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ABSTRACT

Lenia, a cellular automata framework used in artificial life, provides a natural setting to implement

mathematical models of cancer incorporating features such as morphogenesis, homeostasis, motility,

reproduction, growth, stimuli response, evolvability, and adaptation. Historically, agent-based models

of cancer progression have been constructed with rules that govern birth, death and migration, with

attempts to map local rules to emergent global growth dynamics. In contrast, Lenia provides a flexible

framework for considering a spectrum of local (cell-scale) to global (tumor-scale) dynamics by defining

an interaction kernel governing density-dependent growth dynamics. Lenia can recapitulate a range of

cancer model classifications including local or global, deterministic or stochastic, non-spatial or spatial,

single or multi-population, and off or on-lattice. Lenia is subsequently used to develop data-informed

models of 1) single-population growth dynamics, 2) multi-population cell-cell competition models, and

3) cell migration or chemotaxis. Mathematical modeling provides important mechanistic insights. First,

short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong

Allee effects. Next, we find that asymmetric interaction tumor-immune kernels lead to poor immune

response. Finally, modeling recapitulates immune-ECM interactions where patterns of collagen formation

provide immune protection, indicated by an emergent inverse relationship between disease stage and

immune coverage.

1 Introduction

L
ENIA (from the Latin lenis meaning “smooth”) is a cellular automata framework that allows for

continuous space and time. Cellular automata are often used to study the “rules” that can recapitulate

the collective behavior of interacting biological “agents” (e.g. individual cells or organisms). The

development of Lenia was spurred by the search for rule-sets that lead to features that are important in

artificial life: self-organization (morphogenesis) self-regulation (homeostasis), self-direction (motility), self-

replication (reproduction), growth (development), response to stimuli or environmental factors, evolvability,

adaptation1, 2, and other emergent complexity3.

Many of these same features (e.g. cellular replication, growth, motility, evolvability, and adaptation)

are important in the development of complex, multi-factorial diseases such as cancer. Thus, the purpose

of this manuscript is to extend the Lenia framework as a tumor model, including immune predation and

escape. We show how this is a natural extension, as Lenia has the capability to recapitulate 1) classical
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analytical models of cancer (ordinary differential equations), 2) common stochastic agent-based models of

cancer, 3) standard models of multiple cell types competing on a Darwinian fitness landscapes (evolutionary

game theory), and 4) generalized cell migration (e.g. chemotaxis models) common in cancer mathematical

modeling literature.

1.1 The overlap in modeling artificial life and cancer evolution

In its original formulation, Lenia defines an on-lattice domain where each grid location can take a continuous

density value. Methods of interactive evolutionary computation were used to find rule-sets that lead to

defined, artificial “creatures” (see figure 1A for examples) which are capable of stable linear or angular

motion or other life-like characteristics (figure 1B)1, 2. These continuous creatures are reminiscent of the

binary gliders, oscillators, and still-life creatures in Conway’s Game of Life4.

Grid locations change according to an update rule describing the growth dynamics (figure 1C) paired

with an interaction kernel function (figure 1D). For example, tumor cell density in a two-dimensional

domain (figure 1E) is convolved with an interaction kernel (figure 1F) to calculate the “density potential”

(figure 1G). Density potential is the surrounding density of grid locations weighted by kernel interaction

function of radial distance from the focal cell. This defines a spatially-explicit growth field (figure 1H)1,

whereby the update rule is enacted iteratively at each time step, t (figure 1I). Thus, a natural interpretation

of Lenia as a cancer model is a spatial density map of cancer cells. Cancer cells grow according to a local

density-dependent growth rate (e.g. logistic growth) which is a function of local cell density. Lenia can

compare the effect of local (short-range kernels) versus global (long-range kernels) on growth dynamics.

There exists broad overlap in both methods and desired emergent behavior between models of artificial

life and models of cancer growth (figure 1H). To adequately mimic biological realism in cancer, mathe-

matical frameworks have implemented methods classified as 1) non-spatial or spatial, 2) deterministic or

stochastic, and 3) single or multiple populations (cell types). Lenia allows for flexible model design to

incorporate the full range of these classifications. Extensions to Lenia include Glaberish (a variant that

leads to pattern formations that are stable in space or time5), Flow-Lenia (imposes mass conservation over

time)6, Asymptotic-Lenia (asymptotic, smooth updating)7, Particle-Lenia (off-lattice)8, or a generalized

reaction-diffusion implementation9.

1.2 Modeling spatial effects in tumor-immune dynamics

Spatio-temporal models of cancer growth dynamics

Tumor growth can be expressed as a mathematical law using an ordinary differential equation (ODE)10

and used as a predictive tool in assessing the course of tumor progression11, 12. ODE frameworks use

the well-mixed assumption, where each cell is equally likely to interact with each other cell in the tumor.

Thus, there is a broad interest in understanding the effect of local, cell-scale contact inhibition on the

emergent tumor-scale global growth dynamics13–15. The choice of spatial structure within a model (e.g.

non-spatial, deme models, mesoscale, or boundary-driven growth) affects the evolutionary dynamics within

heterogeneous tumors16–19, tumor growth dynamics20, 21 and the emergent pattern formation22–24.

Lenia is classified as a system of integro-differential equations (IDE)25. IDEs have been used to study

cancer progression26 and treatment27 or to find approximations of stochastic ABMs in cancer28, but these

formulations often focus on how interaction kernels alter the time scale of dynamics or the system stability.

Lenia provides a unifying framework for direct comparison of well-mixed assumptions commonly used in

ODE models (corresponding to Lenia’s long-range kernel) and local-scale competition commonly used in

stochastic agent-based modeling (corresponding to Lenia’s short-range kernels).
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Figure 1. Lenia as a cancer model: (A) Lenia artificial life virtual creatures, reproduced from ref. 1. (B) List of characteristics

possible to produce in Lenia by varying the growth dynamics function (C) or the interaction kernel function (D). (E) An example

snapshot of a simulation shows the density of cells at each lattice location where the interaction kernel (F) specifies the nature of

interaction of cells depending on their distance from each other. (G) The density potential, interpreted as a weighted average

of interactions at each lattice location, is calculated as the convolution of A(x) and K(x). (H) the growth field calculated by

applying a growth map to the density potential. (I) adding a fraction of the growth field at each time step to the cell density,

forms the Lenia update rule, as seen in eqn. 1.



Spatio-temporal models of tumor-immune interactions

Tumors do not grow in isolation but must develop immune escape mechanisms to avoid extinction. Tumor-

immune interactions have been described using logistic tumor growth with immune recruitment and

exhaustion29 or as a predator-prey relationship30. Immune predation has likewise been modelled using

integro-differential equations31–34, mesoscopic models35, or stochastic agent-based methods36.

Importantly, classical predator-prey models may be insufficient to describe tumor-immune dynamics

without also considering mechanisms for avoiding oscillatory behavior common to these models37. Thus,

in the models developed herein we include Allee effects, whereby tumors require a cooperative benefit of

close aggregation when at lower densities38, 39. Allee effects lead to a decreased growth benefit when tumor

density is low, and thus are proposed to enable immune predation to fully eliminate tumors in the absence

of immune escape37.

Spatio-temporal models of cell migration and the extracellular matrix

Cell migration is influenced by the spatial configuration of collagen40, 41. The density, orientation, and

thickness of collagen fibers within the extracellular matrix (ECM) can influence migration through contact

guidance thereby facilitating both migration and invasion42. Much of the mathematical modeling in this

area focuses on recapitulating the spatial patterns of tumor-associated collagen signatures (TACS) which

correlate with benign growth or invasive migration43. Models also aid in understanding the process of

cancer cell metastasis as cells migrate through the ECM and extravasate into vasculature44.

In summary, stochastic birth-death-migration models are commonly used to model tumor growth

dynamics, often with a focus on deriving approximations that map local interaction dynamics to global

mean-field approximations. Alterations in cell migration, proliferation, and death parameters may lead

to spatial heterogeneity in cell density, reducing the accuracy of naive mean-field approximations. Thus,

it’s convenient for a cancer modeling framework to include 1) non-spatial or spatial, 2) deterministic

or stochastic, and 3) single or multiple populations (cell types). Below, we illustrate how the Lenia

mathematical framework integrates each of these components. Next, we illustrate how classical growth

dynamics models (e.g. logistic growth) are a special case of Lenia. Then, we illustrate how multi-channel

Lenia can be used to model cell-cell (tumor-immune) interactions. Finally, we show particle Lenia as an

example of immune cell trafficking in cancer.

2 Results

2.1 Increased range of interaction increases tumor diffusivity and speeds growth

First, we implement a single population (one cell type) model of tumor growth dynamics in figure 2.

Growth dynamics are described by logistic growth with an Allee threshold (Methods, eqn. 4), such that

tumors seeded above the Allee threshold have positive growth. The solution to this ordinary differential

equation is shown in blue in figure 2A. Comparing deterministic Lenia (figure 2A; solid lines) illustrates

that systematically reducing the effective range of the interaction kernel reduces the rate of growth, and

alters the temporal dynamics. Smaller interaction kernels (e.g. black lines) are characterized by slow growth

due to the presence of contact inhibition in small interaction neighborhoods.

Reduction in kernel size (different kernel sizes used in figure 2B are shown in figure 2D) also alters the

spatial variegation of tumor density. For example, short-range kernels (figure 2B, left) are characterized by

sharp, well-defined boundary drive growth while long-range kernels (figure 2B, right) are associated with

diffuse patterns.
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Figure 2. Cancer growth dynamics in Lenia (A) Average cell density over time for varying kernel sizes, for deterministic and

stochastic Lenia. Averages over stochastic runs are shown in dotted lines and individual trajectories are shown in translucent

lines. ODE solution (shown in blue) matches simulation with a well-mixed kernel. (B) State of field at half maximal capacity for

different kernel sizes for Stochastic Lenia (SL) or Deterministic Lenia (DL). Density potential and Growth distribution shown in

inset. (C) State of field at progressive time points for kernel size 4 for deterministic and stochastic Lenia. (D) Kernels used in

models in figures (B).

This pattern holds when considering either a deterministic (figure 2B; Deterministic Lenia, DL) or a

stochastic (figure 2B; Stochastic Lenia, SL) update rule (see Supplemental section S6.2). The average

of many stochastic realizations is shown in dashed lines (figure 2A), which tend to underestimate the

deterministic simulation with the corresponding kernel size. This is due in part to the fact that the cell

density map A(x) in stochastic Lenia is restricted to integer values only, which is common practice in

standard agent-based models (compare figure 2B, where only values of 0 or 1 are allowable). These

results illustrate the utility of Lenia to interpolate between two standard modeling approaches: 1) ordinary

differential equations and 2) stochastic, local agent-based methods. Lenia extends standard methods to

allow investigation of arbitrary interaction kernels.

2.2 Short-range interaction kernels are more robust to Allee effects

Next, we investigate the interplay between the Allee threshold and the interaction kernel. Logistic growth

with an Allee threshold has an unstable equilibrium which drives the population to extinction when tumor

density is below the threshold. As shown in figure 3A, simulating logistic growth with Allee in an ODE

(blue line) or a well-mixed (red line; WM) both result in eventual extinction. Interestingly, reducing the

interaction kernel distance, R, results in positive tumor growth (e.g. black line). This effect occurs for a

range of Allee threshold values and kernel sizes, shown in figure 3B. This clearly illustrates an expanded

region of positive growth when kernel size is low, across a wide range of threshold values. Smaller

neighborhoods increase the likelihood that a single cell’s neighborhood will maintain a sufficient density

above the Allee threshold, and thus maintain positive growth.

While stochastic Lenia is typically associated with slower temporal scales (figure 3A, dashed lines), the



long-term tumor fate (extinction or growth) are analogous in both models and spatial variegation patterns

are also similar (figure 3C,D). These results suggest that well-mixed model formulation may overestimate

the role of an Allee effect (thus overestimating the likelihood tumor extinction). In the next section, we

investigate the effect of interaction kernel size on immune predation of tumors.

Figure 3. Short-range interaction kernels are more robust to Allee effects (A) Average cell density over time for varying

kernel sizes, for deterministic and stochastic Lenia. Averages over stochastic runs are shown in dotted lines and individual

trajectories are shown in translucent lines. ODE solution shown in blue. (B) Long-term tumor fate for deterministic Lenia where

trajectories that eventually result in extinction are shown in red, or growth shown in blue (colorbar indicates change in tumor size

at t∗ = 3. (C, D) Spatial maps shown for deterministic Lenia (C) and stochastic Lenia (D) at time t∗ = 3. See corresponding

Supplementary Video S2.
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Figure 4. Competition dynamics in Lenia (A) Schematic representation of the tumor-immune predator-prey model, illustrating

various kernel sizes for tumor growth (K11), predation distance (K12), immune recruitment (K21), and density-dependent death

distance in the immune system (K22). (B, C) Impact of different predation distances (K12) and immune recruitment (K21) on

the integration results of the tumor-immune predator-prey model, with other kernels held well-mixed. (D) Effect of varying

predation and recruitment (K12 and K21) on the time to tumor regression (considered when there are 2% tumor cells in the area)

and the peak value in the immune response. (E) Spatial outcomes of the tumor and immune response in the model, showcasing

the influence of different kernel sizes. See corresponding Supplementary Video S3. Unless otherwise noted, parameters used are

γ = 5,b = 12,g = 1.5,d = 1,L = 0.08 (see eqns. 6-7).

2.3 High immune specificity and sensitivity maximize tumor regression

In order to investigate the effect of short-range and long-range interactions between tumor and immune

cells, we employ the multi-channel Lenia model to simulate the dynamics of in a tumor-immune (figure

4). Tumor-immune dynamics are described by the predator-prey model in eqns. 6 and 7. Similar to the

previous figure, this model contains an Allee threshold whereby tumor cells are driven to extinction below

this threshold even in the absence of immune cells37.

We consider four interaction kernels: tumor-tumor, tumor-immune, immune-tumor, and immune-

immune (figure 4A). We define the tumor-immune kernel (K12) as the immune sensitivity, whereby a

short-range K12 is characterized by an increase in immune kill rate and decreasing the time to tumor

regression (TTR) as seen in figure 4B. To gain intuition, one can consider the tumor-immune kernel as

representing the average distance traveled by an immune cell per unit of tumor kill. For example, a large

tumor-immune kernel may be represent a tumor with high PD-L1 expression, requiring immune cells to

travel a further distance before effective immune activity.

Next, we define the immune-tumor kernel as the immune specificity, whereby a short-range K21

leads to more localized recruitment of immune cells in close proximity to tumor cells. A reduction in the

recruitment distance (small K21) leads to the production of an immune response in closer proximity to

tumor cells (refer to figure 4E). To gain intuition about the immune-tumor kernel, one can consider this
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Figure 5. Collagen alignment in HNSCC (A) Pipeline of image analysis to computational model using second harmonic

generation to determine collagen density and subsequently the alignment and microenvironmental gradient. (B) Alignment

collagen fibers is determined using OrientationJ ImageJ plugin45; alignment tends to increase by disease stage.

kernel as representing the average distance an immune cell is recruited by a tumor. An immunologically

quiet tumor is represented by a large kernel with diffuse, undirected recruitment, while increased tumor

antigenicity is represented by a small kernel with strong, localized recruitment. The resulting immune peak

value, IPV (figures 4B, C) depends on both immune sensitivity and immune specificity.

As seen in figure 4D, both immune specificity and immune sensitivity are required to maximize tumor

regression (case 3). This effect is illustrated by observing spatial maps over time in figure 4E. High

specificity results in rapid recruitment concentrated within the tumor, but these immune cells are most

effective at removing tumor when sensitivity is high (case 3). In contrast, low specificity results in a diffuse

spatial pattern of immune recruitment through the domain, where most immune cells are not co-localized

with tumor cells, effectively wasting a majority of immune response (cases 2 and 4). Consequently, immune

cells that do infiltrate tumor are rare but strongly effective, leading to a heterogeneous tumor kill (case 4).

The effect of asymmetric interaction kernels leading to differences in spatial variegation and patterning in

tumor and immune cells is shown for a range of sensitivity and specificity values in supplemental figure S1.

2.4 Stage-dependent collagen alignment predicts poor immune infiltration

Finally, we illustrate an example of a cell migration model using an extension of Particle Lenia8. In figure

5A, we introduce an image analysis to computational model pipeline. Second harmonic generation (SHG)

is performed on a cohort of squamous cell carcinomas to quantify collagen density, D(x). Each patient

has a selected region of interest (ROI) to perform SHG that are subsequently analyzed using OrientationJ

ImageJ plugin to determine alignment, J⃗(x)45. Each pixel is color-coded according to the directionality of

collagen fibers, such that fibers aligned in a single direction are colored with the same hue on the red-blue-

green-yellow spectrum (figure 5A, semi-circle legend color-bar). The microenvironment gradient field,

∇M(x) at each grid location x is determined by the convolution of interaction kernel and the OrientationJ

vector field, weighted by collagen density (see Methods). Thus, immune cells move in the same direction



as collagen fiber alignment. Similar to previous sections, immune cell movement direction is determined by

the average collagen fiber alignment within the immune cell’s interaction kernel radius, R.

Quantification of collagen alignment by disease stage

Late-stage head and neck squamous cell carcinomas (HNSCC) are associated with increased deposition and

alignment of fibrillar collagens46. We hypothesize that poor outcomes are partially due to poor immune cell

infiltration caused by deposition of a dense collagen barrier. Imaging data are quantified by stage in figure

5B, which illustrates the correlation of disease stage with collagen density and alignment. Normal adjacent

control tissue and early stage HNSCC’s are associated with sparse and heterogeneous collagen alignment,

while late-stage HNSCC tends to contain highly aligned collagen fiber patches. We hypothesized that

late-stage disease is associated with collagen structures which lead to poor immune infiltration. Thus, we

next employed Lenia to test two plausible cell migration models describing the movement of immune cells

in response to collagen: parallel or perpendicular movement.

Simulated effect of collagen alignment on immune surveillance

Within the immune cell trafficking model each simulated immune cell moves along a microenvironment

gradient field determined by collagen fiber alignment (Methods; eqn. 8). Direct observation of immune cell

trafficking patterns is unlikely in clinical tumors, but computational simulations based on clinical data can

provide insight to test hypotheses. For example, we consider two hypothesized models of the influence of

collagen fiber alignment on immune cell trafficking: perpendicular or parallel to collagen fibers (figure

6A). Immune cells are initially evenly distributed on the edge of the domain, and we quantify the area

of surveillance covered (simplified example shown for six immune cells per side in figure 6B). The total

simulated time is chosen such that immune cells in an empty domain would migrate in a linear, unaltered

fashion and provide 100% coverage of the domain.

Results indicate an overall higher level of immune coverage in the perpendicular model than in parallel

(figure 6C and D, respectively). Interestingly, the parallel model shows a stronger anti-correlation between

immune coverage and disease stage. All stage 4 patients rank lower in immune coverage compared to

patients with stage 1 tumors (figure 6D). Of note, it’s difficult to interpret immune coverage for control

tissues as the absence of immune infiltrates may result from lower collagen density typical of normal tissue

and that is not well-aligned, or it could simply be due to absence of diseased tissue (i.e., tumor) and thus

the absence of signaling cues required to induce immune cell trafficking. Late-stage HNSCC tumors are

associated with a more hypoxia-related signature characterized by a low ratio of CD8+ T cells to FOXP3+

regulatory T cells,47. Thus, as the parallel model consistently predicts lower immune coverage for late-stage

tumors, this model may be more biologically relevant. This also supports previous experimental findings

that suggest immune cells move parallel to collagen structures48. Studies have shown that collagen fibers

are often perpendicular to the outer boundary of tumors49, 50, suggesting that a parallel model of immune

migration would reduce immune infiltration into the tumor. This finding supports the notion of the parallel

immune migration model as a method of immune escape. Note: we do not consider variable immune

response here (which may vary with disease stage) as the total number of immune cells seeded is constant

across all patient simulations.

Individual model simulations are shown for a model seeded with corresponding collagen ROI (figure

6E). Immune cells are seeded along each edge (left, right, top, bottom) of the domain (N = 5 cells per pixel;

figure 6F). Typically, as disease stage increases (left to right), immune cell coverage decreases as seen in

figure 6G. We define immune coverage as the percentage of the domain covered (100% corresponds to

pixels which are covered by at least one immune cell trafficked from each of the four sides). Well-aligned
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Figure 6. Immune cell trafficking model in Particle Lenia (A) Hypothesized models of the influence of collagen fiber

alignment on immune cell trafficking. See corresponding Supplementary Video S4. (B) example simulation showing immune

cell infiltration (circles) with track indicating path taken. Cells seed on all four sides, color-coded by initial side (see panel

F). (C, D) Simulated immune coverage for perpendicular (C) or parallel (D) immune trafficking model, colored by stage. (E)

Representative sample ROI alignment and density of collagen fibers (using OrientationJ ImageJ plugin45) ordered by disease

stage. (F) Immune coverage, color coded by immune initial condition of which of the four sides: left, right, top, bottom (see

legend). The color of each pixel is determined the most trafficked side. (G) Immune coverage as the percentage of all four sides

covered by immune surveillance. For example, if no immune cells reached this pixel it is white, if all four sides reached this

pixel, it is dark purple. See corresponding Supplementary Video S5.



collagen structures (e.g. stage 4) result in a strongly directed migration, deviating immune cells from

providing a well-mixed coverage of the domain.

3 Discussion

Lenia demonstrates the capability to recapitulate important features required for modeling the evolution and

ecology of cancer: growth dynamics (deterministic/stochastic), cell-cell interactions, and cell migration.

While here we focus here on modeling tumor-immune spatial interactions, the role of spatial structure

more broadly has important implications for optimizing cancer treatment51, 52, modulating evolutionary

dynamics of tumor heterogeneity17, 19, 53, and altering cell-cell competitive dynamics54 even when using the

same interaction rules55, 56. Lenia is flexible enough to mimic non-spatial (well-mixed) ordinary differential

equations (with sufficiently large kernel sizes) as well as small-scale spatial neighborhoods commonly

used in agent-based methods (e.g. Moore or von Neumann neighborhoods). It is also straightforward

to simulate deterministic dynamics and the corresponding stochastic dynamics. Additionally, Lenia can

simulate ecological interactions between multiple cell types in heterogeneous tumors. We have shown

the ability of Lenia to recapitulate common models of tumor-immune dynamics (logistic-Allee). Finally,

we illustrate the ability of Particle Lenia to recapitulate cell migration and trafficking in an off-lattice,

with an application in squamous cell carcinomas. However, Lenia provides several natural advantages

over traditional birth-death-migration models. Kernel convolution can be performed using fast-Fourier

transforms, drastically decreasing the computational cost of simulations. Additionally, convolution of

extrinsic migration gradient can be pre-computed, increasing computational efficiency.

In addition to flexible methodology, Lenia has shown promise in understanding the mechanics of

tumor-immune interactions. We have illustrated that short-range interaction kernels provide a mechanism

for tumor cell survival under conditions for strong Allee effects (figure 3). We have also shown the

importance of both immune sensitivity and specificity in immune response (figure 4). In the absence

of either, poor immune response leads to prolonged tumor growth and in some cases, immune escape.

Differential interaction kernels alter the spatial patterns of tumor-immune cells (figure S1), leading us to

hypothesize the possibility of making inferences of kernel sizes based on spatial co-localization of cells

in future works. Here, we may draw inspiration from literature in ecology where kernel inferences are

drawn from plant seed dispersal patterns57. Finally, we have shown the ability of Lenia to reproduce

immune-ECM interactions where patterns of collagen formation evolve as a mechanism of immune escape

(figure 5). Previously, aligned collagen fibers have been observed perpendicular to the tumor periphery49, 50,

lending supporting evidence to a parallel model of immune migration that reduces immune infiltration.

Despite neglecting alternative mechanisms of immune escape (e.g. acid-inactivation, immune checkpoint

expression, or immune exhaustion), the immune infiltration model shows an inverse relationship between

disease stage and immune coverage as an emergent phenomenon (figure 6).



4 Methods

4.1 Lenia Cellular Automata

The notation here follows ref. 1, which we re-state here for clarity. Lenia is a cellular automata defined by

five components: 1) a discrete grid of points, L , (herein we consider two-dimensional lattice grid L ∈R
2),

2) the range of allowable states S = [Amin,Amax], 3) the local update rule φ : S N →S is the local update

rule, 4) the neighborhood around each focal cell at location x, given by Nx = {x+n : n ∈ N }, and 5) time

steps t ∈ T . The spatial cell density map configuration is defined by At : L → S : the collection of states

over the whole grid, at time t ∈ T , the timeline. Herein, we let A be a two-dimensional matrix where A(x)
represents the cell density at grid location x which is updated via the following equation:

At+∆t(x) =

[

At(x)+G(Ut(x))∆t

]Amax

Amin

(1)

where G(u) is the density-dependent growth function defined on the interval u ∈ [Amin,Amax]. For each

point x, the convolution of a kernel K with At(Nx) is calculated to compute the potential distribution Ut :

Ut(x) = K∗At(x) = ∑
n∈N

K(n) ·At(x+n) (2)

Thus, the growth is defined at every lattice location: Gt(x) :=G(Ut(x)). A fraction of the growth distribution

is added to each site at each time step (Euler approximation update rule) and the value at the site is clipped to

[Amin,Amax]. We implement the computational model in the Hybrid Automata Library framework (Java)58.

4.2 Interpretation of Lenia as a cancer model

Next, we make explicit the connection to cancer modeling. Lenia provides a natural framework for

constructing mathematical models of cancer cell growth, competition, and migration, where each lattice

location x contains a density of tumor cells, At(x). When modeling tumor dynamics, set Amin = 0 and

Amax =C where C represents the maximum resource- or space-limited carrying capacity of cells within

each single lattice location. Classic cell interaction neighborhoods such as von Neumann (the four nearest

neighbors; R = 1) or Moore (eight nearest neighbors; R = 1.8) can be written as an interaction kernel

function, defined as a circle of radius R:

K(r) = ε · (1−H(R− r)) (3)

where H is the Heaviside function, and ε is chosen to normalize the elements of the kernel to sum to

one. Thus, U(x) represents a potential density that is perceived by the focal location, determining the

location-specific growth rate of cells, G(U(x)). The density potential is the convolution of cell density

within the neighborhood, A(Nx), weighted (convolved) by the values in the kernel function. Typical kernel

functions in cancer modeling are likely to be non-increasing functions of the radial distance from the focal

location. For notational convenience, define the mean density of the field as n̂(t) = 1
||L || ∑x∈L At(x), where

||L || is the total number of lattice locations in domain L .

Lenia can be extended to a stochastic setting by restricting only integer values on each lattice point

(A(x) ∈ [0,1,2, . . . ,Amax]) with stochastic updates (see Supplemental Section S6.2). We note that classic



agent-based methods often restrict each lattice location to contain at most a single cell (Amax = 1) and

make the implicit assumption that cells divide into surrounding empty locations with probability b. This is

qualitatively similar to defining a Moore-like or von Neumann-like interaction kernel with G(U(x)) = b.

4.2.1 Tumor growth dynamics model

We first model tumor growth as a local logistic growth dynamic, shown in figure 1E, and F given by:

G(u) = γu(C−u)(u−L) (4)

where γ is the intrinsic growth rate of tumor cells, C is the carrying capacity (maximum density) of each

lattice location, L is the allee effect, and u is the density potential (eqn. 2).

4.2.2 Tumor-immune predator-prey model

Using multi-channel Lenia, we can extend the model to account for cell density of multiple cell types, Ai(x)
where i ∈ {1,2, . . . ,N}. For example, herein we consider competition between N = 2 cell types that each

have a growth field which is a function of the density potential for both cell types: Gt
i(x) :=Gi(U

t
1(x),U

t
2(x)).

In this two-type case, the dynamics are given by:

At+∆t
i =

[

At
i +Gi

(
Ut

i1(x),U
t
i2(x)

)
∆t

]Ai,max

Ai,min

(5)

Thus, the tumor-immune model can be written as a system of two growth functions:

G1(u11,u12)
︸ ︷︷ ︸

tumor (prey)

= γu11(u11 −L)(C−u11)
︸ ︷︷ ︸

logistic growth with Allee

− bu11u12
︸ ︷︷ ︸

predation

(6)

G2(u21,u22)
︸ ︷︷ ︸

immune (predator)

= g(bu21u22)
︸ ︷︷ ︸

predator growth

− du22
︸︷︷︸

natural death

(7)

where ui j represents the density of cell type j perceived by cell type i. The Allee threshold is given by L,

carrying capacity of tumor cells is C, and predation rate is b. Immune cells and expand at rate g (weighted

by immune predation response) and die at rate d.

Modeling cell migration using Particle Lenia

A recent extension referred to as Particle Lenia extends the mathematical framework to off-lattice. The

location of each cell i is given by vector pi := {x,y} corresponding to its location in two-dimensions.

Movement of the particle is determined by the local gradients of the energy and chemotactic migration

fields: E(pi) and M(pi), respectively.

dpi

dt
= −∇E(pi)

︸ ︷︷ ︸

cell adhesion-repulsion

+ ∇M(pi)
︸ ︷︷ ︸

microenvironment

=−
∂E(pi)

∂ (pi)
+

∂M(pi)

∂ (pi)
(8)

Particles (i.e. cells) in this model move against the local gradient of the energy field, representing particle

interactionsa. The cell-cell repulsion and adhesion fields are a function of the potential field, Et(x) =
E(Ut(x)) (see Supplemental info section S6.3). Similarly, an extrinsic microenvironmental field M(pi),
defines the chemotactic direction of cells moving toward a nutrient-based or bio-mechanical gradient.

The cell position update rule can be deterministic (following the highest point of gradient) or stochastic

(weighted in the direction of gradient).



Modeling the effect of collagen on T-cell migration

In this manuscript, we assume negligible T-cell adhesive-repulsive interactions such that E(Ut(x)) = 0.

Instead, T-cells move in a directed fashion influenced by the surrounding extrinsic microenvironment

according to the following equation:

∇M(pi) = K∗ C⃗t(x) (9)

where K is the cell-microenvironment interaction kernel (see eqn. 3), C⃗ = {||C||,θ} is a vector field

determined by collagen fiber alignment. At each time point, noise is added to the collagen vector field’s

angle such that θ ′ = θ +R(σ) where R is a uniform random variable on [0,σ ] radians.

In this way, we model the influence of collagen fibers to direct T-cell movement as a weighted vector

summation of the collagen fiber alignment in the focal T-cell’s local neighborhood. The collagen fiber

alignment vector field is inversely proportional to the density of collagen (cells travel slowly in dense fibers).

We consider two plausible models of the influence of collagen on T-cell migration: T-cells travel 1) in

parallel to collagen fibers or 2) perpendicular to collagen fibers, denoted ∥ and ⊥, respectively.

C⃗(x) = (1−D(x))⃗J⊥(x) (10)

C⃗(x) = (1−D(x))⃗J∥(x) (11)

where J⃗(x) is collagen fiber alignment (a unit vector) derived from clinical imaging, detailed in the next

section below, scaled by the inverse of the normalized density of collagen at each grid location, D(x) ∈ [0,1].

Immune cell migration field defined using OrientationJ

Tumor microarray (TMA) having FFPE tissue samples from HPV-negative HNSCC patient cohort from

the H. Lee Moffitt Cancer Center and Research Institute (IRB: MCC#18754) was analyzed to determine

collagen alignment in the tumor microenvironment. The TMA cores were imaged using a Leica SP5

AOBS multiphoton confocal microscope and a 25x, HC IR Apo, NA 0.95 water immersion objective. The

excitation wavelength was tuned to 880 nm and emitted light was detected at 440 nm using bandpass filters

for detecting the SHG signal of collagen. The SHG images were analyzed using the Orientation J plugin45

in ImageJ software which provides both visual and quantitative data outputs for collagen fiber alignment60.

aFor example, one might define E as the Lennard-Jones potential function, which describes the balance of repulsive

and attractive forces as a function of the distance between two interacting particles59
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S6 Supplemental Information

S6.1 Spatial variegation of tumor-immune interactions

We assess the degree of spatial variegation and patterning in tumor and immune cells as a function of

sensitivity and specificity in figure S1. Spatial maps are shown at time to tumor regression (TTR; see figure

4), and thus all tumors have identical total size in figure S1A. Differences in spatial patterns of tumor density

are caused by differential immune recruitment (specificity) and strength of predation (sensitivity). As the

immune specificity narrows (r21 reduces to smaller values), immune cell concentration strongly correlates

with the tumor’s location with a high degree of specificity (figure S1B, right-to-left). This specificity has

only a marginal effect on tumors if the range of sensitivity is diffuse (large r12 values). As sensitivity

narrows, immune predation is more highly targeted and effective, killing tumor cells, especially in the core

(figure S1A, bottom-left). A ring-shaped tumor is left, due to proliferating cells on the rim.

Figure S1. Tumor-immune spatial variegation patterns as a function of interaction kernels Spatial maps are shown at the

time to tumor regression (TTR; see figure 4) for a range of tumor-immune sensitivity (r12) and specificity (r21) values. (A) Tumor

spatial maps at TTR. (B) Immune spatial maps at TTR. Spatial variegation in tumor density increases as both specificity and

sensitivity are increased. As immune specificity narrows (r21 is small), immune cell concentration strongly correlates with tumor’s

location with a high degree of specificity. Unless otherwise noted, parameters used are γ = 5,b = 12,g = 1.5,d = 1,L = 0.08

(see eqns. 6-7).

S6.2 Stochastic Lenia

The Lenia framework can be extended to a stochastic setting by considering the likelihood of a lattice

location x containing a single cell. Let A(x) ∈ [0,1] be a random variable, such that the probability, P, of a

cell potentially being added to an existing lattice location x at the next time step t +∆t. This probability is

determined by the Binomial distribution (if the lattice location is currently empty), at a rate of G(U(x))∆t.



S6.3 Particle Lenia

Particle Lenia is an extension of Lenia where movement of the particle is determined by the sum of two

local gradients representing the energy field, E(pi), and migration field, M(pi). Particle i’s location in

two-dimensional space is given by pi := {x,y} and updated according to the following equation:

dpi

dt
= −∇E(pi)

︸ ︷︷ ︸

cell adhesion-repulsion

+ ∇M(pi)
︸ ︷︷ ︸

microenvironment

=−
∂E(pi)

∂ (pi)
+

∂M(pi)

∂ (pi)
(12)

Particles (or cells) move against the local gradient of E(x), the energy field. The cell-cell repulsion and

adhesion fields are a function of the potential field, U, such that:

Et(x) = E
(
Ut(x)

)
(13)

= E

(

∑
i

K
(
x−pt

i

)

)

(14)

= E

(

∑
i

K
(∥
∥x−pt

i

∥
∥
)

)

(15)

where Et(x) is interpreted as the energy field as a function of the distance from the focal particle. Interacting

cells move along the gradient of the energy field, weighted by the interaction kernel as a function of

particle-particle distance, and summed over all particles.



S7 Supplemental Video Captions

Figure S2. Supplemental Video S1: Short-range interaction kernels are more robust to Allee effects Spatial maps shown

for deterministic Lenia (left) and stochastic Lenia (right) over time.

Figure S3. Supplemental Video S2: tumor-immune spatial variegation patterns as a function of interaction kernels Video

of simulations, corresponding to figure S1. Left: Spatial maps shown over time for a range of tumor-immune sensitivity (r12) and

specificity (r21) values. Right: Immune spatial maps over time. Spatial variegation in tumor density increases as both specificity

and sensitivity are increased. As immune specificity narrows (R21 is small), immune cell concentration strongly correlates with

tumor’s location with a high degree of specificity. Parameters used are γ = 5,b = 12,g = 1.5,d = 1,L = 0.08 (see eqns. 6-7).

Figure S4. Supplemental Video S3: example immune infiltration simulation for perpendicular and parallel model Video

of simulations, corresponding to figure 6. Left: perpendicular model. Right: parallel model.

Figure S5. Supplemental Video S4: example immune infiltration simulation for perpendicular and parallel model Video

of simulations, corresponding to figure 6E. Simulations ordered by disease stage from left to right.
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