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Abstract

Skin cancer has a significant impact on the lives of many individuals annually and is recog-

nized as the most prevalent type of cancer. In the United States, an estimated annual inci-

dence of approximately 3.5 million people receiving a diagnosis of skin cancer underscores

its widespread prevalence. Furthermore, the prognosis for individuals afflicted with advanc-

ing stages of skin cancer experiences a substantial decline in survival rates. This paper is

dedicated to aiding healthcare experts in distinguishing between benign and malignant skin

cancer cases by employing a range of machine learning and deep learning techniques and

different feature extractors and feature selectors to enhance the evaluation metrics. In this

paper, different transfer learning models are employed as feature extractors, and to

enhance the evaluation metrics, a feature selection layer is designed, which includes

diverse techniques such as Univariate, Mutual Information, ANOVA, PCA, XGB, Lasso,

Random Forest, and Variance. Among transfer models, DenseNet-201 was selected as the

primary feature extractor to identify features from data. Subsequently, the Lasso method

was applied for feature selection, utilizing diverse machine learning approaches such as

MLP, XGB, RF, and NB. To optimize accuracy and precision, ensemble methods were

employed to identify and enhance the best-performing models. The study provides accuracy

and sensitivity rates of 87.72% and 92.15%, respectively.

Introduction

The unrestricted growth of skin cells, commonly triggered by exposure to UV radiation,

genetic factors, and environmental influences, is a common cause of skin cancer [1]. The sick-

ness involves numerous histological subtypes, with basal cell carcinoma (BCC), squamous cell
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carcinoma (SCC), and melanoma being the three key types [2]. Basal cell carcinoma, the most

prevalent type, generally presents itself as slow-growing lesions on sun-exposed areas, which

are characterized by a pearly appearance and rolled edges. Scaly or crusted lesions are a com-

mon sign of squamous cell carcinoma, which can metastasize if not identified and treated

early, in contrast to other types of cancer.

Despite its high potential for metastasis, melanoma is not a primary concern compared to

other cases. It arises from melanocytes, the cells that produce pigment in the skin, and it is

characterized by its tendency to display various morphological characteristics and irregular

borders. Skin cancer stands as the prevailing and most frequently encountered form of malig-

nancy globally [3]. Annually, there are more than 3.5 million incidences of Melanoma, Basal

Cell Carcinoma, and Squamous Cell Carcinoma diagnosed, surpassing the collective occur-

rences of breast cancer, lung cancer, and colon cancers. Remarkably, Melanoma alone claims a

new victim every 57 seconds [4].

Skin cancer detection benefits from using machine learning and deep learning due to their

capacity for automated, precise, and effective analysis of skin lesions and images. They facili-

tate early detection, ensure consistent performance, enable data analysis, and assist in tailoring

medical decisions to individuals. Furthermore, these technologies play a role in screening, pri-

oritization, and ongoing improvement, making them well-suited for widespread implementa-

tion. Their adoption contributes to the reduction of unnecessary diagnoses and the timely

identification of potential skin cancer cases. Due to the importance of proper and accurate

diagnosis of the type of skin cancer, this study employed various techniques in machine learn-

ing and deep learning to enhance the precision and accuracy of distinguishing between benign

and malignant cases of skin cancer.

The contributions in this study are as follows:

• Employing a spectrum of transfer learning models, such as DenseNet-201, DenseNet-121,

ResNet-50, ResNet-101, ResNet-152, VGG19, and EfficientNet-B3

• Due to the high number of features after extraction, a range of feature selectors are deployed,

namely, ANOVA, XGB, Lasso, PCA, Random Forest, Mutual Information, Univariate, and

Variance

• Improving evaluation metrics by deploying different Ensemble techniques and enhancing

the quality of the results

The rest of this paper is outlined as follows: Section 2 delves into the discussion of related

works; Section 3 explains the suggested approach; Section 4 presents experimental results and

discussion; in Section 5, a comparison between others’ work and this paper is depicted; and

lastly, section 6 encapsulates the conclusions drawn from the study.

Related work

Recently, there has been a myriad of inquiries conducted on the matter of skin cancer. At pres-

ent, multiple research initiatives are progressing toward investigating how machine learning

and deep learning methodologies can be added to this field. The healthcare field has seen a

substantial surge in interest in computer-assisted diagnosis (CAD), which is a vital area of

investigation. This sector encompasses a plethora of research that is currently being scrutinized

in the present paper.

Kumar K et al. [5] developed an advanced skin cancer classification and prediction tech-

nique using augmented intelligence with the ResNet50 model on Kaggle datasets. Using the

Augmented Deep Neural Networking (AuDNN) method, they extracted critical features,
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identified cancer regions, and improved dataset accuracy through clustering and attribute

dependency mapping. This approach achieved 93.26% accuracy in skin cancer classification.

Balaha and Hassan [6] developed an automated approach using the Sparrow Search Algorithm

(SpaSA) to detect, classify, and segment skin cancer. They used U-Net models and a meta-heu-

ristic optimizer along with pre-trained CNN models on datasets. Tabrizchi et al. [7] devised an

automated skin cancer detection model using dermoscopic images and an enhanced VGG-16

CNN architecture. Adla et al. [8] crafted a robust medical decision support system by imple-

menting an optimized full-resolution convolutional network for categorizing skin lesions from

dermoscopy images. They introduced a method that fine-tuned hyperparameters using a

dynamic graph cut algorithm, effectively addressing segmentation challenges and refining the

precision of skin cancer diagnosis. Their model achieved 97.986% accuracy in precisely catego-

rizing skin lesions. Mridha et al. [9] developed deep learning models for skin cancer classifica-

tion, addressing class imbalance issues. Using the HAM10000 dataset, they trained a CNN,

achieving an 82% classification accuracy and 0.47% loss accuracy for seven types of skin can-

cer. Additionally, an explainable AI system using Grad-CAM and Grad-CAM++. Wu et al

[10] introduced a skin cancer classification method using discrete wavelet down-sampling for

feature reconstruction, addressing issues of information loss during down-sampling. Their

approach integrated a multichannel attention mechanism improving pathological feature utili-

zation. The proposed model achieved 95.84% accuracy. Qasim Gilani et al. [11] used a neural

network approach using the surrogate gradient descent method to classify over 6,000 skin

lesion images. Their proposed VGG-13 model achieved 89.57% accuracy and a 90.07% F1

score. Huang et al. [12] investigated using hyperspectral imaging (HSI) to detect skin cancer

lesions, utilizing the ISIC dataset to train and test models for basal cell carcinoma (BCC), squa-

mous cell carcinoma (SCC), and seborrheic keratosis (SK). They applied the YOLO version 5

to train the model and compared the performance of HSI and RGB classification models. The

study revealed that the HSI model showed a 7.5% increase in overall recall rate (0.722 to 0.794)

compared to the RGB model, particularly in capturing SCC features, indicating the potential

for HSI to improve skin cancer detection. Teodoro et al. [13] addressed the challenges in early

diagnosis of skin cancer due to the similarity of symptoms with other diseases, leading to

errors in diagnosis. They proposed an approach using EfficientAttentionNet, a CNN architec-

ture, for early detection of melanoma and non-melanoma skin lesions. Their methodology

involved several stages: pre-processing skin images, using GAN to balance sample numbers,

creating masks for regions of interest via a U-net model, and training EfficientAttentionNet

with a mask-based attention mechanism. S M et al. [14] developed a Deep Convolutional Neu-

ral Network (DCNN) to classify skin cancer types from dermoscopic images. Using ISIC-2019

and ISIC-2020 datasets, they addressed image resolution differences and class imbalances

through augmentation and metadata use. Leveraging the EfficientNet architecture with trans-

fer learning and the ranger optimizer, they achieved superior skin lesion classification results,

obtaining an AUC-ROC score of 0.9681 after fine-tuning EfficientNet-B6. The paper [15]

introduced deep transfer learning for early skin cancer detection, leveraging pre-trained con-

volutional neural network models. It employed data augmentation techniques to enhance

model robustness and prevent overfitting on MODE-NODE and ISIC skin lesion datasets.

Through empirical analysis, vgg19 was identified as the most suitable model, achieving a test-

ing accuracy of 98.8%. Comparative results with existing methods showed vgg19’s superiority

in accuracy and efficiency, trained on significantly fewer images. These findings highlighted

the efficacy of data augmentation in improving detection while reducing resource consump-

tion. Khan et al. [16] presented a fully automated computer-aided diagnosis (CAD) system for

detecting malignant melanoma, a deadly form of skin cancer. It utilized a deep learning frame-

work, including pre-processing, lesion segmentation with MASK-RCNN, and feature
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extraction with DenseNet. The system achieved accuracy on validation datasets ISBI2016,

ISBI2017, and HAM10000. MASK-RCNN also achieved high accuracy on ISBI2016 and

ISBI2017. The paper provided a comparison with other state-of-the-art methods, demonstrat-

ing the effectiveness of the proposed framework. [17] developed a method for skin cancer

detection and recognition using a combination of deep learning and an iteration-controlled

Newton-Raphson (IcNR) based feature selection method. It followed three primary steps:

lesion localization using Faster R-CNN with a contrast stretching approach based on the bee

colony method (ABC), deep feature extraction using DenseNet201, and feature selection with

IcNR. The selected features were then used for classification with multilayered feed-forward

neural networks. Testing on ISBI2016 and ISBI2017 datasets achieved accuracies of 94.5% and

93.4%, respectively. Results demonstrated the proposed technique’s superior accuracy and effi-

ciency compared to existing methods. Khan et al. [18] proposed a novel deep-learning frame-

work for lesion segmentation and classification. Mask R-CNN was implemented for

segmentation, utilizing Resnet50 and feature pyramid network (FPN) as a backbone. Fully

connected layers generated final masks. For classification, a 24-layered convolutional neural

network was employed, activating based on visualized higher features. The method was vali-

dated on PH2, ISBI2016, and ISIC2017 datasets for segmentation and HAM10000 for classifi-

cation, demonstrating superior performance with high sensitivity (85.57%), precision

(87.01%), F1-Score (86.28%), and accuracy (86.5%) compared to existing techniques. To have

better overview of all, we put them in Table 1.

Proposed methods

This section provides a comprehensive elucidation of the research approach employed for the

diagnosis of skin cancer, encompassing all associated elements. It contains the preprocessing

phase, delineates the techniques utilized for feature extraction, and discusses the algorithms

applied. A condensed overview of these employed methods is visually represented in Fig 1.

A summary of the applied method is illustrated in Fig 1. It is conceivable that to have better

quality images, a pre-processing method was employed. After obtaining new images, a feature

extractor was applied to have better data quality and the best and most important features, a

feature selector method, namely, Lasso, was employed. Finally, an ensemble method was uti-

lized to increase evaluation metrics.

Table 1. Detailed summaries on predicting and classifying skin cancer in other studies.

References Dataset Method

Kumar K et al. [5] Kaggle+ CIA datasets AuDNN+ IOT

Balaha and Hassan [6] ISIC (2016-2017-2018) Transfer learning and sparrow search algorithm

Tabrizchi et al. [7] SIIM-ISIC VGG

Adla et al. [8] ISIC 2019+ ISIC 2020 FrCN-DGCA

Mridha et al. [9] HAM10000 Optimized Convolutional Neural Network

Wu et al. [10] HAM10000 Standard convolution+ wavelet down-sampling

Qasim Gilani et al. [11] ISIC 2019 Deep Spiking Neural Network

Huang et al. [12] ISIC Library YOLOv5

Teodoro et al. [13] ISDIS GAN+ RoI-Based

S M et al. [14] ISIC-2020 DCNN

Mawgoud et al. [15] MODE-NODE, ISIC Deep Transfer Learning

Khan et al. [16] ISBI2016, ISIC2017, HAM10000 Deep learning

Khan et al. [17] ISBI2016, ISBI2017 Deep Learning with IcNR-based feature selection

Khan et al. [18] PH2, ISBI2016, ISIC2017, HAM10000 Mask R-CNN, CNN

https://doi.org/10.1371/journal.pone.0301275.t001
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The novelty in this paper lies in the comprehensive and systematic exploration and combi-

nation of these various methodologies, suggesting an in-depth approach to feature extraction,

feature selection, and model combination to boost the overall performance.

Fig 1. The workflow of the proposed method.

https://doi.org/10.1371/journal.pone.0301275.g001
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This research uses a dataset [19] that has a harmoniously balanced compilation of images

portraying both benign and malignant skin moles. The dataset is structured into two distinct

folders, all captured at a resolution of 224x244 pixels. These images vividly depict the contrast-

ing characteristics of the two-mole types, offering a comprehensive visual resource for discern-

ing the nuances between benign and malignant skin anomalies.

Preprocessing

The preprocessing of dermoscopic images is paramount in developing precise algorithms for

automated skin cancer diagnosis [20]. Skin cancer is among the most widespread types of can-

cer globally [21]. Early and accurate diagnosis is vital for improving prognoses and survival

rates. However, the accuracy of diagnosis heavily relies on the expertise of dermatologists who

visually assess and analyze skin lesions from dermoscopic images. Automated algorithms seek

to enhance diagnostic precision by utilizing computerized analysis of skin images. Neverthe-

less, original dermoscopic images often contain flaws such as noise, inconsistent lighting, and

other irregularities that can adversely affect algorithm performance. Proficient preprocessing

of these images is instrumental in standardizing the data and bolstering algorithm

dependability.

The primary objective of preprocessing in skin cancer diagnosis is to enhance image quality

and prepare the data for in-depth analysis by the diagnostic algorithm. Fundamental prepro-

cessing steps encompass the conversion of color spaces, removal of hair, correction of uneven

illumination, enhancement of contrast, and elimination of noise. The shift from RGB color

space to alternative color spaces like CIELAB aids in normalizing skin color and lesion pat-

terns [22]. Noises caused by hair-over lesions are addressed through inpainting, isolating the

lesions themselves. Uneven illumination and reflections that may obscure lesions are mitigated

through illumination correction, ensuring uniform brightness and heightened contrast. Filter-

ing the image is also pivotal for eradicating extraneous artifacts and balancing noise. Employ-

ing these preprocessing techniques helps isolate diagnostically significant features of the lesion

for the algorithm to analyze.

Following the fundamental preprocessing steps, additional techniques contribute to stan-

dardizing and normalizing specific features within the prepared images. Strategies such as his-

togram equalization bolster contrast and amplify feature visibility. Normalizing color, size,

and structure in the preprocessed images empowers the algorithm to characterize, categorize,

and compare lesions more accurately. Data augmentation through rotation, scaling, and flip-

ping can amplify dataset size and variability, enhancing algorithm training. Apt preprocessing

produces refined, normalized image data, aiding complex algorithms in extracting subtle fea-

tures and patterns for precise diagnosis.

In essence, meticulous preprocessing of dermoscopic images diminishes noise, and distract-

ing variability while accentuating the visually meaningful diagnostic features of skin lesions.

Standardized, improved images facilitate machine learning algorithms in effortlessly identify-

ing patterns indicative of cancerous or benign lesions. By establishing robust preprocessing

pipelines tailored to the specific challenges of dermoscopic images, researchers can formulate

highly accurate algorithms for automated skin cancer screening and diagnosis. Dependable

preprocessing facilitates the seamless real-world integration of these systems, augmenting pub-

lic access, efficiency, and the quality of skin cancer diagnosis.

In this research, RGB-formatted images transform grayscale. Subsequently, a binary inverse

thresholding operation using Otsu’s method is applied. This operation provides a binary mask

that accentuates the object of interest against its backdrop [23]. Employing this mask, the

object is then segregated from the background within the RGB image through bitwise
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operations. Pixels representing the background are altered to white, erasing the background

itself. Through the identification of indices corresponding to non-zero (foreground) pixels in

the processed image, the parameters of the bounding box enclosing the object are discerned.

This information facilitates the extraction of a cropped variant of the RGB image, encompass-

ing solely the object. The cropped image is subsequently resized to conform to a standardized

dimension of 224x224 pixels, ensuring uniformity in input measurements. Ultimately, the

resized image is incorporated into a roster of images designated for subsequent analysis. This

meticulous preprocessing sequence culminates in the creation of a collection of images, uni-

formly sized and centered. These images are poised for subsequent computational tasks, such

as image classification or object recognition.

Feature extraction

Extracting features is a crucial stage in advancing machine learning systems for automated

skin cancer diagnosis. While preprocessing of dermoscopic images normalizes and enriches

the initial data, feature extraction precisely identifies and segregates the distinct visual attri-

butes and patterns present in the lesions. Thoughtful selection and extraction of only the most

diagnostically pertinent features facilitate more effective and focused analysis, concurrently

reducing complexity for the classification algorithm. The objective is to derive a set of features

that can faithfully represent each image, enabling the system to discern discerning patterns dis-

tinguishing between malignant melanomas and harmless lesions.

Features at the pixel level, such as color, texture, and shape, alongside more complex

semantic features describing asymmetry, border irregularity, color variations, and dimensions,

offer potential value in distinguishing cancerous and non-cancerous skin lesions. The choice

of extraction techniques depends on the priority of features in the computer vision approach.

For pixel-level features, standard methods involve segmentation, thresholding, edge detection,

and filtering to isolate colors, textures, and structures. Segmentation divides the image into

regions with comparable traits [24]. Thresholding emphasizes pixel intensities indicative of

boundaries and shapes [25]. Edge detection identifies lines and abrupt changes in the image

[26]. Gabor filters and other filtering methods characterize texture patterns [27].

In contrast, extracting higher-level diagnostic features necessitates algorithms to quantify

semantic attributes and patterns in the lesions. These algorithms can pinpoint and measure

asymmetry across multiple axes of the lesion. Algorithms gauging border irregularity evaluate

the smoothness versus jaggedness of the lesion edges. Others assessing color variations can

classify multiple colors and uniformity of color across the lesion area. Algorithms for dimen-

sions extract size characteristics and dimensional ratios. A meticulous selection of a concise set

of the most valuable features for diagnosis prevents unnecessary complexity in the model

while enabling it to discern the visual patterns that most consistently set apart malignant and

benign skin lesions.

Strategic feature extraction empowers machine learning models to pinpoint and concen-

trate on the most diagnostically meaningful elements within dermoscopic images. Condensing

each image to its essential array of distinguishing visual features augments efficiency and preci-

sion while minimizing model intricacies. Coupled with robust preprocessing, deliberate fea-

ture extraction provides optimized data for algorithm training and evaluation in automated

skin cancer diagnosis. The use of more focused data enhances model performance and facili-

tates integration into actual clinical settings, thus advancing dermatological care.

In the realm of skin cancer analysis, the integration of pre-trained convolutional neural net-

work (CNN) models as feature extractors has ushered in a transformative approach to enhanc-

ing diagnostic accuracy. Amidst the diverse array of models employed for this purpose, such as
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DenseNet-121 [28], VGG19 [29], ResNet-50, ResNet-101, ResNet-152 [30], and EfficientNet-

B3 [31], a rigorous performance evaluation process spotlighted DenseNet-201 as the preemi-

nent contender. These pre-trained CNN models, having undergone comprehensive training

on extensive image datasets, exhibit an innate capability to learn and encapsulate hierarchical

features from input images autonomously. This intrinsic trait enables them to undertake effi-

cient feature extraction sans the need for labor-intensive manual feature engineering. Of note-

worthy significance, DenseNet architectures, characterized by densely interwoven layers,

proffer an exclusive advantage by fostering unimpeded information flow among layers bol-

stered by intricate connectivity patterns. This unique architectural structure equips the models

with an exceptional ability to simultaneously capture both intricate details at the lower level

and complicated, complex features at the higher level. As a result, these models are highly pro-

ficient in detecting subtle nuances present within dermatological images—nuances that often

hold critical significance as indicators of potential skin cancer.

Feature selection

While feature extraction detects promising attributes within images, feature selection takes a step

further by narrowing down the data to the most pertinent characteristics crucial for skin cancer

diagnosis. Not all the extracted features have valuable insights to distinguish between malignant

melanomas and harmless lesions. Feature selection assesses the extracted features and cherry-

picks a subset that possesses the optimal discriminating potential for precise classification. This

streamlining process enhances the efficiency, accuracy, and comprehensibility of the model by

eliminating superfluous, inconsequential, or bewildering features from the dataset.

Efficient feature selection mandates analytical techniques to gauge and rank the utility of

the extracted features. Commonly, methods like filters, wrappers, and embedded approaches

are employed for this purpose. Filter techniques use statistical metrics like correlation, mutual

information, or chi-square tests to score and rank features independently of the model [32].

Wrappers utilize the model itself to test various feature combinations and assess the model’s

performance [33]. Embedded methods conduct feature selection as an integral part of the

model construction process [34]. In the context of skin cancer diagnosis, a blend of these tech-

niques is often necessary to pinpoint the most compelling features.

Prudent feature selection scrutinizes texture, color, shape, and semantic attributes to ascertain

which offers the highest discriminatory potential. The optimal colors distinguishing melanomas

from benign lesions are singled out. Specific texture patterns can indicate malignancy. Asymme-

try, border irregularity, and dimensional ratios with notable discriminatory capabilities are

retained, while redundant features are discarded. This streamlining and reduction of the feature

space facilitate more efficient algorithm training, preventing distraction from irrelevant inputs.

By removing redundant and non-informative inputs, feature selection guides the model to

concentrate solely on the most relevant components essential for optimal performance. This

not only enhances model interpretability but also augments predictive accuracy. The outcome

is an optimized subset of features that allows effective training of machine learning models for

automated analysis of dermoscopic images, ultimately improving melanoma detection.

Following the phase of extracting features using DenseNet-201 in this study, a crucial step

is introduced to enhance and optimize the obtained feature set. In this context, a significant

technique known as the Lasso method is introduced for feature selection. Lasso, or Least Abso-

lute Shrinkage and Selection Operator, holds prominence as a sophisticated regularization

method that achieves both feature selection and coefficient reduction. Operating within the

framework of linear regression, Lasso integrates a penalty term that encourages specific coeffi-

cients to be precisely reduced to zero, effectively removing the associated features [35]. The
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utilization of Lasso in this investigation involves a thorough assessment of the relevance of

each extracted feature concerning the classification task. By capitalizing on Lasso’s inherent

ability to effectively trim irrelevant or redundant features while retaining the most informative

ones, the feature set is refined to encompass only those features that substantially contribute to

the given task. This refinement enhances the model’s generalization capability and reduces

overfitting risks. The integration of Lasso as a feature selector enhances the overall efficiency

and comprehensibility of the classification model. Through this unified approach, the study

aims to attain an improved feature representation that not only captures the complexities of

dermatological images but also leads to enhanced performance in skin cancer classification.

Classification

The accurate categorization of skin lesions as either malignant or benign stands as a pivotal

aspect in the creation of dependable automated frameworks for skin cancer screening and diag-

nosis [36]. While ensuring the quality of image pre-processing, meticulous feature extraction

and judicious filtering of features help optimize the input data, the onus of making the ultimate

diagnostic determination lies with the classification algorithm. Given the global prevalence of

skin cancer, including melanoma, enhancing screening and diagnostic precision holds tremen-

dous advantages concerning early detection, treatment, and survival rates. Advanced classifica-

tion algorithms possess the potential to either equal or potentially surpass the diagnostic

capabilities of human dermatologists by discerning subtle patterns within dermoscopic images.

The classification algorithm thoroughly evaluates the refined set of visual features extracted

from the pre-processed dermoscopic images and sets decision boundaries to classify new sam-

ples as either malignant or benign consistently. A broad array of machine learning classifica-

tion methodologies can be experimented with and fine-tuned to pinpoint the most effective

diagnostic approach for the skin lesion classification task. Commonly employed classification

algorithms encompass logistic regression, support vector machines, random forests, artificial

neural networks, gradient boosting machines, and diverse ensembles. Logistic regression mod-

els gauge probability scores based on the feature inputs [37], indicating the likelihood of malig-

nancy or benignity. Support vector machines ascertain optimal hyperplanes between classes in

the multivariate feature space [38]. Random forests construct collections of decision trees

based on random subsets of features to amplify the overall performance [39]. Artificial neural

networks utilize hidden layers to capture intricate nonlinear relationships between image fea-

tures and diagnostic outcomes.

Within each algorithm, exhaustive parameter adjustment through grid or random searches

identifies the optimal model settings and architecture to maximize classification accuracy.

Fine-tuning kernels, regularization terms, tree depths, hidden layers, activation functions, and

other parameters offer flexibility to tailor the model’s intricacy to suit the challenge posed by

the skin image data. Robust scoring metrics like AUC-ROC, precision, recall, and F1-score

through cross-validation prevent overfitting and provide an objective understanding of model

generalizability. The most effective classification model can then be solidified by training on

the entire refined dataset.

After being rigorously optimized through this stringent process, the classification model

can consistently categorize new dermoscopic images with a high degree of accuracy. This

paves the way for the development of fully automated skin cancer screening systems that can

be clinically validated before responsible real-world implementation. These systems have dem-

onstrated the potential to enhance diagnostic speed, objectivity, accessibility, and accuracy.

Prudent and responsible use of AI-based classification has the potential to significantly benefit

skin cancer patients through early detection, cost reduction, improved outcomes, and
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potentially saving lives. Although challenges remain for full integration into clinical practice,

advanced machine learning classification algorithms hold immense promise to assist derma-

tologists and enhance skin cancer diagnosis.

Ensemble techniques, a prominent facet within the realm of machine learning, have gar-

nered considerable attention for their exceptional capacity to enhance predictive accuracy and

broaden applicability across diverse domains, including the nuanced domain of medical image

analysis. The underlying principle of these methods involves amalgamating multiple individual

models to craft a more resilient and precise ensemble model. Particularly in the realm of skin

cancer detection, where accuracy and precision hold paramount importance, ensemble meth-

ods offer an efficacious avenue to elevate the performance of machine learning algorithms. A

range of ensemble methodologies exists, each distinguished by unique attributes contributing

to their efficacy. For instance, Bagging (Bootstrap Aggregating), demonstrated through the

example of Random Forest, entails constructing numerous decision tree models by training

them on distinct subsets of the training data [40]. These models’ predictions are subsequently

consolidated to have a definitive outcome, effectively countering overfitting while augmenting

robustness. On the other hand, Boosting iteratively trains modest models, such as shallow deci-

sion trees, by assigning elevated weights to misclassified instances [41]. This iterative approach

culminates in a robust ensemble model. Stacking, a more intricate approach, encompasses

training multiple foundational models, subsequently training a meta-model to proficiently

amalgamate the predictions of these foundational models [42]. The Random Subspace Method

(Feature Bagging) entails training each foundational model on random feature subsets, a strat-

egy that effectively mitigates the risk of overfitting [43]. In the context of skin cancer detection,

ensemble techniques hold considerable promise, primarily attributable to the intricacies and

diverseness inherent in dermatological images. The task of distinguishing between benign and

malignant lesions necessitates capturing intricate patterns that a solitary algorithm might

struggle to encapsulate fully. Here, ensemble methods emerge as a viable solution by amalgam-

ating the strengths of multiple algorithms, thus countering individual shortcomings and aug-

menting overall accuracy. In the research endeavor, an ensemble comprising diverse machine-

learning algorithms was harnessed for skin cancer detection. This ensemble encompassed

XGBoost, renowned for its gradient-boosting mechanism that iteratively hones the model’s

predictions, giving precedence to misclassified instances [44]. MLP (Multi-Layer Perceptron),

a neural network architecture with multiple concealed layers capable of capturing intricate

data relationships, contributed to its distinctive prowess [45]. The MLP architecture utilized in

this study embodies a feedforward neural network structure, comprising distinct layers tai-

lored for the effective classification of skin cancer lesions. The input layer encapsulates the flat-

tened representation of extracted image features, aligning with the dimensions of the resized

and preprocessed skin lesion images. Throughout the architecture, multiple hidden layers,

characterized by varying neuron counts, facilitate the learning of intricate patterns inherent in

the input data. Employing ReLU activation functions within these hidden layers ensures effi-

cient gradient propagation and fosters rapid convergence during model training. Additionally,

the output layer is equipped with a sigmoid activation function, facilitating the generation of

probabilistic outputs suitable for binary classification tasks. Alongside these core components,

the MLP architecture integrates dropout layers to mitigate overfitting, batch normalization

techniques to stabilize training dynamics, and regularization mechanisms to enhance model

generalization. These architectural nuances collectively empower the MLP to discern nuanced

features and achieve robust classification performance, thus rendering it a pivotal asset in the

realm of skin cancer detection through medical imaging. The ensemble further incorporated

SVM (Support Vector Machine), celebrated for its proficiency in segregating data [46] into

distinct classes by defining a hyperplane, and Random Forest, an assemblage of decision trees
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acclaimed for their robust generalization capacity [39]. Each of these algorithms contributed

unique strengths to the ensemble’s arsenal. The ensemble amalgamation of XGBoost, MLP,

SVM, and Random Forest within this research exemplifies the potential of such a collaborative

approach. By synergistically harnessing the individual strengths of these algorithms, the

ensemble aimed to attain elevated precision and robustness in detecting malignant lesions.

This collaborative strategy is particularly powerful in incorporating a diverse array of features,

thereby augmenting the model’s efficacy in discerning between benign and malignant cases. In

a rapidly evolving landscape of machine learning, ensemble methods stand as a steadfast route

to expanding the horizons of medical image analysis and elevating patient care.

Discussion and results

In this section, a detailed analysis of the middle steps, process, and performance of the pro-

posed technique for skin cancer detection using machine learning and deep learning methods

is presented. Beginning with an examination of each stage’s intricacies, followed by a compre-

hensive evaluation of the performance metrics and a comparison with alternative methods.

The outcomes of employing various pre-trained transfer learning models and distinct clas-

sification algorithms were elucidated. The techniques outlined in this paper are reproduced in

a Google Colab, making use of the Python programming language.

The proposed technique encompasses several key stages, each critical for achieving accurate

and reliable skin cancer detection. Image preprocessing involves advanced techniques to

enhance image quality and remove noise, addressing common challenges such as illumination

variations and artifacts inherent in dermatological images. Specifically, Otsu’s method was

employed to ensure high-quality data for subsequent processing.

Feature extraction utilized pre-trained deep learning models such as DenseNet-201 to cap-

ture discriminative features from dermoscopic images. Additionally, the Lasso method was

employed as a feature selector to streamline the feature space and maximize the discriminative

potential of the extracted features.

The classification stage involved the application of diverse algorithms, including XGBoost,

Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), and Random Forest. Each

algorithm was fine-tuned and optimized to delineate between malignant and benign skin

lesions, with careful consideration given to parameter tuning and model architecture.

Rigorous evaluation of the proposed technique assessed its performance in skin cancer

detection using standard evaluation metrics such as accuracy, precision, recall, and F1-score.

A comparative analysis with alternative methods showcased the superior performance of the

technique relative to existing approaches. DenseNet-201 emerged as the optimal feature

extractor, outperforming other pre-trained models such as ResNet and VGG19.

The evaluation of this research is predicated upon its classification performance, gauged by

different evaluation metrics. This study uses accuracy, precision, recall, and F1-score to assess

the performance of the proposed method. All the performance metrics are computed as shown

in Table 2.

Table 2. The performance metrics.

Parameter Value

Accuracy True PositiveþTrue Negative
True PositiveþTrue NegativeþFalse PositiveþFalse Negative

Precision True Positive
True PositiveþFalse Positive

Recall True Positive
True PositiveþFalse Negative

F1-Score 2 � Precision� Recall
PrecisionþRecall

https://doi.org/10.1371/journal.pone.0301275.t002
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Following a comprehensive comparative analysis, the superiority of DenseNet-201 consis-

tently emerged. The model’s capability to comprehend and encapsulate finely detailed attri-

butes played a pivotal role in significantly enhancing precision when distinguishing between

malignant and benign skin lesions. It is this exceptional aptitude for capturing intricate aspects

that firmly establish the prominence of DenseNet-201 as the optimal choice among its coun-

terparts. Fig 2. illustrates a comparative evaluation of DenseNet-201 concerning other pre-

trained models employed in the study.

Based on the observations derived from Fig 2., it can be deduced that the outcomes

obtained through the proposed methodology exhibit superior performance when compared to

alternative techniques, specifically the Resnet family, EfficientnetB3, and VGG19.

After finding DenseNet-201 as the best feature extractor, Lasso, as a feature selector, pro-

vides a streamlined and optimized subset of features that maximizes the distinguishing poten-

tial of the extracted features. In this study, an extensive ensemble strategy was implemented to

enhance the accuracy of skin cancer detection. The ensemble involved the integration of vari-

ous machine learning models, encompassing XGBoost (XGB), Multi-Layer Perceptron (MLP),

Support Vector Machine (SVM), and Random Forest. The stacking technique was applied for

the ensemble process, merging predictions from individual models to provide a conclusive

decision.

Fig 3. provides a visual representation of the metrics’ improvement resulting from imple-

menting the proposed methodology.

The ensemble strategy, incorporating diverse machine learning models, further enhanced

the accuracy and robustness of the approach. Fig 3. reveals that the proposed method excels

particularly in the recall metric, which is among the most important in the healthcare context

[47]. More specifically, the achieved recall rate of 92.15% surpasses that of alternative method-

ologies, while the attained accuracy rate of 87.72% also demonstrates superior performance

relative to competing approaches.

Fig 2. Comparison of different feature extractors.

https://doi.org/10.1371/journal.pone.0301275.g002
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Two types of ensembles, whose results are shown in Fig 4., were applied, in which the pro-

posed method was chosen because of its potential.

Fig 4. is a comprehensive comparative analysis to assess the performance outcomes by the

novel methodology in contrast to a basic ensemble approach. Findings indicate that the pro-

posed method outperforms the simple ensemble method in three out of four evaluation

metrics.

Fig 3. Obtained metrics in the proposed method and other applied classifiers.

https://doi.org/10.1371/journal.pone.0301275.g003

Fig 4. A comparative analysis of the achieved outcomes derived from the proposed methodology in comparison with a

straightforward ensemble approach.

https://doi.org/10.1371/journal.pone.0301275.g004
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Notably, the importance of each model was acknowledged through the allocation of weights

proportionate to their respective accuracies. Notably, the MLP model, exhibiting the highest

accuracy within the ensemble, received the greatest weight. Subsequently, XGBoost, while

offering accuracy slightly below MLP but surpassing SVM and Random Forest, was assigned

the second-highest weight. SVM, ranking third in terms of accuracy, followed by Random For-

est, with the fourth-highest accuracy, received progressively reduced weights within the

ensemble framework. The stacking ensemble technique effectively harnesses the collective

capabilities of diverse machine learning models. The evaluation metrics acquired are depicted

in Fig 5.

As illustrated in Fig 5., the metrics obtained in the study demonstrate promising applicabil-

ity within the realm of healthcare. By strategically determining weights based on accuracy, the

stacking approach optimally exploits the distinct strengths of individual models, enhancing

the final decision-making process. This ensemble method emphasizes a tactical fusion of mod-

els, wherein their cooperative outcomes surpass the performance of unique models. This con-

vergence results in a more robust and refined diagnostic system, amplifying its effectiveness in

detecting skin cancer.

A confusion matrix is a performance measurement tool for classification problems, display-

ing the number of true positive (TP), true negative (TN), false positive (FP), and false negative

(FN) predictions made by a classification model. It provides a comprehensive overview of a

model’s accuracy, precision, recall, and F1-score, facilitating performance evaluation, model

comparison, error analysis, threshold selection, and class imbalance handling. By analyzing

TP, TN, FP, and FN rates, identify common prediction errors, optimize decision thresholds,

and mitigate bias in datasets with class imbalance, enhancing the credibility of research find-

ings in the field of machine learning. In Fig 6. the confusion matrix achieved in this paper is

visualized.

Fig 5. Obtained metrics in the proposed method and other applied classifiers.

https://doi.org/10.1371/journal.pone.0301275.g005
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The ensemble methodology adopted in this study holds significant potential for advancing

medical image analysis, particularly within the domain of dermatological imagery. By judi-

ciously amalgamating models with varying strengths and employing stacking as the mecha-

nism of amalgamation, this research seeks to elevate the precision of skin cancer detection.

This endeavor, in turn, augments the potential for accurate and timely medical intervention,

reflecting a promising stride toward improved patient care.

Comparison with cutting-edge models

Table 3 presents a comparison of diverse studies employing different methods to classify skin

cancer along with their respective outcomes. Mijwil [48] utilized InceptionV3 CNN to classify

skin cancer images with 86.90% accuracy, demonstrating its effectiveness in distinguishing

benign and malignant cases. Jasil and Ulagamuthalvi [49] explored pre-trained models like

VGG16, VGG19, and Inception V3, achieving 74–77% accuracy in classifying skin lesions and

highlighting their potential in medical image processing. Dubal et al. [50] introduced a tech-

nique using ordinary cameras and Neural Networks to accurately identify cancerous skin

abnormalities through visual segmentation. Brinker et al. [51] focused on the binary categori-

zation of skin abnormalities using dermoscopic images and annotations from specialists. Majt-

ner et al. [52] developed an improved melanoma detection method combining deep learning

with LDA for feature reduction and enhanced classification accuracy. Gupta et al. [53] pre-

sented a methodology enhancing dynamic training and testing procedures for more pro-

nounced outcomes, emphasizing resource-intensive augmentation strategies. Murugan et al.

[54] addressed skin cancer diagnosis, focusing on melanoma, employing watershed segmenta-

tion and various classifiers, with SVM proving the most effective. Mustafa et al. [55] intro-

duced a method using color space, luminance, and SVM for categorizing benign/malignant

lesions based on shape characteristics, emphasizing the SVM’s capability. Linsangan and

Fig 6. Confusion matrix in used classifiers.

https://doi.org/10.1371/journal.pone.0301275.g006
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Adtoon [56] focused on non-invasive skin cancer detection, achieving 86.67% accuracy using

geometric features on a Raspberry Pi. Shalu and Kamboj [57] developed a melanoma detection

system using preprocessing and segmentation techniques. With an accuracy of 87.72% and

sensitivity of 92.15%, the results of this paper surpass many of the mentioned methodologies,

signifying a notable enhancement in the accuracy and sensitivity of skin cancer based on the

employed techniques.

Conclusion

This paper aims to assist medical professionals in accurately distinguishing between benign

and malignant skin cancer cases using machine learning and deep learning methods. Among

the pre-trained models, including ResNet-50, ResNet-101, ResNet-152, VGG19, EfficientNet-

B3, and DenseNet-121, DenseNet-201 has been chosen as the feature extractor. In the subse-

quent phase, the Lasso method is employed as a feature selector, followed by the implementa-

tion of diverse machine learning techniques. The innovation lies within the meticulous and

systematic investigation and fusion of diverse methodologies, signifying a profound approach

towards extracting features, selecting crucial elements, and amalgamating models. The best

accuracy and precision are selected and improved through ensemble methods. Given the

importance of the sensitivity metric in disease detection, efforts have been directed toward

achieving a substantial value. The accuracy and sensitivity values achieved in this study are

87.72% and 92.15%, respectively. The clinical relevance and potential impact of the proposed

technique on dermatological practice are profound. By leveraging state-of-the-art machine

learning and deep learning methods, a reliable and efficient solution for early detection and

diagnosis of skin cancer is offered. The approach holds promise for reducing healthcare costs.

In future research endeavors, further refinement and validation of the technique using diverse

datasets and advanced deep-learning architectures are planned. Additionally, exploration of

the integration of complementary modalities such as clinical data and histopathological find-

ings to enhance diagnostic accuracy is underway.
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