination of 

multiple structural features might drive SAR for the RPs with high cell density in the RP island. Thus, the 

RP island was associated with an exceptional, leukemia-specific induction of the DNA damage response 

and prominent structural features were identified for future SAR studies.  

To further investigate the potency and timing of γH2AX activation by these special RPs, dose-response 

and time course experiments were performed in MV411 cells. For the dose-response, six doses (10, 5, 1 

0.1, 0.05, 0.01, and 0 µM) were selected to encompass a 1000-fold range and the top two RPs, 

CMLD012390 and CMLD013342 were chosen for testing. A γH2AX + gate was drawn on biaxial plots of 

Side Scatter Area (SSC-A) vs. γH2AX based on γH2AX levels in the vehicle-treated cells. The percentage 

of cells within the γH2AX + gate was quantified for each concentration and used to calculate the half-

maximal activating concentration (EC50) (Figure 7A). CMLD012390, the RP with the greatest percentage 

of cells in the RP island in Figure 6, had an EC50 of 213 nM, and CMLD013342, the RP with the second 
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greatest percentage of cells in the RP island had a slightly higher EC50 of 492 nM. CMLD012390 and 

CMLD013342 were also used to challenge MV411 cells at 1, 4, and 16 hours to investigate the timing of 

γH2AX induction. Within 4 hours, mild γH2AX induction was seen for both compounds; this γH2AX 

induction increased in potency to match levels seen in both the Rocaglate Set and dose-response within 

16 hours (Figure 7B and Supplementary Figure 7). Thus, these two RPs shared multiple structural 

commonalities and demonstrated a strong and reproducible induction of DNA damage response within 4 

hours. Going forward, future SAR studies should involve direct, pairwise comparisons to discern the 

individual impact of the unique structural features in these RPs on specificity in selectively inducing DNA 

damage responses in leukemia cells and not in healthy blood.  

Discussion 

An advantage of single cell chemical biology approaches is the potential to test a greater space of cell 

biology readouts and to do so with primary cells that include diverse healthy cell types. Thus, phospho-

flow and single cell chemical biology approaches can be used to include a range of cells that will be present 

in the human tissues in which compounds will need to function in vivo. Here we report a test of diverse 

compounds facilitating structure-activity relationship studies based on multiparameter, single cell 

phospho-flow assays. This revealed rocaglates as a highly bioactive chemotype and identified all rocaglate 

pyrimidinones tested and most amidino-rocaglates tested as chemotypes that respectively selected for 

leukemia or healthy blood cells. The comparison between primary human blood and leukemia cells acts 

as a proof of concept for potentially employing human tissues in early phase SAR studies.  

Since phospho-flow was first combined with FCB for chemical biology screening 6, this approach has been 

used for screening and characterization of promising compounds based on cell type- and pathway-specific 

effects. The screen of small molecules described here was similarly performed in combination with FCB 

for multiplexing and used a focused panel of four functional states of proteins to efficiently profile the 

modulation of relevant pathways involved in leukemia cell translation and death. The screening set of 600 

structurally diverse compounds is a relatively small library compared to what might be possible if this 

approach were scaled; part of the success of the study with this focused library is likely due to the selection 

of key functional signaling events to measure as bioactivity readouts. Here, multiplexed cytometry 

measured 2,400 cell-based biological readouts at the single cell level in one experiment. Future studies 

might go beyond this work by leveraging additional advantages of phospho-flow signaling profiles, 

especially the ability to resolve impacts on different subpopulations of primary cells in blood, tumors, or 

other tissue. Sixty-five promising activators were selected for further investigation based on activity at p-

S6, here interpreted as measuring growth and translation, c-CAS3, an indicator of apoptosis, and/or 

γH2AX, a readout of DNA damage. While previous studies have focused on selection of individual hits for 

follow-up testing, this approach was focused instead on identifying promising chemotypes. Of the 65-

compound bioactive set, 9 of the compounds were rocaglates, a natural product family that has received 

a great deal of attention for promising anti-cancer and anti-infective activities. 
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While rocaglate bioactivity has been of interest since rocaglamide A (RocA), the prototypic rocaglate, was 

first isolated in 1982, this study was the first phospho-flow-based test of rocaglates and one of only a few 

that have characterized the bioactivities of various structural subclasses within the chemotype 32. Larger 

screens of >200 structurally diverse rocaglates have mainly monitored clamping of the three eIF4A 

homologs (eIF4A1-3) to RNA, in vitro translation, and cytotoxicity 36,37,66. This test set of 37 rocaglates 

from three structural subclasses profiled bioactivity using 11 functional states of proteins across MV411 

and PBMC cells, enabling 22 cell-based biological readouts to be tested for each compound 

simultaneously at the single cell level.  

Cytometric profiling of the 37 rocaglates in combination with t-SNE and T-REX enabled us to establish 

that these molecules were all bioactive against leukemia cells, considering all 11 protein functional 

readouts measured at the single cell level. Additionally, investigation of fluorescence intensity for each 

molecule and readout enabled rocaglate bioactivity within and across subclass to be compared. There 

were noticeable similarities in fluorescence intensity for readouts within each subclass and differences 

across subclass: RPs were distinguished by high γH2AX, p-S6 S240/244, and p-HH3 and ADRs 

demonstrated low γH2AX and p-4EBP1 and high p-AKT and p-STAT5. However, a dendrogram of 

transformed fluorescence intensity across all 11 functional readouts and 37 compounds only separated 

ADRs from RPs; this suggested that the previously identified structural subclasses may not fully capture 

bioactivity differences.  

Analyzing γH2AX, a readout that contrasted across the clusters of rocaglates formed in Figure 3, in both 

PBMC and MV411 shed even further light on bioactivity differences between structural subclasses. While 

some RRs and all RPs activated γH2AX in MV411 and not PBMC, ADRs only activated γH2AX in PBMCs. 

For RRs these findings are not surprising; rocaglamide A, an RR, has demonstrated leukemia-specific 

bioactivity in previous studies 67. However, ADRs have been found to be the most potent in vitro RNA 

clampers of eIF4A1 and eIF4A2 35,37. Interestingly, RPs, the subfamily demonstrating uniform leukemia-

specific induction of γH2AX, have primarily been reported as agents for hepatitis C virus (HCV) and to 

show a possible bias for the inhibition of viral entry over translation inhibition 34. The natural product 

aglaroxin C (CMLD011866) has been cited as a potent cytotoxic agent against multiple cancer cell lines, 

though not yet as selective for cancer cells as opposed to healthy cells 68-71. Therefore, these findings 

reveal leukemia-specific bioactivity, or a lack thereof, for RPs and ADRs, respectively. 

By leveraging t-SNE, T-REX, and MEM, we were able to identify a small subpopulation of cells with inflated 

γH2AX that was only present in RP-stimulated MV411 cells. Given that this population was <3% of total 

MV411 cells, it is likely that this would have been overlooked by approaches only accounting for bulk cell 

responses. Further investigation allowed us to uncover CMLD012390, CMLD013342, and CMLD013348 

as the primary contributors to this island of cells. This response was not seen by aglaroxin C 

(CMLD011866) though its potent cytotoxic activity is warranted based on prior literature 69,70. γH2AX is 

produced in response to histone H2AX phosphorylation on a serine four residues from the carboxyl 
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terminus and acts as a sensitive marker for DNA double-stranded breaks (DSBs). Many existing cancer 

therapies such as etoposide and mitoxantrone act by introducing sufficient DSBs to activate cell death 

pathways.72 Therefore, the ability of these top three RPs to potently activate γH2AX in only leukemia cells 

should now be studied for potential clinical use. Rocaglates have been shown to have two key classes of 

DEAD-box RNA helicase targets: the three eIF4A homologs, and more recently DDX3 73,74. While eIF4A 

is implicated in translation initiation, DDX3 is involved in a range of functions related to RNA metabolism 
75.  

The compounds CMLD012390, CMLD013342, and CMLD013348 have not been previously reported as 

distinct members of the RP subfamily. Notably, these compounds possess some structural similarities; 

they commonly have a methoxy group on their B-ring (the southeastern ring), a non-aryl R-group (the 

northern projection from the pyrimidinone), and a monocyclic, N-unsubstituted pyrimidinone with unique 

steric properties that, in contrast to N-substituted RPs such as CMLD011866, is capable of equilibrating 

to an aromatic hydroxypyrimidine tautomeric form. Further structure-activity relationship and target 

identification studies may be used to confirm which structural commonalities possessed by the top three 

RPs drive their exceptional γH2AX activation ability. While the RP-specific γH2AX signature (the RP 

island) for CMLD012390, CMLD013342, and CMLD013348 may imply an as-yet unknown target, it is also 

possible that differences in potency or timing of engagement with eIF4A1 and/or DDX3 drive this unique 

activity signature.  

In this study, we investigated structure-activity relationships for 37 rocaglates across 11 key functional 

proteins representing hallmarks of cell biology in MV411 leukemia cells and PBMCs. The functional states 

of proteins chosen, while more expansive than a single target- or readout-based approach, did not capture 

all potentially impacted pathways. For confirming the leukemia-specificity of the bioactive molecules 

identified, additional testing on other leukemia cell lines and primary leukemia samples would help to show 

the range of impact in the disease. While only the top three RPs shifted cells to the γH2AX high, RP island, 

there were many other compounds worth investigating further. From a clinical standpoint, the RRs 

CMLD011890 and CMLD011891 also had among the highest leukemia-specific induction of γH2AX. 

Additionally, the RR CMLD011880/CMLD010508 (SDS-1-021) and the ADRs CMLD012565 and 

CMLD012600 had distinct bioactivities within their subclass; the structural determinants of these are yet 

unknown and could also potentially be explained by engagement with specific targets.  

The subset of rocaglate pyrimidinones (RPs) with exceptional, leukemia-specific γH2AX activation 

identified through successive testing of 600 diversity compounds followed by 37 select rocaglates 

demonstrate the value of an expanded biological readout space for deconvolving the impact of small 

chemical changes. We anticipate this combined set of experimental and computational approaches to be 

adaptable for testing other promising families of structurally related molecules across a range of functional 

readouts, cell types, and disease states.  
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Methods  

Screening Compounds: 

Initial screens were performed on a Diversity Set of 600 compounds selected from the BU-CMD’s in-

house small molecule screening collection that was comprised of 4,445 compounds at the time of 

Diversity Set assembly. The Diversity Set was curated to contain a roughly proportional count of 

members from each of the 120 distinct structural chemotypes present in the parent screening collection. 

Diversity Set representatives for each chemotype (range: 1-23 compounds per chemotype; average: 5.4 

members per chemotype) were randomly chosen from a preselected field of available compounds meeting 

a specific stock volume threshold, in order to ensure availability of follow-up material for validation and 

secondary assays. 

Follow-up assays were performed on a hand-chosen cohort of 37 rocaglates (Supplementary Figure 3), 

selected to include a diverse representation of bioactive rocaglate subclasses, with additional 

consideration of known bioactivity, structural diversity, and available stock quantity. 

PBMC Collection and Preservation: 

Peripheral blood mononuclear cells (PBMCs) were obtained in accordance with the Declaration of Helsinki 

following protocols approved by Vanderbilt University Medical Center IRB. PBMCs were collected, 

isolated, and cryopreserved from approximately 20 mL of freshly drawn blood as previously described 76. 

Briefly, peripheral blood was drawn into sodium heparin anticoagulant, and PBMCs were isolated by 

centrifugation after layering on top of a Ficoll-Paque PLUS (GE Healthcare Bio-Sciences) gradient. 

MV411 Cell Culture:  

MV411 cells were obtained from ATCC (CRL-9591) and confirmed to be mycoplasma negative. MV411 

was cultured in IMDM (Gibco 12440-053), supplemented to a final concentration of 10% fetal bovine 

serum. Cells were incubated in a water-jacketed 5% CO2 incubator at 37 °C and maintained at densities 

between 100 thousand and 1 million cells per ml of culture media, fed every other day, and passaged 

every 4 days. 

Fluorescent Cell Barcoding (FCB) Assays.: 

The general protocol followed Schares et. al. Barcoding plates were prepared as described in Section 6.1 

of Schares et. al. 13. 

Diversity Set Experiment: 

For performing Diversity Set testing, the compound plate was prepared as follows: control compounds (3 

replicates of DMSO, staurosporine, etoposide, aphidicolin, rapamycin, and nocodazole) were prepared to 

final concentrations listed in Supplementary Table 2 and plated at 1 µL into columns 6 and 12 of 8 96 
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well tissue culture plates (Fisher). The Diversity Set compounds were acquired from the BU-CMD and 

plated at a volume of 1 µL into the remaining 80 wells of the 8 96-well tissue culture plate for a final 

concentration of 10 µM. 

MV411 cells from suspension culture (0.5-1 million cells/mL) were acquired, pelleted, and resuspended in 

media to around 500,000 cells/mL at least 2 hours before start of the experiment as described in Schares 

et. al. Cell suspension was dispensed at 200 µL to each of the 8 96 wells plates and pipetted to mix. The 

plate was incubated at 37°C, 5% CO2 for 16 hr. The remaining steps were performed as described in 

Schares et. al. Briefly, cells were stained for viability with 0.04 μg/mL Ax700, fixed with 1.6% 

paraformaldehyde, and permeabilized with 100% ice-cold methanol. Cells were stained using eight 

concentrations of pacific blue and six concentrations of pacific orange (per 48 wells) for generating a 

unique fluorescent barcode for each well, and one concentration of AlexaFluor 750 as an internal control. 

Cells were pooled into one flow cytometry tube per 48-well plate (16 tubes total) for staining with the 

following antibody panel: c-CAS3, γH2AX, p-S6 S240/244, and p-HH3 (more information detailed in 

Supplementary Table 1). Compensation controls for each antibody and dye and bead controls were 

prepared and used for the set-up of the flow cytometer. Flow cytometry data was acquired on a 5-laser 

(355 nM, 405 nM, 488 nM, 561 nM, and 635 nM) BD LSR II Fortessa instrument. 

Rocaglate Set Experiment: 

For the Rocaglate Set experiment, the compound plate was prepared as follows. Control compounds (3x 

DMSO, staurosporine, etoposide, CMLD010335, rapamycin, and nocodazole) were prepared to final 

concentrations listed in Supplementary Table 2 and plated at 1µL in columns 6 and 12 of a 96 well tissue 

culture plate. The Rocaglate Set (RR = 20, ADR = 8, RP = 9) acquired from the BU-CMD was plated at 

a volume of 1 µL into the remaining 80 wells of the 96-well tissue culture plate at a final concentration of 

10 µM. 

As described above, MV411 cells from suspension culture were acquired, pelleted, and resuspended in 

media at least 2 hours before start of the experiment. PBMCs were thawed from cryopreservation and 

resuspended at ∼2 × 106 cells/mL. The cell suspension was dispensed at 200µL to each of the 96 wells 

of 2 compound plates, one for each cell type, and pipetted to mix. The plate was incubated at 37°C, 5% 

CO2 for 16 hr. The remaining steps were performed as described above, pooling cells into two total flow 

cytometry tubes for antibody staining: one for PBMC and one for MV41113. Antibody staining panel 

included p-STAT3, p-STAT5, p-ERK, p-HH3, p-4EBP1, p-S6 S240/244, p-S6 S235/236, Ki67, and γH2AX 

(Supplementary Table 1). Flow cytometry controls were performed as above. Flow cytometry data was 

acquired on a four laser (405 nM, 488 nM, 561 nM, and 640 nM) Cytek Biosciences Aurora spectral flow 

cytometer following spectral unmixing with compensation controls. 

Dose-Response: 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2024. ; https://doi.org/10.1101/2024.05.01.591362doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.01.591362
http://creativecommons.org/licenses/by/4.0/


CMLD012390 and CMLD013342 were prepared at the following doses and plated at a volume of 1 µL into 

the first two columns of rows A-H of a 96-well plate, respectively: 0.01, 0.05, 0.1, 0.5, 1, 5, 10, and 0 µM.  

As described above, MV411 cells from suspension culture were acquired, pelleted, and resuspended in 

media at least 2 hours before start of the experiment. The cell suspension was dispensed at 200µL to 

each of the two columns of the 96 well plate and pipetted to mix. The plate was incubated at 37°C, 5% 

CO2 for 16 hr. Cells were stained for viability, fixed, and permeabilized. Cells for each compound were 

then stained using eight concentrations of pacific blue, one concentration of pacific orange, and one 

concentration of AlexaFluor 750. Cells for each compound were pooled into their own flow cytometry tube 

for staining with the same antibody panel as the Rocaglate Set experiment (Supplementary Table 1). 

Flow cytometry controls and data collection were performed as in the Rocaglate Set experiment.  

Time Course: 

CMLD012390 and CMLD013342 were prepared to a final concentration of 10 µM. As described above, 

MV411 cells from suspension culture were acquired, pelleted, and resuspended in media. Cell suspension 

was dispensed at 200 µL to the first three columns of rows A-C of a 96-well plate. A 16-hour reverse time 

course was begun by pipetting 1 µL of DMSO, CMLD012390, and CMLD013342 into columns 1, 2, and 

3, respectively of row A and pipetted to mix. After 12 h, 1 µL of DMSO, CMLD012390, and CMLD013342 

was dispensed into row B for the 4-h time point. Lastly, after 15 h, 1 µL of DMSO, CMLD012390, and 

CMLD013342 was dispensed into row C for the 1-h time point. At the completion of the reverse time 

course, all three rows were stained for viability, fixed, permeabilized, and stained using three 

concentrations of pacific blue, three concentrations of pacific orange, and one concentration of AlexaFluor 

750. Cells were pooled into one flow cytometry tube and stained with the following antibody panel: LC3, 

p-EIF2a, p-MLKL, c-CAS3, and γH2AX (cf. Supplementary Table 1). Flow cytometry controls were 

performed as above. Flow cytometry data was acquired on a three-laser (405 nM, 488 nM, and 640 nM) 

Cytek Biosciences Northern Lights spectral flow cytometer following spectral unmixing with compensation 

controls. 

FCB Data Preprocessing and Analysis: 

Data was uploaded and stored in Cytobank for scaling, quality control gating, compensation, and analysis 

of unmixed cytometry data (FCS file format). Raw median fluorescence intensity values were transformed 

to a hyperbolic arcsine scale. For the Diversity Set test, a cofactor of 150 was selected for all functional 

readouts. For the Rocaglate Set experiment, the default cofactor of 6000 was selected for all markers 

except for Ki67 (25000), p-S6 S240/244 (12000), p-LCK (12000), p-STAT3 (12000), p-STAT5 (25000), p-

S6 S235/236 (12000), p-HH3 (12000), and p-4EBP1 (12000). For the dose-response and time course 

experiments, a cofactor of 6000 was selected for all functional readouts. Quality control gating (QC) 

consisted of QC1: FSC-A vs. FSC-H for singlets, QC2: FSC-A vs. SSC-A for intact cell bodies, QC3: FSC-

A vs. Ax750 for barcode uptake control, and QC4: Ax750 vs. Ax700 for viable cells. Scaled and gated 
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samples were compensated and then computationally deconvoluted using the DebarcodeR algorithm. The 

resulting FCS files for each well were uploaded to Cytobank for storage and further analysis. 

T-REX Analyses: 

T-REX takes a pair of dimensionally reduced maps of equal size as inputs, creates a plot that highlights 

hotspots of cells in phenotypic regions that are the most different between the two files, and provides a T-

REX degree of difference value for each analysis performed. The dimensionality reduction tool used here 

was t-SNE which was performed as follows: after debarcoding, the FCS files corresponding to stained 

cellular events from all 48 wells for both cell types were uploaded to one Cytobank experiment and fed 

into a t-SNE-CUDA analysis through Cytobank (settings: channels = 11 functional readouts included in 

the panel, iterations = 10,000, perplexity = 60, automatic learning rate, early exaggeration = 12). FCS files 

containing protein measurements for all readouts with the t-SNE axes appended were exported into R for 

subsequent analysis. Each dimensionally reduced map was sampled such that each well and rocaglate 

structural subclass, when applicable, was equally represented before applying T-REX. The T-REX 

algorithm was applied in R using a k value of 60. A modular data analysis workflow including UMAP as 

the dimensionality reduction tool, K-Nearest Neighbors (KNN), and Marker Enrichment Modeling (MEM) 

was developed in R and is available online (https://github.com/cytolab/T-REX). 

MEM Protein Enrichment Analyses: 

Marker Enrichment Modeling from the MEM package (https://github.com/cytolab/mem) was used to 

characterize feature enrichment in the RP specific island identified. MEM normally requires a comparison 

of a population against a reference control, such as a common reference sample, all other cells, or induced 

pluripotent stem cells 28,77,78. Here, a statistical reference point intended as a statistical null hypothesis 

was used as the MEM reference. For this statistical null MEM reference, the magnitude was zero and the 

IQR was the median IQR of all features chosen for the MEM analysis. Values were mapped from 0 

enrichment to a maximum of +10 relative enrichment. The contribution of IQR was zeroed out for 

populations with a magnitude of 0.  

Cell Gating Analyses: 

Gating was performed in Cytobank to quantify the % γH2AX positive cells in response to each compound 

in MV411 and PBMC. This analysis was performed by plotting Side Scatter Area vs. γH2AX for each 

compound and cell type and using the polygon gate tool to draw an area that maximizes the difference in 

percentage % γH2AX positive cells between the vehicle and control wells. Quantifying the percentage of 

cells in the RP island was also performed using the polygon gate in Cytobank.  

EC50 Calculations: 

EC50s were calculated in R using the drm function from the drc package. A four-parameter log-logistic 

function was selected with the following unfixed parameters: hill slope, minimum value, maximum value, 
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and EC50. The dependent variable for the dose-response formula was the percentage of cells in the 

γH2AX+ gate which was calculated on Cytobank and imported into R. The independent variable was the 

common logarithm of the dose for each concentration.  
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Thirman et. al. – Figure 1  

 
Figure 1 – Rocaglates displayed exceptional activity in a multiplexed single cell bioactivity assay. A) A model of a cell annotated 
with the key readouts measured (dark outlines). mTOR pathway activation is explored through testing p-AKT, p-ERK1/2, p-S6, and p-
4EBP1, which regulate translation, among other cellular processes. Activation of the DNA damage response is explored through γH2AX. 
Ki67 and p-HH3 are indicative of proliferation and M-phase of the cell cycle, respectively. p-STAT3 and p-STAT5 are transcription factors 
that regulate the expression of cell cycle, survival, and pro-inflammatory genes. Activation of apoptosis is measured through the detection 
of c-CAS3. Key readouts activated (yellow) or inhibited (blue) by the exceptional three rocaglates (shown in D) are depicted for PBMC in 
B) and MV411 in C). D) Depiction of the progression from 600 compound Diversity Set to three exceptional rocaglates. A symbolic 
representation of the 600-compound Diversity Set comprised of 120 chemotypes, the 65 molecules identified as bioactive, and the 
Rocaglate Set selected for structure-bioactivity relationship studies. The names and structures for the three exceptional rocaglates are 
shown. The number of total molecules, chemotypes, and subclasses, where relevant, are depicted above each respective phase of testing. 
The number of readouts and cells used for testing are depicted below each phase. E) The arcsinh scaled fold change in median 
fluorescence intensity vs. vehicle for the 600-compound Diversity Set of natural products on the four readouts tested. Each readout is 
represented by a different colored circle. The bioactivity threshold was drawn at the vehicle median + 3 x interquartile range (IQR) (0.0573). 
F) The percentage of the 600 compounds from each of the 120 chemotypes represented in the Diversity Set. The pie slice corresponding 
to rocaglates is highlighted in red. Bioactive molecules were selected based on the threshold shown in E). The percentage of the 65 
bioactive molecules from each of the 39 chemotypes represented is shown, with the pie slice corresponding to rocaglates highlighted in 
red.  
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Thirman et. al. – Figure 2 

 

Figure 2 – Rocaglates are a chemical family with bioactivity against leukemia cells. A) Shown, are the three elements core to a single 
cell chemical biology experiment conducted using flow cytometry – target cells, a module of cytometry readouts, and small molecule inputs 
- and the inputs selected for these studies. The MV411 leukemia cell line and human peripheral blood mononuclear cells were selected as 
the set of target cells. Eleven readouts of core cell functions were selected for measuring per cell as part of the cytometry module. Lastly, 
rocaglates falling into the three depicted structural subclasses – regular rocaglates, amidino rocaglates, and rocaglate pyrimidinones – 
were chosen as the small molecule inputs. B) Plot depicting the result of performing a t-SNE analysis on the entire pre-processed MV411 
dataset (All compounds). The t-SNE of all compounds is divided based on the category of input (Vehicle, RR, ADR, and RP) and colored 
based on cell density. C) T-REX plots depict regions of significant difference between the t-SNE of one rocaglate subclass vs. vehicle-
treated cells in MV411. As a representative of variation between the three tested vehicle wells, a T-REX plot is shown for the analysis of 
vehicle 3 vs. the pooled set of vehicles 1 and 2 (leftmost plot). The T-REX degree of difference [(number of red cells + number of blue 
cells)/total number of cells] for each analysis is reported in the lower right corner of each plot. D) Box and whisker plot of T-REX degree of 
difference for each compound vs. vehicle-treated cells in MV411. Corresponding box and whiskers are grouped and colored according to 
rocaglate structural subclass. The median and IQR range of the T-REX degree of difference for each subclass is provided above the 
respective set of box and whiskers. The dashed navy line is shown at the vehicle median + 3 x IQR to indicate a significance threshold. 
Representative T-REX plot for CMLD013342 vs. vehicle is shown to the left of the box and whisker plot for reference on the analysis 
conducted. T-REX plots for the remaining compounds are depicted in Supplementary Figure 2B. 
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Thirman et. al. – Figure 3 

 

Figure 3 – Rocaglate subclasses had distinct patterns of bioactivity. A) Heatmap depicting the arcsinh ratio of the median fluorescence 
intensity for each compound (listed on top of heatmap) and readout (listed left of heatmap) by the median fluorescence intensity of Vehicle 
1. Cells on the heatmap range from light blue for the lowest values to bright yellow for the highest values. Compounds are grouped and 
colored according to the rocaglate subclass listed on the top of the plot. B) Heatmap as in Figure 2B clustered according to a dendrogram 
of the transformed median fluorescence intensity for each compound and readout.   
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Thirman et. al. – Figure 4 

 

Figure 4 – MV411 specific activity was observed in the RP subfamily and some regular rocaglates. A) Bar plot of percentage of 
γH2AX positive (% γH2AX +) cells for each compound grouped and colored according to rocaglate subclass listed on the right side of the 
plot. Bars on the left side of the vertical black line correspond to the compound response in peripheral blood mononuclear cells (PBMC) 
and the right side corresponds to the compound response in MV411 cells. The dotted vertical blue line corresponds to a significance 
threshold for % γH2AX+ cells in MV411 and the dotted pink line corresponds to a significance threshold for % γH2AX+ cells in PBMC. 
Compounds that cross the threshold have darkened colored bars. The compound name (or vehicle) is listed on the far left side of plot 
colored according to the following system: blue =  increases % γH2AX+ cells past threshold in MV411 and not in PBMC, pink =  increases 
% γH2AX+ cells past threshold in PBMC and not in MV411, light grey =  does not increase % γH2AX+ cells past threshold in either cell 
type, dark grey = increases % γH2AX+ cells past threshold in both cell types. Arrows are displayed to the left of compounds that will be 
shown in Figure 4C. B) Scatter plot of % γH2AX+ cells in MV411 on the x-axis and the log2 fold ratio of % γH2AX+ cells in MV411 to % 
γH2AX+ cells in PBMC on the y-axis. Each dot corresponds to a compound colored according to rocaglate structural subclass. Compounds 
that will be shown in Figure 4C are circled and labeled. C) Contour plots of Side Scatter vs. γH2AX for Vehicle 3, CMLD010508, 
CMLD012600, and CMLD013342, respectively from left to right in PBMC (top) and MV411 (bottom). The blue line indicates the γH2AX+ 
gate. The % γH2AX+ cells within the gate is written in blue in the lower right corner. Corresponding structures for each compound are 
depicted below the compound name.  
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Thirman et. al. – Figure 5 

 

Figure 5 – The RP subfamily had a distinct, leukemia-specific population of cells with high DNA damage response. A) T-REX plots 
depict regions of significant difference between the t-SNE of one rocaglate subclass vs. the pooled set of all three remaining subclasses 
(including vehicle) for MV411 data. The RP island is circled in red in the “RP vs. Others” plot. B) Boxplot depicting the percent of cells in 
the RP island for MV411 for each rocaglate grouped by rocaglate subclass. The Wilcoxon rank sum test of RP vs. remaining subclass % 
in gate was conducted and generated a p-value of 0.015. C) MEM protein enrichment label generated for the RP island of cells. The 
percentage of the total population of cells for the RP island is depicted in the lower right corner. D) t-SNE plot of the MV411 and PBMC 
data on a new embedding with corresponding x and y axes (left). The t-SNE plot for both cell types was divided into separate plots for 
MV411 (middle) and PBMC (right). The percentage of cells in an MV411-specific island is circled in red and depicted in the lower right of 
the MV411 and PBMC plots. E) T-REX plot of RPs vs. the pooled set of all three remaining subclasses (including vehicle) for the MV411 
data using the t-SNE performed on the MV411 and PBMC data together shown in Figure 5D. The MV411-specific island circled in red was 
identified to have the same MEM label as the RP island. 
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Thirman et. al. – Figure 6 

 

 

Figure 6 - Rocaglates contributing to RP-island possessed structural commonalities. t-SNE shown in Figure 2B of all compounds 
in MV411 divided based on rocaglate well of origin is shown for the set of 9 RPs in order of decreasing percentage of cells in the RP island 
(t-SNEs for all individual compounds are shown in Supplementary Figure 2A). The t-SNE plots for the three vehicle wells are shown for 
reference in the purple box on the left. The percentage of cells in the RP island gate circled in dark blue is included at the bottom right of 
each plot. The chemical structure corresponding to each rocaglate is depicted on the left side of each t-SNE plot (except the three vehicle 
wells). 
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Thirman et. al. – Figure 7 

 

 

 

 

Figure 7 – The top 2 RPs activated γH2AX with < 500nM potency within 4 hours. A) Dose-response titration curves depicting % 
γH2AX+ cells (based on expert gating) vs. log[dose(nM)]. A half-maximal activating concentration (EC50) curve was fitted to the data and 
γH2AX EC50 values are shown in the top left of each plot. Contour plots of Side Scatter Area (SSC-A) vs. γH2AX at 10 µM and 0.01 µM, 
respectively, with 10% of cells per contour are shown for each compound. A polygon gate is drawn in blue to delineate γH2AX+ cells, with 
the % γH2AX+ cells within the gate depicted in the lower right corner. B) Bar plots depicting % γH2AX+ cells derived from a time course 
experiment at 1, 4, and 16hr for Vehicle, CMLD012390, and CMLD013342.  
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