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ABSTRACT 

This study investigated the dynamic responses to an acute glucose challenge following chronic 

almond versus cracker consumption for 8 weeks (clinicaltrials.gov ID: NCT03084003). Seventy-

three young adults (age: 18-19 years, BMI: 18-41 kg/m2) participated in an 8-week randomized, 

controlled, parallel-arm intervention and were randomly assigned to consume either almonds (2 

oz/d, n=38) or an isocaloric control snack of graham crackers (325 kcal/d, n=35) daily for 8 

weeks. Twenty participants from each group underwent a 2-hour oral glucose tolerance test 

(oGTT) at the end of the 8-week intervention. Metabolite abundances in the oGTT serum 

samples were quantified using untargeted metabolomics, and targeted analyses for free PUFAs, 

total fatty acids, oxylipins, and endocannabinoids. Multivariate, univariate, and chemical 

enrichment analyses were conducted to identify significant metabolic shifts. Findings exhibit a 

biphasic lipid response distinguished by higher levels of unsaturated triglycerides in the earlier 

periods of the oGTT followed by lower levels in the latter period in the almond versus cracker 

group (p-value<0.05, chemical enrichment analyses). Almond (vs. cracker) consumption was 

also associated with higher AUC120 min of aminomalonate, and oxylipins (p-value<0.05), but 

lower AUC120 min of L-cystine, N-acetylmannosamine, and isoheptadecanoic acid (p-value<0.05). 

Additionally, the Matsuda Index in the almond group correlated with AUC120 min of CE 22:6 (r=-

0.46; p-value<0.05) and 12,13 DiHOME (r=0.45; p-value<0.05). Almond consumption for 8 

weeks leads to dynamic, differential shifts in response to an acute glucose challenge, marked by 

alterations in lipid and amino acid mediators involved in metabolic and physiological pathways.  
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INTRODUCTION 

The intricate relationship between diet, metabolism, and health has been a focal point of 

nutritional research for decades. Recent advances in metabolomics and nutrition science have 

enabled a more detailed understanding of how specific foods influence metabolic pathways and, 

consequently, health outcomes. However, very few dietary studies have examined the dynamic 

changes in the metabolome in response to an acute glucose challenge. In one such study, a 

weight loss intervention resulted in differential changes in oGTT area under the curve (AUC) for 

11 metabolites before and after the intervention  [1]. Although the glucose AUC reduction did 

not reach statistical significance, the glucose challenge effectively revealed metabolic patterns 

associated with metabolic health. For example, increased AUCs of α-ketoglutarate, arachidic 

acid (C20∶0), and the gut microbe-derived compound, tricarballylic acid, were observed post-

intervention [1].  

Among various dietary interventions, the consumption of nuts, particularly almonds, has 

garnered attention due to their unique nutrient composition and potential health benefits [2,3]. 

Almonds are rich in unsaturated fats, protein, fiber, vitamins, and bioactive compounds, which 

collectively contribute to their proposed health benefits [2]. In our prior work, almond snacking 

was found to enhance postprandial glucose regulation [4] and fasting serum metabolomic 

profiles [5], showcasing distinct advantages over snacking on graham crackers, a low fat 

carbohydrate rich food. More specifically, almond consumption for 8 weeks led to changes in 

lipid metabolism and the tricarboxylic acid (TCA) cycle, along with possible shifts in microbial 

synthesis of amino acids, and the metabolism of amino and nucleotide sugars [5]. Additionally, 

we noted a correlation between the predicted microbial community metabolic potential (CMP) 

score for N-acetyl-D-mannosamine and the host serum levels of this metabolite [5]. 
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 Building on these findings, the current study employs both untargeted and targeted 

metabolomic approaches to further investigate the oGTT-induced dynamic changes in serum 

metabolites and underlying metabolic pathways following 8 weeks of almond or cracker 

consumption. This study, therefore, contributes to the expanding field of nutritional 

metabolomics, focusing on how functional foods can modulate cellular metabolism reflected in 

the changes in the human metabolome in the context of a metabolic challenge. The strength of 

the current approach is that it examines the acute, dynamic metabolic changes stimulated by an 

acute, substrate challenge as opposed to the more traditional examination of the static, single-

sample changes observed at the end of the study. Understanding the metabolic alterations 

induced by foods can offer new insights into the role of diet in metabolic health and disease. It 

also holds the potential to inform dietary guidelines and interventions aimed at improving 

metabolic outcomes.  

METHODS 

The University of California (UC) Merced Institutional Review Board granted approval 

for all procedures involving human subjects in this study. The study is registered on 

ClinicalTrials.gov under the registration number NCT03084003. 

Participants 

A total of seventy-three young adults (41 women and 32 men), aged 18-19 years with a 

BMI range of 18-41 kg/m2, were enrolled in an 8-week randomized, controlled, parallel-arm 

intervention. The study aimed to investigate the impact of almond versus cracker snacking on 

cardiometabolic, microbiome, and metabolomics outcomes. The eligibility criteria and 

recruitment criteria have been described in detail previously [4]. 
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Study design and protocol 

Our previous publication [4] provides a detailed description of the primary study design. 

Sample size calculations for the main analysis were based on glucoregulatory profiles after the 

8-week intervention. Randomization assigned participants to either the almond group (n =38) or 

the cracker group (n =35). The almond group consumed 57 g/d (2 oz) of whole, dry-roasted 

almonds, while the cracker group served as the isocaloric control and consumed 5 sheets (77.5 

g/d) of graham crackers. An oral glucose tolerance test was conducted at the end of the 8 wk 

intervention according to established protocols [4]. A subset of 20 participants per group were 

considered for the oGTT analysis. Serum samples were collected prior to and at 15, 30, 60, and 

120 min during the oral glucose tolerance test and stored at -80 °C. 

 

Metabolomics analyses 

Metabolomics analyses were conducted using various techniques. Gas chromatography-

time-of-flight mass spectrometry (GC-TOF MS), hydrophilic interaction liquid chromatography 

(HILIC) MS/MS, and charged surface hybrid-reversed phase liquid chromatography electrospray 

(CSH-ESI) MS/MS were employed for analysis of serum samples as previously described [5]. 

Quantitative ion peak heights were used to report the data, and known metabolites underwent 

normalization using the Systematic Error Removal Using Random Forest (SERRF) method [6]. 

Metabolites with a QC RSD greater than 50% were excluded from subsequent analyses. For 

HILIC-MS, metabolite intensities were compared to blanks. . Metabolites that did not exhibit 

significant differences between the sample and blank (p-value >0.05 in the Wilcoxon test) and 

those with a median sample to blank ratio less than 1 were also excluded from further analyses. 

Quantitative targeted analyses of total alkali-releasable fatty acids, and non-esterified PUFAs, 
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oxylipins, and endocannabinoids were also performed by MS/MS using internal standard 

methodologies and authentic standards as previously described [5]. For each metabolite, the area 

under the curve (AUC) over the different time periods of the 120 min-oGTT was calculated by 

trapezoidal rule integrations.  

 

Multivariate and univariate analyses of metabolomics data 

Partial least squares discriminant analysis (PLS-DA) was conducted in JMP Pro (version 

17.0) to identify shifts in metabolites over the oGTT time points (0,15, 30, 60, 120). Before the 

analysis, missing values were imputed using multivariate imputations [7]. Models were 

calculated using autoscaling on log10 transformed data followed by nonlinear iterative partial 

least squares (NIPALS) with leave-one-out cross validation. Variables underwent a pruning 

process, where initially all variables were considered, then in each subsequent step, only those 

with variable importance in projection (VIP) scores exceeding 0.8 were retained, resulting in a 

final selection which optimized the variability in the predictor data set. A repeated measures 

analysis on the latent variables with timepoint as within-subject factor were also conducted in 

JMP Pro.  

The selected PLS-DA variables were subjected to fuzzy c-means clustering with the 

Mfuzz package [8] in R to categorize metabolites into groups based on their time-course patterns 

[9]. For clustering purposes, each metabolite's z-score was calculated from the average value of 

all subjects at each time point. Optimal clustering parameters (fuzzifier m) for the data were 

estimated by the Mfuzz package (m=2.43). The clustering process assigned each metabolite a 

membership probability for each cluster, and metabolites were then assigned to the cluster for 

which they had the highest membership probability. 
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For the univariate analyses, a 2-step approach to the analyses was deployed. The first step 

focused on selecting the identified metabolites that showed a significant overall time effect in a 

linear, mixed model analysis with time (0, 15, 30, 60, and 120 min) as the factor. The time effect 

p-values for metabolites were corrected for multiple hypotheses testing using Benjamini-

Hochberg correction (false discovery rate (FDR) adjusted p-value). Metabolites that 

demonstrated a significant (FDR <0.05) time effect were selected for further analyses. The 

second step was comprised of a linear model analysis for selected metabolite AUCs with snack 

group as a factor, with analyses adjusted for time 0 values. All data are reported as means and 

SDs unless otherwise stated. The univariate statistical analyses were performed using R version 

4.2.1 

 

Chemical enrichment analysis 

Chemical enrichment analyses were performed using ChemRICH, as described 

previously [5]. The dataset used for analysis included time 0-adjusted overall snack effect 

p-values for all annotated metabolites. To determine statistically significant p-values for 

metabolite clusters, Kolmogorov-Smirnov tests were conducted and adjusted for false discovery 

rate (FDR). 

 

Network analysis 

To explore differences between the almond and cracker groups within a biochemical and 

structural context, network analysis was conducted. The parameters for the construction of the 

network map using MetaMapp [10] and Cytoscape 3.7.2 [11] have been described previously [5]. 

The quantitative data set was comprised of the overall effect size (Hedge’s g for almond vs 
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cracker AUCs) and time 0-adjusted snack effect p-values. Since this was an exploratory analysis, 

the p-values were not adjusted for false discovery rate (FDR). The network map only shows 

metabolites with time 0-adjusted snack effect P <0.05 or those with large effect sizes (Hedge’s 

g >0.8).  

 

Correlation analyses  

An exploratory aim of the current work was to identify metabolites that correlate with 

insulin sensitivity as measured by the Matsuda Index (MI) for the almond and cracker groups 

differentially. Insulin sensitivity has been found to be differentially influenced by almond 

consumption [4]. PLS-DA was conducted in JMP Pro (version 17.0) to identify optimal 

metabolite AUCS and indices between almond and cracker groups. Before the analysis, missing 

values were imputed using the multivariate normal imputation method in JMP Pro [12]. Models 

were calculated using autoscaling on log10 transformed data followed by NIPALS with leave-

one-out cross validation. The model was pruned until optimization, and variables with VIP >0.8 

were selected for further analyses. Variables with loading values for latent variable 1 that were at 

least 1.5 SD different to the mean loading values were selected for correlation analysis. After 

verifying data normality by Shapiro-Wilk’s test and visual observation of the normal quantile 

plots, Pearson’s correlations were computed for those variables. To assess the statistical 

significance of the correlation coefficients between the almond and cracker groups, Fisher's r to z 

transformation was employed. 

RESULTS 

Progressive shift in metabolites in response to a glucose challenge 
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The PLS-DA analysis demonstrates a progressive shift in metabolites in response to a 

glucose challenge (Figure 1) with latent variable 1 values for time 0, 15, 30, 60, and 120 min 

being different from each other (p-value<0.05 for all comparisons except two: 0 vs. 60 min; p 

=0.07; 0 vs. 15 min; p >0.05). The cluster analysis revealed four clusters with distinct time 

course patterns (Figure 2). Cluster 1 exhibits a consistent decline in metabolite z-scores from 

time 0 to 120 min, which implies a sustained decrease in response to a glucose challenge.  

Cluster 2 shows an overall increasing trend in metabolite z-scores from time 0 to 120 min, with a 

shallower slope between 60 and 120 min, suggesting these metabolites may be involved in later 

metabolic responses to glucose ingestion. Cluster 3 demonstrates a 'V' shaped pattern with an 

initial decline at 15 min, followed by a steady increase to 120 min, indicating a strong decline in 

those metabolite z-scores in response to glucose that gradually increases over time. Cluster 4 

displays a fluctuating pattern with an initial increase in metabolite z-scores over the first 30 min 

followed by a decrease to 120 minutes. 

A total of 268 metabolites had significant (FDR <0.05) overall time effect during the 

oGTT. The metabolite AUC120min values that had time 0-adjusted snack p-values <0.05 are 

shown in Table 1. At an α =0.05 relative to the graham cracker snack group, almond 

consumption resulted in higher AUCs of 1/2-OG (39% group difference), Asp-Phe (31%), 

aminomalonate (24%), arachidonic acid (AA) (15%), 9,10-e-DiHO (6%), 12(13)-EpOME (2%), 

and lower AUCs of N-acetylmannosamine (63%), isoheptadecanoic acid (28%), N-methylvaline 

(24%), L-cystine (10%), 15-HETE (3%), 9,10-DiHODE (3%), and 11-HETE (1%). The time 

course of these metabolites is depicted in Figure 3. 

 

MESH class enrichment analysis identifies snack specific early and late period oGTT effects  
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ChemRICH analysis was conducted on time 0-adjusted AUC values for metabolites over 

different time intervals. A total of 50 MESH clusters were identified. Over the first 15-minute, 

and 30-minute periods, there was differential enrichment of diglycerides, unsaturated 

triglycerides, and lysophosphatidylcholines clusters with the almond group having greater 

AUC15 and 30 min compared to the cracker group, while the almond group had lower enrichment of 

AUC 60-120min for unsaturated triglycerides, saturated triglycerides, and unsaturated 

phosphatidylcholines (FDR <0.05). The key metabolites in each of those clusters are depicted in 

Table 2. 

Amino acid, carbohydrate and lipid metabolism clusters were enriched during the oGTT in 

response to almond vs. cracker consumption 

Enriched AUC120min clusters identified by ChemRich based on metabolic pathway 

enrichment were largely comprised of metabolites involved in amino acid, carbohydrate, and 

lipid metabolism. In the network analysis, the metabolites were clustered into groups based on 

similar structural and biochemical attributes (Figure 4).  

 

 

 

Metabolites involved in amino acid metabolism 

Almond vs. cracker consumption had differential effects on several amino acid 

metabolite AUCs over different time intervals. The almond group had lower AUC120min for 

L-cystine and N-methylvaline and greater AUC120min for threonine and Asp-Phe in comparison to 

the cracker group (group effect, p-value <0.05). Over the 60-minute period, the almond group 

also had lower AUC60 min for N-ε-methyl-L-lysine, DL-2-aminocaprylic acid, choline cation and 

higher AUC60 min for (3-carboxypropyl)trimethylammonium cation, and betaine compared to the 
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cracker group (group effect, p-value <0.05). Differential group effects for various metabolites 

were also observed over the 15- and 30-minute periods (Figure 4). 

 

Metabolites involved in carbohydrate metabolism 

Almond group had lower AUC120min for N-acetylmannosamine and isohexonic but greater 

AUC120 min for N-acetyl-D-hexosamine in comparison to the cracker group (group effect, p-value 

<0.05). Over the 60-minute period, the almond group had lower AUC60min for glyceric acid and 

xylose (group effect, p-value <0.05) whereas over the 30-minute period, the almond group had 

greater AUC30min for 2-hydroxybutanoic acid and myo-inositol compared to the cracker group 

(group effect, p-value <0.05). Differential group effects were also observed over the first 15 

minutes of the oGTT, with the almond group having lower galactonic acid AUC15min compared to 

the cracker group (group effect, p-value <0.05). 

 

Metabolites involved in lipid metabolism 

Based on the AUC120min measures, the almond group had lower isoheptadecanoic acid, 

PE (p-36:1) or PE (o-36:2), PC (42:6), and TG (48:0), and greater 1/2-OG, 11-HETE, 12(13)-

EpOME, 9-KODE, 15-HETE, 9,10-DiHODE, C16:1n7t, AA, 9,10-e-DiHO, and C12:0 in 

comparison to the cracker group (group effect, p-value <0.05). Over the 60-minute period, the 

almond group also had lower AUC60min for 17,18-DiHETE and 3-hydroxybutyric acid, and 

greater AUC60min for 12-HETE, 15,16-DiHODE, DG(36:3), C18:1n9, C16:0, LPC (p-18:0) or 

LPC (o-18:1), C22:6n3, PE(38:4), 9(10)-EpOME, and TXB2 compared to the cracker group 

(group effect, p-value <0.05). Differential group effects for various lipids were also observed 
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over the first 15- and 30-minute periods (Figure 4). Diglyceride and triglyceride clusters are not 

depicted in the network map for clarity and have been discussed in the previous sections. 

 

Energy metabolism 

The almond group had greater AUC120 min for malic acid, phosphate, and aminomalonate   

compared to the cracker group (group effect, p-value <0.05, Figure 4). 

 

Metabolites involved in nucleotide metabolism 

The almond group had greater AUC15 min for hypoxanthine and inosine, and greater 

AUC30 min for uridine compared to the cracker group (group effect, p-value <0.05, Figure 4). 

 

Metabolites involved in xenobiotics biodegradation and metabolism 

The almond group had greater AUC120 min for 7-methylxanthine compared to the cracker 

group (group effect, p-value <0.05, Figure 4). 

 

Correlations of metabolites with MI  

The PLS-DA results demonstrate distinct clusters separating the almond and cracker 

groups (Figure 5). Thirty-two metabolites (including MI) had loading values within 1.5 SD from 

the mean loading values. The correlation plots of these metabolites are shown separately for the 

almond and cracker groups (Supplementary Figures 1a and 1b). Importantly, in the almond 

group, MI demonstrated a moderate negative correlation with CE (22:6) (r =-0.46) and a 

moderate positive correlation with 12,13-DiHOME (r =0.45) (P <0.05 for almond group; and 

P <0.05 for almond vs. cracker correlations). 
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DISCUSSION 

 This study characterized changes in the human metabolome following an acute glucose 

challenge and investigated variations in these responses between individuals consuming almonds 

versus graham crackers for 8 weeks. As shown previously [9,13–16], a progressive temporal 

shift in response to a glucose challenge was observed with alterations across amino acid, 

carbohydrate, and lipid metabolism pathways. Findings also exhibit a notable biphasic lipid 

response distinguished by higher levels of certain lipids such as unsaturated triglycerides in the 

earlier periods of a glucose challenge followed by lower levels in the latter period in the almond 

versus the cracker group. At the individual metabolite level, almond consumption was associated 

with distinct shifts in total AUC120 min of specific amino acids and lipid mediators involved in 

metabolic and physiological processes.  

The dynamic response of the human metabolome to a glucose challenge as depicted by an 

oGTT can help reveal metabolic alterations associated with health and disease [17]. The overall 

lack of significant metabolic changes over the first 15 minutes likely reflects a latent period in 

which glucose continues to reach peak absorption levels, to saturate perfused tissues, and the 

delay in the cell’s capacity to respond to an acute increase in extracellular glucose. This is in 

clear contrast to the latter oGTT time periods, which are characterized by more dynamic shifts in 

metabolic pathways. These shifts reveal the effects chronic almond consumption have on the 

cellular adaption to an acute glucose load and activation of specific metabolic pathways over 

longer durations [17]. The most dynamic metabolic changes have been reported over the first 90 

minutes with no difference between the 90 and 120 minute oGTT time points [1]. While most 

studies have examined changes in metabolomic profiles in the fasted state, studies that have 
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captured multivariate shifts in profiles during an oGTT demonstrate alterations in metabolites of 

dietary or microbial origin [1], those associated with mitochondrial efficiency and glucose 

oxidation [1], or markers of proteolysis and lipolysis associated with insulin sensitivity [18].  

In the present study, the clear demarcation between the almond and cracker groups in the 

PLS-DA plots suggests that despite the isocaloric nature of the interventions, the inherent 

differences in the composition of the two foods, acutely and dynamically influence an array of 

metabolic pathways. As previously reported, at the end of the 8-week intervention, the almond 

group's diet consisted of 42.7% carbohydrates and 41.7% fats, whereas the cracker group 

consumed 53.7% carbohydrates and 33.5% fats on average. These nutritional differences likely 

influenced the lipid responses during the glucose challenge, as further illustrated by the MESH 

class enrichment analysis. Since unsaturated triglycerides were enriched in the almond group in 

the end-of-study sample following an overnight fast [5], it may be reasonable to assume that the 

greater levels over the first 30 minutes of the glucose challenge reflect the already elevated 

circulating levels secreted to help support the short-term fasting metabolism [5]. These 

differences persist despite adjustment for time 0 values, providing some validation that the 

changes were induced by chronic almond consumption and reflect the corresponding metabolic 

adaptations. In contrast, saturated triglycerides were only enriched in the latter periods of the 

oGTT with lower levels observed in the almond group. The pattern mirrors the lower levels of 

unsaturated fats in the latter time periods suggesting that the glucose stimulated insulin may have 

facilitated the clearance of fats. Insulin released in response to the glucose bolus during the 

oGTT can enhance lipoprotein lipase activity. This increase in lipoprotein lipase activity and that 

of remnant receptors is essential for the efficient clearance of triglycerides from the bloodstream 

[19–21]. In this same study, we observed greater insulin sensitivity in the almond group 
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compared to the cracker group [4] suggesting that this improvement in insulin sensitivity may 

facilitate the observed metabolism of TGs. These interactions suggest that chronic almond 

consumption selectively impacted the metabolism of saturated triglycerides differentially from 

unsaturated fats during the early stages of the glucose challenge particularly when comparing the 

effects to cracker consumption. 

At the individual metabolite level, the AUC for isoheptadecanoic acid, a type of saturated 

fatty acid, was differentially lower in the almond group compared to the cracker group. 

Heptadecanoic acid, often used as a biomarker for dairy fat intake and linked to a decreased risk 

of type 2 diabetes, is a related compound [22,23].  High-fiber diets are found to reduce urine 

levels of this metabolite [24]. Its branched-chain variant, isoheptadecanoic acid, constitutes about 

2% of dairy fat and can also be produced from branched chain amino acids through de novo 

synthesis [22,25]. Research involving children has shown an inverse relationship between 

plasma levels of isoheptadecanoic acid and hepatic steatosis [22]. The reduced AUC for 

isoheptadecanoic acid in the almond group suggests that chronic almond consumption shifts lipid 

metabolism from de novo lipogenesis to enhanced utilization of fatty acids, which may 

ameliorate the risk of T2D. The improvement in insulin sensitivity observed in the almond group 

may facilitate more efficient lipid metabolism, potentially reducing hepatic de novo lipogenesis 

[26] and the risk of hepatic steatosis. 

In contrast, almond consumption resulted in a greater AUC for: a) AA, an omega-6 fatty 

acid precursor to eicosanoids; b) cyclooxygenase/lipoxygenase-derived hydroxy fatty acids (i.e., 

11-HETE, 15-HETE and 12-HETE (p-value=0.092)), and c) cytochrome P450/soluble epoxide 

hydrolase-derived epoxy and dihydroxy fatty acids (i.e. 9,10-e-DiHO; 9,10-DiHODE, 12,13-

EpOME and 12,13-DiHOME (p-value=0.089)). The effects of oxylipins on metabolic and 
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physiological processes are nuanced and structurally dependent [27,28]. While 11-HETE and 15-

HETE are associated with COX metabolism [29], 15-HETE can also exhibit anti-inflammatory 

properties [27]. Additionally, while 12-HETE decreases insulin secretion in vitro [30], it is also 

decreased in obesity and inversely associated with arterial stiffness even after BMI adjustment 

[31]. Little is known about the metabolic impacts of oleic acid and alpha-linolenic acid-derived 

epoxides and diols, however, the analogous linoleate metabolites have received some attention. 

For example, previous case studies have documented postprandial changes in 12,13 EpOME 

following high-carbohydrate challenges (such as consuming a banana) [32]. These epoxides are 

metabolized by soluble epoxide hydrolase (sEH) into 12,13-DiHOME and its counterpart, 9,10-

DiHOME [33,34].  Evidence suggests that the 12,13-DiHOME may contribute to fatty acid 

uptake and oxidation in adipose tissue and skeletal muscle [33,35]. In addition, a negative 

correlation of circulating 12,13-DiHOME with insulin resistance has previously been 

demonstrated [35].  Adding to this evidence base, our study demonstrates a positive correlation 

of 12,13-DiHOME AUC with postprandial insulin sensitivity in response to chronic almond 

consumption, suggesting that the improved insulin sensitivity with almond consumption [37] 

could potentially be mediated via this lipokine. However, it’s important to note that the 

concentration of circulating 12,13-DiHOME can also be affected by several factors such as 

exercise and temperature [33].  

Correlations between other omega-3 derived metabolites and MI provide additional 

insights. The negative correlation between MI and CE (22:6) AUC in the almond group suggests 

that individuals with higher insulin sensitivity may have a suppressed response in CE (22:6) 

production or release after glucose intake and implicates that those with better insulin sensitivity 

were more effective at utilizing or clearing it from the bloodstream during the glucose challenge. 
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CE 22:6 is a cholesteryl ester containing DHA, an omega-3 fatty acid [38] and although not 

statistically significant, the almond group exhibited a trend toward higher CE 22:6 AUC 

compared to the cracker group (P =0.051). CE 22:6 has not been widely studied, and those that 

have, reported this metabolite in the pathogenesis of osteoarthritis, Parkinson’s disease, and 

bladder cancer [39–41]. However, it appears that in healthy individuals the incorporation of 

DHA in LDL cholesterol esters does not significantly promote LDL oxidation – a factor 

implicated in atherosclerosis [42]. Moreover, a systematic review reported that DHA intake can 

lower oxidative stress [43].  It's essential to juxtapose this with the observation of reduced 

omega-3 total fatty acids (TFAs) in the almond group in the fasting state [5], which contrasts 

with the more dynamic lipid profile seen during the oGTT. Their reduced levels following an 

overnight fast in the almond group may indicate potential interactions between different 

unsaturated fatty acids, the intricate metabolism involving a series of steps [44], or possibly the 

overriding influence of other bioactive compounds in almonds. 

Almond consumption also induced lower AUC for L-cystine compared to the cracker 

group.  L-cystine is an oxidized dimer of L-cysteine which is a precursor for the synthesis of 

glutathione, a potent, non-enzymatic antioxidant [45].  Given that there were no significant 

differences in cysteine or L-cysteine-glutathione disulfide AUC between groups, and considering 

glutathione’s role in enhancing cellular redox balance and mitigating oxidative stress, the lower 

L-cystine AUC could instead indicate a more regulated or less stressed oxidative state in the 

almond-consuming individuals [46,47]. Since plasma glutathione levels are usually relatively 

low in normal, healthy humans [48] and glutathione synthesis is activated by acute increases in 

free radicals [49], the lower AUC for L-cystine without a change in cysteine, could indicate that 

chronic almond consumption helps maintains a balanced redox state through the efficient use of 
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cysteine reserves during post-prandial, hyperglycemic excursions [50,51]. The lower L-cystine 

AUC may also reflect an environment where there's less necessity to combat oxidative stress, 

possibly due to the inherent antioxidant properties of almonds [52,53]. This state could 

contribute to better cardiovascular health by maintaining efficient glutathione induced regulation 

of nitric oxide [46,47], aligning with the cardiovascular benefits associated with almond intake 

[54]. 

Almond consumption also resulted in lower AUC for N-acetylmannosamine, which is an 

important precursor in the biosynthesis of sialic acids [55]. Sialic acids are important 

components of glycoproteins and glycolipids and critically important in cellular communication 

and signaling [56,57].  The lower AUC of N-acetylmannosamine might reflect reduced synthesis 

and/or more efficient utilization of sialic acid-containing glycans. Notably, our previous analyses 

of fasting data revealed a positive correlation between fasting serum N-acetylmannosamine 

levels and the predicted microbial community potential to produce this metabolite in the almond 

group [5]. Given that the gut microbiome has been shown to predict postprandial glucose 

metabolism [58,59], it is plausible that a chronic alteration in gut microbiota as demonstrated in 

our study [5,60], could impact the synthesis and degradation of glycan-related compounds during 

metabolic challenges such as an oGTT.   

Summary 

The study underscores the dynamic nature of the human metabolome in response to a 

glucose challenge following chronic almond consumption when compared to an isocaloric 

cracker control. Our findings demonstrate a distinctive biphasic lipid response to an acute 

glucose load characterized by differentially greater levels of unsaturated triglycerides in the 

initial phases of the glucose challenge, followed by lower levels in the later stages in the almond 
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group compared to the cracker group. The acute glucose challenge also revealed significant 

alterations across amino acid and lipid mediators involved in metabolic and physiological 

pathways that had not been explored previously. Study findings also highlight the intricate 

interactions between diet, metabolome, and insulin sensitivity. Future research should delve 

deeper into the specific pathways responsible for the observed metabolic changes using kinetic 

analyses, particularly the mechanisms driving differential lipid and fatty acid responses in the 

almond group. The differences between the glucose challenge (acute, dynamic) and an overnight 

fasting (chronic, static) results [5] accentuate the need to view dietary impacts through both acute 

and chronic lenses, as both offer unique insights into the role of diet in shaping the metabolic 

determinants of health and disease. 
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TABLES 

Table 1: Selected metabolites derived from the oGTT AUC120min calculations in the almond and cracker groups after the 8-week 
intervention. 

Metabolites
a
 Almond  Cracker 

Group 
percent 
difference  

Snack effect 
P-value (time 
0 adjusted)c 

          

Higher in Almond Group 

1/2-OG (x 103) 40.1 ± 13.4b 35.0 ± 16.0 39.2 0.002 

Asp-Phe (x 104) 32.0 ± 9.3 29.2 ± 8.4 31.0 0.009 

Aminomalonate (x 105) 24.4 ± 7.3 20.3 ± 4.0 23.5 0.018 

AA NEFA (x 103) 16.1 ± 6.4 15.2 ± 4.7 15.1 0.049 

9, 10-e-DiHO (x 102) 6.5 ± 2.8 5.7 ± 2.7 5.6 0.033 

15-HETE (x 102) 4.3 ± 3.6 3.6 ± 3.0 3.4 0.012 

9,10-DiHODE (x 10) 4.2 ± 3.0 3.6 ± 4.5 3.3 0.002 

11-HETE (x 102) 2.3 ± 2.3 1.9 ± 1.9 1.4 0.021 

12(13)-EpOME (x 102) 3.1 ± 4.2 2.0 ± 2.2 2.3 0.021 

Lower in Almond Group 

N-Acetylmannosamine (x 103) 64.2 ± 12.3 76.0 ± 22.4 63.1 0.043 

Isoheptadecanoic acid (x 104) 29.1 ± 6.5 36.3 ± 1.0 28.0 0.014 

N-Methylvaline (x 105) 25.3 ± 16.9 31.3 ± 19.5 24.2 0.050 

L-Cystine (x 105) 11.3 ± 0.9 12.0 ± 1.7 10.3 0.023 
a Metabolites were selected based on significant overall time effect, FDR adjusted p-value <0.05 
b Means ± standard deviation  
c Linear model analysis with time 0 adjustment 
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Values in parentheses denote the units of measurement for metabolite intensities. For example, (x 103) indicates intensities in units of 
1000. This notation is used to describe large numerical values conveniently.   
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Table 2. Chemical similarity enrichment analysis results depicting differential AUC clusters of untargeted serum metabolites at the 

end of the 8-week almond versus cracker intervention 

CHEMRich cluster name CHEMRich 
cluster size 

P-value 
(KS) 

FDR 
adjusted 
P-value 

(KS) 

No. of altered 
metabolites 

in 
CHEMRich 

cluster 

Metabolites  

P-value  Effect size Effect size 
direction 

(almond 
vs. 

cracker) a 

(almond vs. 
cracker) b 

(almond 
vs. 

cracker)c 
AUC 0-15 min 

Unsaturated triglycerides 84 <0.001 0.026 6 

TG(58:9) 0.05 0.814 

A > C 

TG(54:7) 0.045 0.813 

TG(51:5) 0.044 0.6 

TG(56:9) 0.032 0.649 

TG(58:10) 0.032 0.719 

TG(56:8) 0.022 0.649 
Unsaturated 

lysophosphatidylcholines 
13 0.001 0.033 1 LPC(20:5) 0.036 0.854      A > C 

 
Diglycerides 8 0.003 0.048 2 

DG(38:5) 0.046 0.535 
A > C  

DG(38:6) 0.027 0.338  
AUC 0-30 min  

Unsaturated triglycerides 84 <0.001 <0.001 11 

TG(54:6) 0.019 0.936 

A > C 
 

 
TG(51:3) 0.039 0.732  
TG(51:5) 0.018 0.817  
TG(51:4) 0.0085 0.933  
TG(53:3) 0.02 0.844  
TG(53:4) 0.0043 1.037  
TG(54:4) 0.046 0.769  
TG(54:7) 0.016 0.959  
TG (56:6); TG(18:1/18:2/20:3) 0.025 0.89  
TG(18:2/20:3/22:6) 0.04 0.782  
TG (55:4); TG(18:1/18:2/19:1) 0.0079 0.957  
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Diglycerides 8 <0.001 <0.001 4 

DG(34:2) 0.027 0.796 

A > C 
 

 
DG(36:2) 0.025 0.827  
DG(36:3) 0.0055 1.113  
DG(38:6) 0.035 0.569  

Unsaturated 
lysophosphatidylcholines 13 <0.001 0.006 1 LPC (20:1) 0.027 1.053 

    A > C 
 

AUC 60-120 min  

Unsaturated triglycerides 84 <0.001 <0.001 8 

TG(49:1) 0.035 0.717 

A < C 
 

 
TG(51:1) 0.0079 0.894  
TG(50:2) 0.046 0.663  
TG(53:2) 0.047 0.676  
TG(54:5) 0.03 0.711  
TG(58:5) 0.032 0.658  
TG(58:6) 0.027 0.726  
TG(50:1) 0.016 0.794  

Saturated triglycerides 9 <0.001 <0.001 5 

TG(48:0) 0.0074 0.871 

A < C 
 

 
TG(42:0) 0.039 0.662  
TG(50:0) 0.04 0.671  
TG(44:0) 0.042 0.676  
TG (47:0); TG(14:0/16:0/17:0) 0.046 0.647  

Unsaturated 
phosphatidylcholines 

89 0.001 0.023 2 
PC (40:4) 0.032 0.585 

A < C  
PC (p-36:1) or PC (o-36:2) 0.016 0.716  

a Time 0 adjusted overall snack effect 

b Magnitude of Hedge’s g effect size 

c Direction of effect size: A>C, higher in almond group compared to cracker group; A<C, lower in almond group compared to cracker 

group 

KS, Kolmogorov–Smirnov test; LPC, lysophosphotidylcholine; PC, phosphatidylcholine; SM, sphingomyelin; TG, triglycerides 
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FIGURE LEGENDS 

Figure 1. Plot of latent variable 1 versus 2 obtained from the PLS-DA analysis conducted on the metabolites to differentiate among 

the time points of the oGTT.  circle = almond; plus sign = cracker. 

Figure 2. Temporal metabolite patterns in response to an oGTT identified by fuzzy c-means cluster analysis. Graphs show four 

patterns (clusters) of metabolite trajectories (A–D). The blue line depicts the mean z-score of metabolite trajectories. The colored pie 

charts depict the breakdown of metabolite type. Similar metabolites are grouped into one category, for example, amino acid derivates, 

peptides, and amino acids, are all categorized as amino acids, and nucleic acids and nucleotides are categorized as nucleotides. 

Figure 3. Time 0-adjusted mean intensities ± standard deviation of metabolic trajectories (over 120 min) for selected metabolites that 

indicated significant (p-value <0.05) time 0-adjusted group effect for AUCs (Table 1). Data are JN transformed. 

Figure 4. Biochemical network displaying differences between almond and cracker group AUCs over different time periods. 

Metabolites are connected based on biochemical relationships (orange, KEGG RPAIRS), measured structural similarity (blue, 

Tanimoto coefficient ≥ 0.7), or manually annotated structural similarity (grey). Metabolite size denotes the effect size (Hedge’s g, 

almond vs cracker group). Metabolite color represents the direction of the effect size, for example blue represents almond > cracker 

overall (p-value<0.05) and pink represents almond < cracker overall (p-value<0.05). Letters denote the time period for which 

significant (p-value<0.05) group effects were observed. For example, “A” represents AUC0-15 min only, “B” represents AUC0-30 min only 
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or in combination with AUC0-15 min, “C” represents AUC0-60 min only or in combination with AUC0-15 min, AUC0-30 min, “D” represents 

AUC0-120min only or in combination with AUC0-15 min, AUC0-30 min, or AUC0-60 min, “E” represents AUC15-30 min only, “F” represents 

AUC30-60 min only, and “G” represents AUC60-120 min only or in combination with AUC30-60 min. If metabolites showed significant 

changes over multiple time periods, only the time period showing the largest effect size was colored. P-values are derived from the 

time 0-adjusted linear model analysis. Shapes display primary metabolic pathways or structural superclass designations obtained via 

ClassyFire. Clusters of metabolites are circled. Significant metabolites which did not have KEGG identifiers are included as 

independent nodes with manually annotated edges within their respective pathway clusters. Diglyceride and triglyceride clusters are 

not depicted in this network map for clarity. CE, cholesterol ester; LPC, lysophosphotidylcholine; PC, phosphotidylcholine; PE, 

phosphatidylethanolamine.  

Figure 5. VIP vs. coefficient plot of the metabolites from the PLS-DA analysis conducted on the metabolite AUC and indices to 

differentiate between almond and cracker groups. Labels only marked for metabolites with VIP ≥ 0.1, and coefficients ≥ 0.1 or ≤ -0.1. 

Not all data points are shown. Plot of latent variable 1 versus 2 of the PLS-DA analysis inset.  
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