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ABSTRACT 

Background: Anaesthesiology clinicians can implement risk mitigation strategies if they know 

which patients are at greatest risk for postoperative complications. Although machine learning 

models predicting complications exist, their impact on clinician risk assessment is unknown.  

Methods: This single-centre randomised clinical trial enrolled patients age ≥18 undergoing 

surgery with anaesthesiology services. Anaesthesiology clinicians providing remote 

intraoperative telemedicine support reviewed electronic health records with (assisted group) or 

without (unassisted group) also reviewing machine learning predictions. Clinicians predicted the 

likelihood of postoperative 30-day all-cause mortality and postoperative acute kidney injury 

within 7 days. Area under the receiver operating characteristic curve (AUROC) for the clinician 

predictions was determined. 

Results: Among 5,071 patient cases reviewed by 89 clinicians, the observed incidence was 2% 

for postoperative death and 11% for acute kidney injury. Clinician predictions agreed with the 

models more strongly in the assisted versus unassisted group (weighted kappa 0.75 versus 

0.62 for death [difference 0.13, 95%CI 0.10-0.17] and 0.79 versus 0.54 for kidney injury 

[difference 0.25, 95%CI 0.21-0.29]). Clinicians predicted death with AUROC of 0.793 in the 

assisted group and 0.780 in the unassisted group (difference 0.013, 95%CI -0.070 to 0.097). 

Clinicians predicted kidney injury with AUROC of 0.734 in the assisted group and 0.688 in the 

unassisted group (difference 0.046, 95%CI -0.003 to 0.091).  

Conclusions: Although there was evidence that the models influenced clinician predictions, 

clinician performance was not statistically significantly different with and without machine 

learning assistance. Further work is needed to clarify the role of machine learning in real-time 

perioperative risk stratification.  

Trial Registration: ClinicalTrials.gov NCT05042804 
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INTRODUCTION  

Postoperative mortality remains a major problem worldwide, with more than four million 

people dying within 30 days after surgery annually.1 Many deaths are preceded by 

complications such as acute kidney injury (AKI), respiratory failure, or adverse cardiac events.2–4 

Early recognition of these postoperative risks can facilitate changes in intraoperative or 

postoperative management to prevent complications or detect them sooner.5,6 Although data are 

available to identify patients at greatest risk for postoperative complications, accurate real-time 

risk assessment is difficult. First, the volume of data available during surgery often exceeds 

human information processing capacity, especially considering that the anaesthesiology 

clinician must concurrently perform multiple clinical care tasks.7–9 Second, anaesthesiology 

clinicians frequently succumb to biases and other cognitive errors when synthesizing available 

data to make clinical decisions.10 These difficulties with risk assessment likely increase for 

attending anaesthesiologists who oversee the care of multiple surgical patients simultaneously.  

 Researchers have proposed using machine learning (ML) models to mitigate the known 

limitations in anaesthesiology clinician risk assessment. Currently, ML models are available that 

predict postoperative mortality,11–15 AKI,16–18 and other postoperative complications19,20 with 

moderate-to-high discrimination. However, it has not been ascertained whether anaesthesiology 

clinicians would incorporate such models into their clinical practice to identify more accurately 

which patients are at risk for complications and therefore might benefit from risk mitigation 

strategies or enhanced monitoring. The objectives of this study were to determine whether 

anaesthesiology clinicians (i) incorporate information from ML predictions into their 

determination of postoperative patient risk, and (ii) can predict postoperative complications more 

accurately with access to ML model support than without ML model support. 
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METHODS  

Overall Design  

 We conducted the Perioperative Outcome Risk Assessment with Computer Learning 

Enhancement (Perioperative ORACLE) single-centre randomized trial (ClinicalTrials.gov 

NCT05042804, registered 9/13/2021). This trial was nested within the TECTONICS 

(Telemedicine Control Tower for the Operating Room: Navigating Information, Care and Safety) 

randomized clinical trial (NCT03923699). TECTONICS tested the effect of an anaesthesiologist-

staffed remote intraoperative telemedicine intervention (the Anesthesiology Control Tower, or 

ACT) on postoperative 30-day mortality, delirium, respiratory failure, and AKI. The ACT 

intervention consisted of reactive support in response to rule-based physiologic alerts and 

proactive support via comprehensive patient case reviews with communication of risk 

assessment and treatment recommendations to the operating room anaesthesiology team. For 

patients co-enrolled in Perioperative ORACLE, the comprehensive patient case review was 

randomized 1:1 to be performed with or without access to ML models predicting postoperative 

complications. The institutional review board at Washington University School of Medicine 

approved both TECTONICS (approval #201903026) and Perioperative ORACLE (#202108022) 

with a waiver of informed consent. Protocols for both trials have been published.21,22 This 

manuscript is written in accordance with the CONSORT-AI guidelines.23  

Setting and Participants  

 This trial was conducted at Barnes-Jewish Hospital, a university-affiliated, tertiary care 

hospital in Saint Louis, Missouri. Patients were included in Perioperative ORACLE if they were 

enrolled in TECTONICS and had a comprehensive patient case review performed between 

9/13/2021 and 9/30/2022. The selection of cases to review was at the discretion of the clinical 

staff in the ACT. Inclusion criteria for TECTONICS included age ≥ 18, surgery with 

anaesthesiology services at Barnes-Jewish Hospital, and surgery starting 7am-4pm Monday-
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Friday. ACT clinicians were members of the TECTONICS research team and included attending 

anaesthesiologists, resident physicians, and nurse anaesthetists.  

ML Model Intervention  

The intervention included ML models predicting death from any cause within 30 days 

after surgery and postoperative AKI defined using KDIGO creatinine criteria.24 Input features 

were selected by clinical experts and included demographic characteristics, comorbid 

conditions, preoperative vital signs, surgical service, functional capacity, and laboratory results. 

Models of varying architectures were trained using a retrospective cohort of surgical patients 

from the same institution, and the model with largest area under receiver operating 

characteristic curve (AUROC) in a randomly held-out validation set was selected. At the start of 

the trial, we used random forest models trained using approximately 110,000 patients who 

underwent surgery 2012-2016 (model version 1). Because of a change in the electronic health 

record vendor in 2018 leading to shifts in several data elements, new models were trained using 

84,000 patients who underwent surgery 2018-2020, adding the planned surgical procedure (in 

addition to surgical service) as an input feature. After retraining, the best performing model was 

a gradient boosted decision tree (model version 2). Model version 2 was deployed with an 

updated interface in February 2022. No further changes to model architecture or recalibrations 

were performed during the trial.  

 Models were implemented in Python. Computations were performed on a HIPAA-

compliant, university-maintained server with a near-live data feed from the electronic health 

record. Missing values were imputed with the population median for continuous variables or 

treated as a “missing” category for categorical variables. Model outputs were displayed to ACT 

clinicians on a secure, password-protected web application (Supplement Figure 1). Information 

displayed included the predicted risk of the complication (0%-100%), graphs showing change in 

predicted risk over time, and feature contribution estimates obtained using Shapley values. The 

design of the display was informed by a needs assessment study.25  
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Procedures  

 As part of their role in the parent TECTONICS trial, ACT clinicians conducted patient 

case reviews intraoperatively, generally within the first 60 minutes. The clinician reviewed 

pertinent data in the electronic health record, such as preoperative notes, laboratory results, 

diagnostic studies, and the start of the current anaesthesia record. The clinician completed an 

electronic case review form within a customized version of AlertWatch:OR software 

(BioIntelliSense, Golden, CO). The case review form included (among other elements) a rating 

of how likely the patient was to experience each complication on a five-point Likert scale: very 

low risk, low risk, average risk, high risk, or very high risk.  

Randomization  

 Case reviews were randomized 1:1 without restriction to be performed with or without 

utilizing the ML model output. The allocation was displayed when the ACT clinician opened the 

case review form in AlertWatch. The allocation sequence was a pseudo-random function of a 

back-end surgical encounter identifier. If randomized to the ML-assisted group, clinicians 

reviewed the ML web application before completing the case review form. If randomized to the 

ML-unassisted group, clinicians completed the case review form immediately. Clinicians could 

not be blinded to allocation.  

To assess compliance with randomization, clinicians self-reported if they reviewed the 

ML model output during the case review. If the clinicians reviewed the ML model output, then 

they were also asked whether they found the ML predictions surprising and whether they 

agreed or disagreed with the ML predictions.  

Outcomes  

 The co-primary outcomes were accuracy of clinician predictions of postoperative 30-day 

all-cause mortality and postoperative AKI. True complication status was defined using electronic 

health record queries. 30-day all-cause mortality was defined using vital status as documented 

in the electronic health record. AKI was defined as an increase in creatinine ≥0.3 mg/dL within 
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48 hours or ≥1.5 times baseline within 7 days.24 If creatinine was not checked preoperatively, 

then the upper limit of the laboratory’s reference range was used as the baseline value. If 

creatinine was not checked postoperatively, then AKI was assumed to be absent. AKI was not 

defined for patients with a baseline creatinine >4.0 mg/dL, patients meeting the creatinine 

criteria for AKI preoperatively, patients receiving dialysis preoperatively, or patients undergoing 

a dialysis access procedure or kidney transplant.  

Statistical Methods and Sample Size  

 All analyses were conducted using R version 4.2.3.26 Descriptive statistics included 

frequencies (percentage) for categorical variables and either mean (standard deviation) or 

median (interquartile range) for continuous variables depending on the distribution. Agreement 

between clinician predictions and ML predictions was quantified using weighted kappa, with 

quadratic weights. For each co-primary outcome, two logistic regression models were 

constructed: one using case reviews in the ML-assisted group and another using case reviews 

in the ML-unassisted group. Each logistic regression used clinician predictions (a 5-level 

categorical variable) as the independent variable and true complication status as the dependent 

variable. DeLong’s test was used to compare the AUROC of the model using ML-assisted cases 

to the AUROC of the model using ML-unassisted cases.27 The sample size calculation was 

previously published.22  

 The primary analysis followed the intention-to-treat principle and included all patients for 

whom clinician predictions were available and the true complication status was known. 

Secondary per-protocol and as-treated analyses were also performed. For AKI, a sensitivity 

analysis excluded patients with no postoperative creatinine measurement. As exploratory 

analyses, the primary analysis was repeated in subgroups defined by sex, race, ML model 

version (1 or 2), clinician background, and randomization allocation from the parent 

TECTONICS trial. An additional post-hoc subgroup was patients where the ML model correctly 
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predicted the complication status (when the model prediction 60 minutes after start of surgery 

was dichotomized at the value that maximized the Youden index).   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2024. ; https://doi.org/10.1101/2024.05.22.24307754doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.22.24307754
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

RESULTS  

 Between 9/13/2021 and 9/30/2022, 5,071 patient cases were included in the trial, with 

2,536 case reviews randomized to the ML-assisted group and 2,535 to the ML-unassisted group 

(Figure 1). Baseline characteristics of the randomized patients are shown in Table 1. In total, 89 

distinct anaesthesiology clinicians participated. The trial ended because the target enrolment 

was achieved.  

Prospective Performance of ML Models  

 Overall, the ML model predicting death performed with AUROC 0.807 (95%CI 0.768-

0.847), whereas the model predicting AKI performed with AUROC 0.766 (95%CI 0.746-0.787). 

Both models exhibited variation in performance month-to-month but showed improvement after 

the new model versions were implemented in February 2022 (Supplement Figure 2). 

Prospective performance of all models was reduced compared to performance in the 

retrospective holdout validation datasets (Supplement Table 1).  

Patterns of Clinician Predictions  

 Clinician predictions were more likely to match the ML predictions (i.e., fall into the same 

risk category on the 5-point Likert scale) in the ML-assisted group compared to the ML-

unassisted group when predicting death (weighted kappa 0.75 versus 0.62, difference 0.13 

[95%CI 0.10-0.17], Figure 2) and AKI (weighted kappa 0.79 versus 0.54, difference 0.25 [95%CI 

0.21-0.29], Figure 3). These patterns were seen regardless of whether the ML prediction was 

correct or incorrect when dichotomized at the value that maximized the Youden index 

(Supplement Figures 3-6, Supplement Tables 2-3). In the ML-assisted group, clinician and ML 

predictions for both outcomes were most likely to match when clinicians self-reported not being 

surprised by the ML (Supplement Figures 7-8, Supplement Tables 4-5).  

Performance for Prediction of Death  

The primary analysis for death included 4,459 patients, of whom 98 (2.2%) died within 

30 days after surgery. Clinicians in the ML-assisted group predicted mortality with AUROC 
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0.793 (95%CI 0.735-0.851), while clinicians in the ML-unassisted group predicted mortality with 

AUROC 0.780 (95%CI 0.717-0.842, Figure 2A). The difference in AUROC between the two 

groups was 0.013 (95%CI -0.070 to 0.097, p=0.76). The positive predictive value of a “high risk” 

or “very high risk” prediction was 6.9% in the ML-assisted group and 7.5% in the ML-unassisted 

group (Supplement Table 6). There was no difference in AUROC between groups in the per-

protocol, as-treated, and pre-specified subgroup analyses (Supplement Figure 9). However, the 

AUROC was higher in the ML-assisted group than in the ML-unassisted group for patients 

where the dichotomized ML prediction was correct.  

Performance for Prediction of AKI  

 The primary analysis for AKI included 4,055 patients, of whom 450 (11.1%) experienced 

AKI. Clinicians in the ML-assisted group predicted AKI with AUROC 0.734 (95%CI 0.703-0.766), 

while clinicians in the ML-unassisted group predicted AKI with AUROC 0.688 (95%CI 0.652-

0.725, Figure 2B). The difference in AUROC between the two groups was 0.046 (95%CI -0.003 

to 0.091, p=0.06). The positive predictive value of a “high risk” or “very high risk” prediction was 

23.1% in the ML-assisted group and 20.2% in the ML-unassisted group (Supplement Table 7). 

There was no difference in AUROC between the ML-assisted group and the ML-unassisted 

group in the per-protocol, as-treated, and pre-specified subgroup analyses (Supplement Figure 

10). However, the AUROC was higher in the ML-assisted group than in the ML-unassisted 

group for patients where the dichotomized ML prediction was correct and lower when the 

dichotomized ML prediction was incorrect.   
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DISCUSSION  

 In this single-centre, randomized clinical trial, anaesthesiology clinicians predicted 

postoperative death within 30 days with high discrimination both with and without access to ML 

predictive algorithms. The clinicians predicted postoperative AKI with moderate discrimination, 

and the difference in discrimination between the ML-assisted group and the ML-unassisted 

group was not statistically significant. For both models, prospective model performance was 

reduced compared to performance during validation in a retrospective cohort.  

 A few previous studies have examined ML and clinician performance in perioperative 

prediction tasks. In a simulation study, 20 intensivists predicted 2 out of 6 postoperative 

complications more accurately for 150 patients after reviewing the MySurgeryRisk tool than 

before reviewing it.28 However, there was no change in prediction accuracy by surgeons during 

live deployment of this risk tool.29 In another simulation study, 5 anaesthesiologists predicted 

intraoperative hypoxemia with greater discrimination using an ML model than not using it.30 

Finally, the 68-patient HYPE trial reported reduced time-weighted average hypotension during 

elective non-cardiac surgery using an early warning system than without it,31 although no 

difference was found in subsequent evaluation by different investigators.32 These trials did not 

explicitly measure clinician predictions, but the observed effects were presumably mediated by 

changes in anaesthesiologist anticipation of hypotension.  

There are key differences between our trial and these previous trials. In the simulation 

studies, clinicians had no other duties besides prediction, whereas in ORACLE clinicians 

simultaneously provided telemedicine support for ongoing surgeries. In some studies that used 

historical cases, the outcome incidence was artificially increased by up-sampling positive cases, 

which can impact clinician performance. Some trials included few clinicians, who may have 

developed expertise in using the ML model output over time, whereas ORACLE included many 

anaesthesiology clinicians with different backgrounds and levels of experience. Taken as a 

whole, the literature surrounding perioperative outcome prediction resembles the literature 
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elsewhere in medicine, where about 50% of studies report improvements in diagnostic 

performance by ML-assisted clinicians compared to clinicians alone.33  

 Importantly, ORACLE clinician predictions in the ML-assisted group were more likely to 

match the ML model output compared to the ML-unassisted group. This implies that ML 

impacted the clinicians’ predictions. However, this impact occurred equally regardless of 

whether the ML was correct or incorrect (Supplement Tables 2-3), raising concern for 

“automation bias” where ML output is quickly accepted rather than critically reviewed. Therefore, 

the lack of statistically significant differences in discrimination between groups may be driven at 

least partly by poorer ML model performance during prospective deployment compared to 

retrospective evaluation. Reasons for the decrement in performance might include data drift or 

concept drift. Data drift refers to changes in the distribution of input features over time, either 

due to true changes in the patient population (e.g., increasing age and comorbidity burden of 

surgical patients over time34) or changes in data capture (e.g., new data field or increased 

missing rates). Concept drift refers to changes in the target variable being predicted (e.g., 

distribution of causes of death changing over time). Both factors can change the relationships 

between input features and the prediction target, causing degradation of model performance. 

Poorer prospective performance can also be a sign of unintentional overfitting due to multiple 

experiments during algorithm development.  

 This trial has numerous strengths. First, nesting within the TECTONICS trial allowed 

many patient cases to be reviewed efficiently. Second, patient cases were reviewed by many 

anaesthesiology clinicians with differing backgrounds, including attending anaesthesiologists, 

resident physicians, and nurse anaesthetists. Third, cases were reviewed in real-time during 

surgery with ML models utilizing live data feeds from the electronic health record. Using real-

time case reviews rather than simulations means the trial more closely captured how ML models 

might be used at the bedside. Fourth, the ML model user interface was designed based on input 

obtained from the anaesthesiology clinicians who would be using it.25 Fifth, the ML model 
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performed on-par or better than expert clinicians despite having access to many fewer input 

features. This points to a role for ML in data review, especially in teams where some members 

have less experience or different content area expertise.  

 This trial also has limitations. First, case reviews were conducted in the context of a 

telemedicine intervention rather than at the patient’s bedside. However, clinicians reported that 

the workflow they used for evaluating patients in the ACT closely mimics the workflow they use 

before taking patients to the operating room for in-person anaesthesiology care.25 Second, we 

were unable to measure how much time clinicians spent reviewing each case. ML models may 

provide value if they allow clinicians to arrive at the same risk assessment more quickly, even if 

accuracy remains unchanged. Third, clinicians assessed risk using a five-point Likert scale 

rather than a continuous scale, which may have decreased our ability to detect differences in 

discrimination between the groups. However, we believe that the 5-point scale captures the 

most clinically relevant risk assessment. Fourth, this work was conducted at a single academic 

medical centre. The results may be different in other contexts. Fifth, discrimination was 

somewhat lower in the ML-assisted group compared to the ML models alone. This may indicate 

insufficient trust in the ML models. Additional work is needed to understand reasons for lack of 

clinician trust, but possible explanations might include inadequate explanations of contributing 

features or poor workflow integration. Sixth, our results speak only to differences in 

discrimination using ML, not differences in calibration, which is also important for clinical 

decision making. Seventh, AKI was assumed to be absent if creatinine was not measured 

postoperatively. However, results were similar in a sensitivity analysis excluding these patients. 

Eighth, although our study is large, the confidence intervals on differences in discrimination are 

relatively wide, especially for death, where the number of events is smaller.  

 In conclusion, this trial demonstrated that anaesthesiology clinicians predicted 

postoperative death and AKI without statistically significant difference in discrimination whether 

or not they had access to ML predictive algorithms. The ML models appeared to impact clinician 
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predictions, improving clinician discrimination when the ML was correct but reducing clinician 

discrimination when the ML was incorrect. Although caution is needed to prevent poorly 

performing models from leading clinicians astray, this work suggests there may be a role for 

well-calibrated models to improve clinician risk assessment.  
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Figure 1. CONSORT Flow Diagram 
Abbreviations: AKI = acute kidney injury. ML = machine learning. 
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Table 1. Patient and Clinician Characteristics for Randomized Case Reviews 
 

Variable ML-Assisted Group  
(N = 2536) 

ML-Unassisted Group  
(N = 2535) 

Age, mean (standard deviation) 58.2 (15.7) 57.8 (16.2) 

Sex 
  

     Female 1315 (52%) 1338 (53%) 

     Male 1221 (48%) 1197 (47%) 

Race 
  

     Black or African American 543 (21%) 507 (20%) 

     White 1925 (76%) 1942 (77%) 

     Other 44 (2%) 55 (2%) 

     Unknown 24 (1%) 31 (1%) 

Ethnicity 
  

     Hispanic 48 (2%) 43 (2%) 

     Non-Hispanic 2455 (97%) 2461 (97%) 

     Unknown 33 (1%) 31 (1%) 

Surgery Service 
  

     General Surgery 612 (24%) 602 (24%) 

     Orthopedics 408 (16%) 421 (17%) 

     Obstetrics/Gynecology 291 (11%) 288 (11%) 

     Neurosurgery 241 (10%) 267 (11%) 

     Urology 232 (9%) 231 (9%) 

     Cardiothoracic 212 (8%) 220 (9%) 

     Vascular 211 (8%) 182 (7%) 

     Otolaryngology 188 (7%) 200 (8%) 

     Plastics 95 (4%) 92 (4%) 

     Other 44 (2%) 29 (1%) 

ASA Physical Status 
  

     1 65 (3%) 65 (3%) 

     2 764 (30%) 760 (30%) 

     3 1370 (54%) 1411 (56%) 

     4 316 (13%) 279 (11%) 

     5 10 (< 1%) 13 (1%) 

ASA Emergency Status 
  

     Not Emergency 2452 (97%) 2471 (98%) 

     Emergency 73 (3%) 57 (2%) 

TECTONICS Randomization 
  

     Telemedicine Intervention 1276 (50%) 1236 (49%) 

     Usual Care 1260 (50%) 1299 (51%) 

Clinical Experience of ACT Clinician 
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     MD/DO - Attending 766 (30%) 779 (31%) 

     MD/DO - CA3 Resident 666 (26%) 670 (26%) 

     MD/DO - Intern Level 682 (27%) 648 (26%) 

     CRNA 292 (12%) 290 (11%) 

     SRNA 130 (5%) 148 (6%) 

 
Abbreviations: ML = Machine learning. ASA = American Society of Anesthesiologists. 
TECTONICS = Telemedicine Control Tower for the Operating Room: Navigating Information, 
Care and Safety. ACT = Anesthesiology Control Tower. CRNA = Certified registered nurse 
anaesthetist. SRNA = Student registered nurse anaesthetist. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2024. ; https://doi.org/10.1101/2024.05.22.24307754doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.22.24307754
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

 
Figure 2. Distribution of Clinician Predictions for Postoperative Death. Stratified by treatment allocation (ML-unassisted group 
versus ML-assisted group) and by ML prediction. Green bars represent cases where the clinician prediction matched the categorical 
ML prediction.  
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Figure 3. Distribution of Clinician Predictions for Postoperative Acute Kidney Injury. Stratified by treatment allocation (ML-
unassisted group versus ML-assisted group) and by ML prediction. Green bars represent cases where the clinician prediction 
matched the categorical ML prediction. 
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Figure 4. Receiver Operating Characteristic Curves. (A) Prediction of postoperative death within 30 days. (B) Prediction of 
postoperative acute kidney injury. 
Abbreviations: AUC = Area under curve. ML = Machine learning 
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