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Abstract
Summary: Common approaches for deciphering biological networks involve network embedding algorithms. These approaches strictly focus 
on clustering the genes’ embedding vectors and interpreting such clusters to reveal the hidden information of the networks. However, the diffi
culty in interpreting the genes’ clusters and the limitations of the functional annotations’ resources hinder the identification of the currently un
known cell’s functioning mechanisms. We propose a new approach that shifts this functional exploration from the embedding vectors of genes 
in space to the axes of the space itself. Our methodology better disentangles biological information from the embedding space than the classic 
gene-centric approach. Moreover, it uncovers new data-driven functional interactions that are unregistered in the functional ontologies, but bio
logically coherent. Furthermore, we exploit these interactions to define new higher-level annotations that we term Axes-Specific Functional 
Annotations and validate them through literature curation. Finally, we leverage our methodology to discover evolutionary connections between 
cellular functions and the evolution of species.
Availability and implementation: Data and source code can be accessed at https://gitlab.bsc.es/sdoria/axes-of-biology.git

1 Introduction
1.1 Network embeddings
Cells are the basic building blocks of all living organisms. 
Understanding the complex intracellular processes is crucial not 
only for identifying the fundamental mechanisms of life, but 
also for deciphering the evolutionary history of species. 
Advances in capturing technologies have yielded a massive pro
duction of large-scale molecular data that describe the complex 
machinery of the cell (Wang et al. 2023). These data are often 
modeled as networks, in which nodes are molecular entities and 
the edges connecting them represent their relationships: e.g. in 
protein-protein interaction networks (PPIs), nodes represent 
proteins and edges indicate physical interactions (bindings) be
tween them, as measured by biological experiments. These net
works are a valuable source of biological information that need 
to be ‘untangled’ by new algorithms to reveal the information 
hidden in their wiring patterns.

Recent approaches for deciphering these complex data are 
based on network embedding techniques (Nelson et al. 2019, 
Li et al. 2022). These algorithms aim to find the vectorial rep
resentations of the network nodes in a low-dimensional em
bedding space spanned by a system of coordinates (a.k.a., 
embedding axes) while preserving the structural information 
of the network (Nelson et al. 2019, Windels et al. 2022). 

Defining an optimal number of dimensions of the embedding 
space is key to properly capturing the structural information 
of the network. However, there is no gold-standard approach 
to finding the optimal dimensionality of the embedding 
space, so researchers rely on grid search, domain knowledge 
or heuristics (Luo et al. 2021).

Network embedding techniques include different algo
rithms, such as Natural Language Processing (NLP)-inspired 
methods based on Neural Networks (NNs), e.g. DeepWalk 
(Perozzi et al. 2014), LINE (Tang et al. 2015), and node2vec 
(Grover and Leskovec 2016). Other approaches include ma
trix factorization-based ones, including e.g.: Singular Value 
Decomposition (SVD) (Alter et al. 2000), Principal 
Component Analysis (PCA) (Wall et al. 2003) with the sparse 
and probabilistic variants (Meng et al. 2016), Independent 
Component Analysis (ICA) (Sompairac et al. 2019), and 
Non-negative Matrix Factorizations (NMF) (Stein-O'Brien 
et al. 2018, Esposito et al. 2021). In particular, Non-negative 
Matrix Tri-Factorization (NMTF) is an extension of NMF 
and a well-known Machine Learning (ML) technique intro
duced for co-clustering and dimensionality reduction (Ding 
et al. 2006). Contrary to the NLP-inspired methods, the em
bedding spaces produced by NMTF have valuable properties, 
e.g. orthonormality and non-negativity. It has been hypothe
sized that such properties may lead to an easier interpretation 
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and deeper scientific insight (Isok€a€ant€a et al. 2020). 
However, this hypothesis has not been tested, so the real im
pact of these properties remains unclear.

1.2 Gene-centric embedding approaches
Revealing the information in the complexity of a molecular 
network requires not only an embedding algorithm but also 
methods to translate the results into biologically interpretable 
models (Yu et al. 2019). Gene-centric embedding approaches 
analyze the topological and functional properties of molecu
lar networks by clustering together genes whose embedding 
vectors are in proximity in the embedding space. These clusters 
represent subgraphs of the molecular network that display sig
nificant clustering properties, i.e. genes within each cluster are 
more densely connected to each other than to genes outside the 
cluster. To functionally interpret these clusters, current meth
ods rely on several curated ontologies, such as the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and 
Goto 2000), Reactome (Fabregat et al. 2016), and the Gene 
Ontology (GO) Bateman et al. (2019). Among them, GO has 
the largest number of records (Li and Yu 2014, Bateman et al. 
2019). GO terms are often used in functional enrichment 
analysis to evaluate the statistical over-representation of bio
logical functions in genes’ clusters (Zheng and Wang 2008). 
These statistically enriched functions are then used to charac
terize the cell’s functional organization from a molecular net
work captured by the gene clusters produced by embeddings 
of genes (Baryshnikova 2018).

1.3 Problem
Gene-centric methods have demonstrated their potential in 
functionally explaining molecular networks, leading to a bet
ter understanding of the cells’ machinery (Bhowmick and 
Seah 2016, Baryshnikova 2018). However, they present sev
eral limitations that hinder the identification of the functional 
mechanisms of the cells. First, they rely on statistically over
represented genes’ functions (described by GO terms), which 
only represent a subset of all the available GO terms. Second, 
the genes’ clusters often present redundant enriched GO 
terms (Bhowmick and Seah 2016), further reducing the func
tional information uncovered.

Recently, we introduced the Functional Mapping Matrix 
(FMM) as a new approach to overcome the limitations of the 
gene-centric embedding approaches (Doria-Belenguer et al. 
2023). The FMM uncovers the cell’s functional organization 
by capturing the functional interactions between all GO 
Biological Process (BP) terms based on their mutual positions 
in the embedding space. Unlike gene-centric approaches, the 
FMM uses all available GO BP terms to generate a complete 
functional map of the cell’s organization. However, while our 
FMM captures all pairwise interactions between GO terms, it 
does not allow for identifying the most relevant ones for 
biological interpretation. Additionally, similar to gene-centric 
methods, the FMM is limited by current ontologies: the 
analysis is limited to the predefined set of functional annota
tions, i.e. new functions that are not described in the 
ontology can not be uncovered. Additionally, due to the in
completeness of the ontologies (Li and Yu 2014, Yu et al. 
2019), no functional information can be captured from unan
notated parts of the network. Finally, the slow update rate of 
annotations by database curators poses a bottleneck, limiting 
the practical use of these annotations (Li and Yu 2014, Yu 
et al. 2019).

1.4 Contribution
Because it is difficult to unambiguously cluster the embed
dings of genes in space, the functional information that can 
be mined by gene-centric approaches is limited. To address 
this limitation, we propose to mine for additional functional 
information by using the axes of the PPI network embedding 
space. In particular, we assign interpretable and fine-grained 
semantic meanings to the axes (i.e. the embedding space basis 
vectors) that span the embedding space to identify the addi
tional functional mechanisms of a cell. We focus on these 
axes to define data-driven, higher-order processes that are 
not described in the current ontologies and represent impor
tant cellular mechanisms. To this end, we generate the 
gene embedding spaces of six species, Homo sapiens sapiens 
(human), Saccharomyces cerevisiae (budding yeast), 
Schizosaccharomyces pombe (fission yeast), Rattus norvegicus 
(rat), Drosophila melanogaster (fruit fly), and Mus musculus 
(mouse), by applying the NMTF and DeepWalk NN-based al
gorithm to the corresponding species PPI networks. We apply 
the NMTF algorithm with and without orthonormality con
straints (‘ONMTF’ and ‘NMTF,’ respectively) to gain insights 
into their impact on the functional organization of the embed
ding space axes. Then, to untangle the biological information 
hidden in the resulting gene embedding spaces, we embed GO 
BP terms in these spaces and associate them with the axes of 
each space as described below.

We demonstrate that the axes of the embedding space not 
only capture more biological information but are also more 
semantically coherent compared to the traditional gene- 
centric clustering followed by functional enrichment analysis. 
Moreover, semantically similar GO BP terms get associated 
with the same axis, i.e. each axis represents a specific biologi
cal function. Moreover, we show that the axes of the 
ONMTF gene embedding spaces better untangle biological 
information from the embedding space than DeepWalk and 
that this information is more coherently stratified across the 
axes. We demonstrate that this observation is connected to 
the properties of the ONMTF embedding spaces, such as 
orthonormality and non-negativity, which improve the orga
nization of such embedding spaces.

Furthermore, we use our novel axes-based method to un
cover the optimal dimensionality of the different species PPI 
network embedding spaces. For the optimal dimensionality, 
we explore the meaning of the GO BP terms associated with 
their axes. We observe that while the GO BP terms that are 
associated with the same axis tend to be functionally related 
(with large semantic similarity), our axes also associate 
seemingly unrelated GO-BP terms. We validate these new 
data-driven interactions by literature curation and show that 
they are biologically coherent and represent the functional 
interactions between GO BP terms in higher-order cellular 
functions, e.g. cell adhesion processes. Moreover, our meth
odology predicts new functional interactions for which we 
find some literature validation, but whose interaction has yet 
to be experimentally validated, e.g. the role of ribosomal 
RNA transcription in midbrain development.

Also, we investigate the higher-order cellular functions that 
raise from the GO BP terms’ functional interactions captured 
by the axes. To this end, we summarize all the GO terms that 
are associated with a given axis into a higher-level functional 
annotation that we term ASFA (Axes-Specific Functional 
Annotation). We find that ASFAs not only define coherent bi
ological processes, such as the cellular response to misfolded 
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proteins, but also they can be exploited to find new 
evolutionary connections between species, e.g. the mecha
nisms behind neural synapses that were inherited from 
prokaryotic organisms.

Finally, due to the incompleteness of GO annotations, we 
find that not all axes have associated GO terms, i.e. the bio
logical meaning of the non-annotated axes can not be discov
ered using the current functional annotations. We overcome 
this limitation by using the description of the genes that are 
associated with the axes to define the ASFAs. We demon
strate that the corresponding ASFAs are biologically coherent 
and complement ASFAs obtained from the GO BP terms as
sociated with the axes.

2 Materials and methods
2.1 Biological datasets
2.1.1 PPI networks
We collect the experimentally validated PPIs of Homo sapi
ens sapiens (human) and the PPIs of the five most frequently 
used model organisms: Saccharomyces cerevisiae (budding 
yeast), Schizosaccharomyces pombe (fission yeast), Rattus 
norvegicus (brown rat), Drosophila melanogaster (fruit fly), 
and Mus musculus (house mouse) from BioGRID v.4.2.191 
(Oughtred et al. 2019). We model these species PPI data as 
PPI networks in which nodes represent protein-coding genes, 
and edges connect nodes (genes) whose corresponding pro
tein products physically bind. The statistics of these PPI net
works are presented in Supplementary Table 1.

2.1.2 Network representation
We represent the PPI networks with their Positive Pointwise 
Mutual Information (PPMI) matrices, PPMI. These matrices 
quantify how frequently any two nodes in the corresponding 
PPI network co-occur in a random walk compared to what 
would be expected if the occurrences of the nodes were inde
pendent. Following Xenos et al. (2021) and Doria-Belenguer 
et al. (2023), we use the DeepWalk closed formula by Qiu 
et al. (2018) with its default settings to compute the PPMI 
matrix (see Equation (1)): 

PPMI ¼ max

(

0; log volðNÞ
1
T

XT

r¼1

ðD − 1AÞr
 ! !)

(1) 

where A is the adjacency matrix of the network N, D is the 
diagonal matrix of A, volðNÞ is the volume of N, T ¼ 10 is 
the length of the random walk.

This formula can be interpreted as a diffusion process that 
captures higher-order proximities between the nodes in the 
network; hence, the PPMI matrix is a richer representation 
than the adjacency matrix Xenos et al. (2021). As demon
strated by Xenos et al. (2021) and Doria-Belenguer et al. 
(2023), the extra information encoded in PPMI matrices 
leads to embedding spaces that better functionally organize 
the vectorial representation of both genes and gene functions 
than those generated by using the adjacency matrix.

2.1.3 Biological annotations
We use the Gene Ontology (GO) Biological Process (BP), 
Molecular Function (MF) and Cellular Component (CC) 
terms to represent the biological functions of a cell (Bateman 
et al. 2019). We collect the experimentally validated GO BP, 
GO MF, and GO CC terms from NCBI’s FTP server (gene2go 

file, collected on 28 September 2021). To better capture the 
higher level functional organization of the cell, we not only 
annotate the genes with the GO terms that they are associated 
with in the gene2go file, but also with the ancestors of these 
terms in GO ontology. To uncover these ancestor terms, we 
use GOATOOLS (Klopfenstein et al. 2018) and follow the 
‘is_a’ and ‘part_of’ links between the GO terms in the ontol
ogy’s directed acyclic graph (go-basic.obo file, collected on 
04 November 2021 from the GO website). Note that we ex
cluded from the the analysis the GO terms that annotate three 
or fewer genes, i.e. the terms that are not highly informative. 
Supplementary Table 2 shows the total number of GO BP 
terms that annotate genes in each species PPI network. In ad
dition, Supplementary Table 3 also shows the number of GO 
MF, GO CC, and RP terms for the human PPI network. 
From the same gene2go file, we also keep the information 
about the species (taxons) in which each annotation appears 
after considering extension with ancestor terms (out of the 20 
taxons included in the file).

2.2 Embedding the PPI networks
To obtain a PPI network embedding space, we use three dif
ferent network embedding algorithms: NMTF (Ding et al. 
2006), ONMTF (detailed below), and DeepWalk (Perozzi 
et al. 2014).

2.2.1 NMTF and ONMTF
We use NMTF to decompose the PPMI matrix representation 
of a molecular network, X, as the product of three non- 
negative factors: PPMI� P×S×BT , where rows of the ma
trix E¼ P×S define the set of embedding vectors of the 
genes, and the columns of B define the basis (a.k.a, axes) of 
the space in which the genes are embedded (Hu et al. 2019). 
We use NMTF with and without applying the orthonormal
ity constraint (‘ONMTF’ and ‘NMTF’, respectively), 
BT×B¼ I to the basis-defining matrix, B. This constraint 
leads to minimal co-linearities (hence, dependencies) between 
the axes of the embedding space (Strang 2006). The ONMTF 
and NMTF decompositions are done by minimizing func
tions 2 and 3, respectively: 

ONMTF : minP;S;B≥0jjPPMI − P× S×BT jj
2
F;B

TB ¼ I; (2) 

NMTF : minP;S;B≥ 0jjPPMI − P× S×BTjj
2
F; (3) 

where F denotes the Frobenius norm. These optimization 
problems are NP-hard (Ding et al. 2006); thus, we heuristi
cally solve them by using a fixed point method that starts 
from an initial solution and iteratively uses multiplicative up
date rules (Ding et al. 2006). Such rules guarantee conver
gence towards a locally optimal solution that verifies the 
Karush–Kuhn–Tucker (KKT) conditions (Ding et al. 2006) 
(detailed in Supplementary Section 1.1).

To generate initial P, S, and B matrices, we use the 
Singular Value Decomposition-based strategy (Qiao 2015). 
This strategy makes the solver deterministic and reduces 
the number of iterations needed to achieve convergence 
(Qiao 2015). To measure the quality of the factorization, we 
compute the Relative Square Error (RSE) between the input 
matrix, PPMI, and its corresponding decomposition, PSBT , 

as RSE¼ jjPPMI − P × S × BT jj
2
F

jjPPMIjj2F
. We stop the iterative solver when 

the value of the RSE is not decreasing anymore, or after 
500 iterations.
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Solving one instance of our model requires Oðn3Þ complex
ity, where n is the number of data points. In practice, it is 
computed in approximately 15minutes on a desktop com
puter with an Intel Xeon E5520 E-2124 processor running at 
3.30GHz. The main computational burden comes from the 
assignment of GO terms to axes, which requires a permuta
tion test with 100 000 permutations to have the statistical 
power for assigning annotations to the axes. This step 
took approximately 15hours of computation time on 
MareNostrum 4 supercomputer (for the technical specs see 
MN4 documentation).

2.2.2 DeepWalk
We use DeepWalk with its default settings (Perozzi et al. 
2014) to learn the embedding vectors of the genes produced 
by this algorithm. Similar to NLP-based network embedding 
algorithms, DeepWalk learns these vectors by considering the 
node paths traversed by random walks in the PPI network as 
sentences and leveraging a skip-gram neural network for 
learning the embedding vectors of the nodes (genes) (Perozzi 
et al. 2014). Note that DeepWalk only computes and outputs 
the gene embedding matrix, E1, but not the basis of the space 
in which the genes are embedded, B1. However, it has been 
demonstrated that DeepWalk, like other NLP-based network 
embedding algorithms, is implicitly factorizing a random 
walk mutual information matrix, Y (Qiu et al. 2018). Thus, 
DeepWalk approximately solves the decomposition of Y as 
Y � E1×BT

1 . Following Qiu et al. (2018) and Levy and 
Goldberg (2014), we approximate Y by its corresponding 
PPMI matrix by using Equation (1). Then, we obtain the ba
sis from DeepWalk embeddings by observing that in 
DeepWalk’s implicit decomposition: PPMI � E1×BT

1 , both 
PPMI and E1 are fixed, which leads to a closed formula for 
computing B1: B1 � PPMITðET

1 Þ
− 1, where −1 denotes the 

Moore-Penrose pseudoinverse. Importantly, the implicit de
composition from DeepWalk has fundamental differences 
from those of NMTF. First, it is not constrained to be non- 
negative, i.e. the coordinates of the embedding vectors of the 
genes, E, can be positive, negative, or equal to zero. Second, 
the basis, B1, can not be constrained to be orthonormal, so it 
results in more correlated axes. In other words, DeepWalk 
decomposition has more degrees of freedom than that of 
NMTF and ONMTF, which may affect the topology of the 
gene embedding space.

2.3 Annotating the axes of the gene embedding 
space with GO BP terms
We propose to use the axes of the space in which the genes 
are embedded to capture the most relevant interactions be
tween the functional annotations, which we also embed in 
the gene embedding space. Our method takes as input: the 
matrix factor, B, which contains the axes of the gene embed
ding space, and the relation-matrix between the genes and 
their GO BP functional annotations, A, in which entry A[i, j] 
is one if annotation ai annotate gene gj, and it is 
zero otherwise.

First, we generate the embedding vectors of the functional 
annotations in the gene embedding space. To this end, we de
compose matrix A as the product of two matrix factors, U 
and BT , A�U×BT , where rows of matrix U (that we call ui) 
are the embedding vectors of the annotations, ai, in the gene 
embedding space spanned by the basis, B, i.e. entry ui½j� cor
responds to the coordinate of the vector ui with respect to the 

axis j in B. Since matrices A and B are known, we directly 
compute U by: U� ðBTÞ

− 1×A, where ðBTÞ
− 1 is the Moore- 

Penrose pseudoinverse of BT (Barata and Hussein 2012). 
Then, we associate annotation ai to axis j if the value of the 
projection of ai on j, ui½j�, is statistically significantly larger 
than expected at random. We assess this statistical signifi
cance by performing the following bootstrapping-based 
method with 100,000 iterations. In each iteration, we ran
domly shuffle the functional annotation matrix A and use it 
as input to obtain the random matrix, R, which rows (that 
we call ri) are the random embedding vectors of the annota
tions, ai, in the gene embedding space spanned by the basis, B 
i.e. entry ri½j� corresponds to the coordinate of the vector ri 
with respect to the axis j in B. After all the iterations, the P- 
value of entry ui½j� is computed as P-value ¼ cþ1

pþ1 where c cor
responds to the number of times that the observed value of 
ui½j� is lower than or equal to ri½j� and p corresponds to the 
number of iterations (100 000 in our analysis). For each an
notation, we correct the resulting P-value for multiple hy
pothesis testing by applying the False Discovery Rate (FDR 
(Benjamin et al. 1995)) method over all axes. We consider the 
projection of annotation ai on axis j to be statistically signifi
cant if its corrected P-value is lower than or equal to 5%. 
Finally, following the hard clustering procedure introduced 
by Brunet et al. (2004), we consider that annotation ai is as
sociated with axis j if ui½j� is statistically significant and is the 
entry with the maximum value in vector ui. Because the P- 
value threshold is an important parameter of our method and 
there is no a gold-standard procedure to define a threshold, 
in Supplementary Section 2.7, we assess the effect of a more 
stringent and more lenient thresholding for the best- 
performing embedding method (ONMT). We observe that 
even when using a more lenient threshold of 0.1, we annotate 
with GO BP terms only 7% more of the axes of the embed
ding space compared to the standard P-value threshold of 
0.05 (detailed in Supplementary Section 2.7).

2.4 Quantifying the evolutionary conservation of 
biological functions
During evolution, cellular functions can be conserved, lost, or 
gained by the species (or taxons) via natural selection. To 
quantify the evolutionary conservation of a given biological 
function (represented by a GO BP annotation in this study), 
we introduce the ‘conservation degree’, which we define as 
the number of different taxons in which the annotation 
appears (out of the 20 taxons available in the gene2go file 
obtained from NCBI’s FTP server, detailed in section 
Biological datasets). Intuitively, the higher the conservation 
degree of a function, the more evolutionary conserved it is 
(from 1 to 20).

We evaluate if the conservation degree also carries infor
mation about the specificity of the function represented by a 
GO BP term (if it is a high-level, or a specialized cellular func
tion) by computing the Pearson’s correlation coefficient 
(Benesty et al. 2009) between our conservation degrees and 
two known measures of functional specificity: the number of 
genes that are annotated by a particular GO BP term 
(‘number of genes’, for short) and the level of the GO BP 
terms in the GO hierarchy (‘level’, for short). GO BP terms 
that represent generic cellular functions annotate a large 
number of genes and are at lower levels in the GO hierarchy. 
In contrast, GO BP terms that annotate a low number of 
genes and are at higher levels in the GO hierarchy, represent 
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more specialized cellular functions. We find that the conser
vation degree is positively correlated with the number of 
genes (Pearson correlation coefficient of 0.44 with a P-value 
≤1×10− 323) and negatively correlated with the level 
(Pearson correlation coefficient of −0:27 with a P-value 
≤1×10− 323). Thus, a high conservation degree relates to ge
neric functions that annotate larger sets of genes, while low 
conservation degrees relate to more specific functions that an
notate smaller sets of genes.

Also, we investigate if the conservation degrees of the GO 
BP terms relate to their embedding vector positions in the em
bedding space. To this end, we embed GO BP terms into the 
species PPI network embedding spaces (detailed sections 
Annotating the axes of the gene embedding space with GO 
BP terms and Quantifying the evolutionary conservation of 
biological functions) and we study the correlation between 
the mutual positions of their embedding vectors in the em
bedding space (measured by their pairwise Euclidean distan
ces) and their conservation degree. For a given GO BP term, 
we observe that the greater its conservation degree, the far
ther its vectorial representation is from the rest of the GO BP 
terms in the embedding space (Spearman correlation coeffi
cient of 0.72 with P-value ≤1×10− 323). Interestingly, we 
find that after a specific conservation degree, the average 
pairwise Euclidean distance drastically increases in all species 
PPI network embedding spaces. For instance, after reaching a 
conservation degree of 17 in the human PPI ONMTF embed
ding space, the average pairwise Euclidean distance drasti
cally increases from 1.20 to 16.48 (see Supplementary Fig. 1). 
Thus, we use this observation to divide the GO BP terms into 
three categories: ‘specific’ (conservation degree between 17 
and 20), ‘generic’ (conservation degree between 1 and 4), and 
‘background’ (GO terms that are neither generic nor specific) 
for human ONMTF embedding spaces. These results hold 
for the other species and embedding algorithms (see 
Supplementary Fig. 1).

2.5 Assessing the ability of our axes-based 
methodology to capture biological information
Current embedding approaches rely on the organization of 
the genes embedding vectors in the embedding space to un
cover the cell’s functional organization from molecular net
works. In particular, they apply functional enrichment 
analysis to identify those GO BP terms that are statistically 
overrepresented in the clusters of genes. The GO BP terms 
that are statistically enriched in each cluster are then summa
rized to capture the cell’s functional organization. The ability 
of these approaches to uncover the cell’s functional organiza
tion is usually quantified by the number of gene clusters 
enriched in GO BP terms (‘enriched clusters’), the number of 
GO BP terms enriched across these gene clusters (‘enriched 
GO BP terms’), and the semantical similarity of GO BP terms 
enriched in the same cluster.

Instead of using the organization of the embedded entities 
(genes and genes’ functions) in the embedding space, in this 
paper, we propose using the axes of the embedding space in 
which the entities are embedded to uncover the cell’s func
tional organization from the space in which molecular net
works are embedded. Similar to the gene-centric approach, 
we evaluate the ability of our axes-based method to capture 
the cell’s functional organization by analyzing the amount of 
GO BP terms that are associated with them. We report both: 
the percentage of the total GO BP terms that are associated 

with the axes (‘% GO BP’) and the percentage of axes with at 
least one associated GO BP term (‘% Axes’). We also investi
gate whether this captured biological knowledge is coherently 
stratified across the axes, i.e. if GO BP terms associated with 
the same axis are more functionally similar than those associ
ated with different axes. To this end, we compute Lin’s 
semantic pairwise semantic similarity (Lin 1998) between 
any two GO BP terms. This measure captures the similarity 
in the biological concepts represented by the GO BP terms, i. 
e. a high semantic similarity indicates that two GO BP terms 
are functionally related. We term ‘intra-SEmantic SImilarity’ 
(intra-SeSi) the average semantic similarity of the pairs of GO 
BP terms that are associated with the same axis, and ‘inter- 
SEmantic SImilarity’ (inter-SeSi) the average semantic similar
ity of the pairs of GO BP terms that are associated with dif
ferent axes. We report how many times the intra-SeSi and 
inter-SeSi are higher than the expected random semantic simi
larity and the P-value of the corresponding one-tailed 
MannWhitney U test. Alternatively, we apply the same meth
odology, but replace Lin’s semantic similarity with the short
est path distance in the ontology DAG as a measure of 
functional similarity between the GO BP terms. The lower 
the shortest path distance between two GO BP terms, the 
more functionally related they are.

2.6 Generating the axes-specific functional 
annotations
To obtain annotations that globally summarize the biological 
functions captured by each axis of the embedding space, we 
propose to use the GO BP terms captured by the axes to gen
erate new data-driven functional annotations, which we call 
Axes-Specific Functional Annotations (ASFAs). These ASFAs 
are a set of keywords extracted from the text descriptions of 
the GO BP terms that are associated with a given axis that 
summarize them. To find these keywords, we adapt the Term 
Frequency Inverse Document Frequency (TF-IDF) used in the 
NLP field. The TF-IDF is a statistic that reports how impor
tant a word is to a document (e.g. chapters of a book) in a 
corpus (e.g. a textbook) (Rajaraman and Ullman 2011). We 
extend this statistic to our problem at study by considering 
the union of all the GO BP terms text for the GO BP terms 
that are associated in all axes of the embedding space as the 
corpus. On the other hand, we consider as a document of this 
corpus the union of the text descriptions of the GO BP terms 
that are associated with an axis (ideally having as many docu
ments as axes). Then, we compute the TF-IDF of a word in a 
document by applying Equation (4): 

TF � IDFt;d ¼ ð1þ log TFt;dÞ � log
N

DFt
; (4) 

where t is a word in the document, d, TF − IDFt;d is the num
ber of occurrences of t in d, DFt is the number of documents 
containing t, and N is the total number of documents.

Since not all the words add semantic meaning to a text 
(e.g. ‘where’ or ‘of’), they could add noise to the TF-IDF, i.e. 
these so-called ‘stop words’ are usually removed before ap
plying the TF-IDF (Qaiser and Ali 2018). Stop words that we 
consider are all those that are in the list of stop words from 
the NLTK package version 3.6.7 (Hardeniya 2015). 
Similarly, we filter all the ‘stop words’ from the text defini
tions of the GO BP terms before computing the TF-IDF. 
Finally, for each axis, we build its ASFA by taking all the 
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words with a TF-IDF higher than 0. This is because a word 
with a TF-IDF higher than 0 is considered to have a level of 
significance for the document. On the other hand, a word 
with TF-IDF equal to 0 indicates that the word is not consid
ered important for the document based on the collection 
of documents.

Since GO ontology is incomplete, many genes lack GO BP 
term annotation. For instance, only 48.6% of the genes in the 
human PPI network are annotated with GO BP terms. 
Because of this, many genes are left unannotated (with no as
sociated GO terms). Thus, some axes may not capture any 
embedded functional annotations from the embedding space. 
To overcome this issue, we propose to associate genes with 
the embedding space’s axes and use the text descriptions of 
the genes from the Alliance of Genome Resources database 
v.5.2.1 to generate the corresponding ASFAs. To this end, we 
associate each gene to the axis for which the projection of the 
gene’s embedding vector has the largest value (in the spirit of 
the hard clustering procedure of Brunet et al. (2004)). 
Finally, having a set of gene descriptions for each axis, we ap
ply the same TF-IDF-based approach used with the GO BP 
functional annotations to build their ASFAs. In particular, we 
consider all the genes associated with the axes of the embed
ding space (all their gene descriptions) as the corpus. On the 
other hand, we consider as a document of this corpus the 
union of the gene descriptions of the genes that are associated 
with an axis (ideally having as many documents as axes). 
Then, we compute the TF-IDF of a word in a document by 
applying the Equation (4).

2.7 Quantifying the evolution conservation degrees 
of the ASFAs
To gain insights into the human evolutionary history, we 
propose to investigate the link between the ASFAs and evo
lution. To this end, we extend the notion of the conserva
tion degree of a GO BP term (defined in section 
Quantifying the evolutionary conservation of biological 
functions) to an ASFA. For an individual ASFA, we obtain 
its conservation degree by the union of the different taxons 
in which the GO BP terms associated with its correspond
ing axis appear. Also, we search for evolutionary patterns 
across our ASFAs by identifying those ASFAs that describe 
biological functions that are conserved from prokaryotic 
organisms, that appeared for the first time in eukaryotes, or 
that are unique to vertebrates. To this end, for a given 
ASFA, we take the union of the different taxons in which 
the GO BP terms associated with its corresponding axis ap
pear. For each taxon, we identify if it is a prokaryote, a eu
karyote (excluding those that are vertebrates), or a 
vertebrate. When associating ASFAs with the classification 
of their related taxons, we consider the ASFA to be: (1) 
‘prokaryotes’, if at least one of the associated taxons is a 
prokaryote; (2) ‘eukaryotes’, if all the associated taxons are 
eukaryotes, but none of them is vertebrate; and (3) 
‘vertebrates’, if all the associated taxons are eukaryotes, 
but at least one of them is a vertebrate. Note that the intui
tion behind this classification is to find from which organ
isms (prokaryotes, eukaryotes, or vertebrates) the functions 
represented by the ASFAs of a given species were inherited 
(e.g. the human ASFAs).

3 Results and discussion
3.1 The axes of the embedding spaces capture the 
cell’s functional organization
In this section, we evaluate if the axes of the embedding space 
of PPI networks uncover the cell’s functional organization. 
To this end, we generate the embedding spaces of six species 
(human, budding yeast, fission yeast, rat, fruit fly, and 
mouse) by applying ONMTF, NMTF, and DeepWalk algo
rithms on the corresponding species PPI networks (detailed in 
sections Biological datasets and Embedding the PPI net
works). To analyze the impact of the embedding space’s di
mensionality on the ability of the embedding methods to 
reveal the cell’s functional organization, for each species PPI 
network and for each embedding method, we generate the 
embedding spaces with increasing dimensionalities (from 50 
to 1,000 dimensions with a step of 50). Then, we embed GO 
BP terms into these embedding spaces and use the axes of the 
embedding space to capture the embedded GO BP terms (de
tailed in section Annotating the axes of the gene embedding 
space with GO BP terms). We evaluate the ability of the em
bedding space axes to uncover the cell’s functional organiza
tion by analyzing the percentage of axes having at least one 
associated GO BP term, the percentage of the total GO BP 
terms that are associated with the axes, and the functional 
similarity of the captured GO BP terms (detailed in section 
Assessing the ability of our axes-based methodology to cap
ture biological information). Here, we detail the results of the 
human PPI network and comment on whether similar results 
hold for the other species. The results for the other species 
are detailed in the Supplementary Material.

We observe that DeepWalk embedding spaces have, on av
erage, the largest number of axes with associated GO BP 
terms (88:05%) followed by ONMTF (59:25%) and NMTF 
(42:78%), see Fig. 1. However, the axes of ONMTF embed
ding spaces capture, on average, a larger number of GO BP 
terms (37:12%) than the axes of DeepWalk (33:8%), and 
NMTF embedding spaces (11:95%), see Fig. 1. These results 
suggest that DeepWalk embedding spaces capture fewer bio
logical functions, but ‘spread’ them more across the axes (av
erage of 9.7 GO BP terms per axis), while ONMTF spaces 
capture more biological functions and group them on a 
smaller number of axes (average of 16 GO BP terms per 
axis). Note that since DeepWalk embedding space allows for 
non-negative entries, we also use a two-sided permutation 
test to assign annotations to the axes of the DeepWalk’s em
bedding space (detailed in Supplementary Section 2.1). As 
shown in Supplementary Table 5, with the two-sided permu
tation test and for the optimal dimensionality of 500, the 
DeepWalk’s axes capture 40.52% of the GO BP terms. This 
represents only a 2% increase in the GO BP terms captured 
by the axes of the space compared to the one-sided permuta
tion test. This difference does not affect the overall ranking of 
the embedding methods: the ONMTF-based embeddings 
continue to capture more GO BP terms. Furthermore, we in
vestigate whether this captured information is coherently 
stratified across the axes, i.e. if the GO BP terms that are as
sociated with the same axis are more functionally similar 
(higher semantic similarity and closer in the ontology’s 
directed acyclic graph, DAG) than those associated with dif
ferent axes (detailed in section Assessing the ability of our 
axes-based methodology to capture biological information). 
We find that ONMTF embedding spaces, not only group 
more GO BP terms per axis, but the functions that are 
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associated with the same axis are functionally more coherent 
(3.12 times higher average semantic similarity than expected 
by random, Mann-Whitney U test with P-value 3:39×10− 8) 
than the ones associated with the axis in NMTF and 
DeepWalk embedding spaces (2.6 and 2.1 times larger than 
expected by random, respectively, Mann-Whitney U test with 
P-values 3:38×10− 8 and 2:41×10− 7, respectively), see 
Supplementary Table 6. Moreover, GO BP terms associated 
with the axes of the ONMTF spaces are on average closer in 
the ontology DAG (average shortest path of 4.21), than the 
ones captured in NMTF and DeepWalk embedding spaces 
(average shortest path of 4.70, and 5.35, respectively). We 
observe similar results for the other species embedding spaces 
(see Supplementary Tables 4 and 7).

These results confirm that the embedding axes capture bio
logical knowledge from the PPI network and that this infor
mation is biologically meaningfully distributed across 
dimensions, i.e. each axis captures a set of GO terms that are 
functionally related. Moreover, we demonstrate that the axes 
of the ONMTF embedding spaces capture more and better- 
stratified functional information than the other methods. We 
also show that the ability of ONMTF to produce embedding 
spaces whose axes capture more and better stratified func
tional information can be attributed to the properties of the 
embedding spaces produced by ONMTF, i.e. orthonormality 
and non-negativity (Supplementary Section 2.2). Thus, em
bedding in positive and orthonormal spaces, which only 
NMTF-based frameworks allow for, leads to the embedding 
spaces that best capture the cell’s functional organization 
from the biological networks. In Supplementary Section 2.4, 
we demonstrate that the functional information captured by 
the axes of the ONMTF-based embedding space is robust to 
the incompleteness (missing edges) of the PPI network and to 
a potential bias of the initilization step of our NMTF solver. 
In addition, we find that the embedding space’s dimensional
ity also affects the biological information captured by the em
bedding space axes, e.g. the total amount of GO BP terms 

captured flattens after 400–500 dimensions in ONMTF em
bedding spaces (see Fig. 1). This indicates that increasing the 
embedding space’s dimensionality enables better disentangle
ment of functions encoded in the PPI networks, but that add
ing more dimensions beyond 500 does not improve the 
capture of either more biological information, or more 
specific information from the ONMTF embedding space 
(Supplementary Section 2.3). Thus, we choose 500 dimen
sions as the optimal dimensionality for the human ONMTF 
embedding space. This optimal dimensionality is coherent 
with the number of dimensions usually applied in NLP 
(Pennington et al. 2014, Devlin et al. 2018). The optimal di
mensionality for the other species embedding spaces is shown 
in Supplementary Table 8.

Also, we compare the ability of our axes-based method to 
uncover functional information from PPI network embedding 
spaces with the standard gene-centric approach. To this end, 
we cluster genes based on the cosine similarity of their em
bedding vector and apply functional enrichment analysis to 
identify the GO BP terms that are enriched in the resulting 
genes’ clusters (Supplementary Section 2.5). In particular, our 
axes-based methodology captures 1.32 times more functional 
information (GO BP terms associated with the axes) from the 
ONMTF embedding spaces than the standard gene-centric 
approach (GO BP terms enriched in at least one gene cluster). 
Moreover, our axes-based methodology better stratifies the 
information captured, as GO BP terms associated with the 
same axis are, on average, 1.42 times more semantically co
herent than those enriched in the same gene cluster. These 
results demonstrate the benefit of our axes-based method in 
extracting additional functional information from the net
work embedding space.

Furthermore, we compare our axes-based methodology to 
our function-centric approach based on FMM (Doria- 
Belenguer et al. 2023), which measures the association be
tween functional annotations based on the cosine distances of 
their embedding vectors in the embedding space of a network 

Figure 1. The axes of the human ONMTF, NMTF, and DeepWalk embedding spaces uncover the cell’s functional organization from the human PPI 
network. The top panel shows the percentage of axes that capture at least one embedded GO BP term. The bottom panel shows the percentage of the 
total embedded GO BP terms that are captured by the axes of the space. For each panel, the horizontal axis displays the number of dimensions of the 
embedding space. For each panel, the color of the lines corresponds to the three tested embedding algorithms: ONMTF (blue), NMTF (orange), and 
DeepWalk (green).
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(detailed in Supplementary Section 2.6). We find that the 
functional information captured by our axes-based method
ology is significantly in agreement with our previous FMM, i. 
e. pairs of GO BP terms associated with the same axis are lo
cated close in the embedding space having small association 
values in the FMM (Mann-Whitney U test with P-value 
≤1×10− 323 for ONMTF embedding spaces). However, un
like FMM, our new methodology enables the identification 
of the most relevant functional interactions between GO BP 
terms for biological interpretation. These results suggest that 
exploiting the axes of the embedding space itself better disen
tangles functional information from the PPI embedding 
spaces compared to relying solely on the organization of em
bedded entities (genes and gene functions) within the space.

In conclusion, we show that the axes of the ONMTF em
bedding spaces better uncover the cell’s functional organiza
tion and define the optimal dimensionality of such spaces. In 
the following sections, we investigate the biological meaning 
of the axes of the optimally dimensional ONMTF embedding 
spaces of PPI networks of different species.

3.2 The axes of the embedding space uncover new 
functional interactions between GO BP terms
We investigate whether our axes-based methodology captures 
new data-driven interactions between GO BP terms that are 
not described in the Gene Ontology, but are biologically co
herent. Recall that interactions between GO terms in the on
tology reflect their functional similarity (semantic similarity) 
(Consortium 2004). Thus, first we explore if seemingly unre
lated GO BP terms are associated with the same axis. To this 
end, we compute Lin’s semantic similarity between all two 
GO BP terms (detailed in section quantifying the evolutionary 
conservation of biological functions). Then, for each axis, we 
take the average semantic similarity among its pairs of 
associated GO BP terms (‘intra-axis SeSi’). By taking all the 
‘intra-axis SeSi’ over all the embedding axes, we define the 
distribution of ‘intra-axis SeSi’ (see the distribution in 
Supplementary Fig. 6).

Over all species PPI network embedding spaces, we find an 
average ‘intra-axis SeSi’ of 0.52, ranging from 0.99 down to 
0.10. Thus, while GO BP terms associated with the same axis 
tend to be functionally related, our axes also associate seem
ingly unrelated GO BP terms (according to GO). We further 
assess the biological coherence of associating unrelated GO 
BP terms with the same axis by conducting a literature cura
tion. For this analysis, we focus on the embedding axes that 
capture the highest number of seemingly unrelated GO BP 
terms, i.e. those with a significantly low ‘intra-axis SeSi’ (de
tailed in the Supplementary Section 2.8). For each of these 
axes, we evaluate if the interactions between its associated 
GO BP terms are biologically coherent.

Among the 13 axes with a significantly low ‘intra-axis 
SeSi’ in the human PPI network embedding space, we find 
7 axes (53.8%) for which all captured functional interactions 
are known in the literature to occur in humans, 3 axes 
(23.1%) for which captured functional interactions are de
scribed in the literature to occur in model organisms, but not 
yet in human and 3 axes (23.1%) for which captured func
tional interactions are not described in the literature, but are 
yet biologically coherent from a functional perspective.

One example of an axis that captures known functional 
interactions in human is axis 37, which has two associated 
GO BP terms, namely GO: 0033624 (negative regulation of 

integrin activation) and GO: 0032487 (regulation of Rap 
protein signal transduction). Although these functions are 
not connected based on the Gene Ontology (semantic similar
ity of 0.16), their functional interaction is biologically coher
ent, since Rap proteins are known to be involved in integrin- 
mediated cell adhesion in humans (Bos 2005, Shah 
et al. 2021).

On the other hand, axis 59 is an example of an axis that 
captures functional interactions only described in model 
organisms. It has two associated GO BP terms: GO: 0044528 
(regulation of mitochondrial mRNA stability) and GO: 
0006891 (intra-Golgi vesicle-mediated transport). These 
functions are not connected based on the Gene Ontology (se
mantic similarity of 0.08). However, Gerards et al. (2018)
demonstrated that vesicle transport at the Golgi apparatus is 
fundamental for the mitochondrial quality control of fruit 
flies. This quality control includes several processes, such as 
the mitochondrial unfolded protein response, which are 
highly influenced by mitochondrial mRNA stability 
(Ravanidis and Doxakis 2020).

Finally, axis 116 (represented in Fig. 2) exemplifies an axis 
capturing new functional interactions. It has four associated 
GO BP terms. Three of them are GO: 0006361 (transcription 
initiation at RNA polymerase I promoter), GO: 0036369 
(transcription factor catabolic process), and GO: 1905524 
(negative regulation of protein autoubiquitination). Although 
these terms are not connected based on the Gene Ontology 
(average semantic similarity of 0.29), their interaction is func
tionally coherent. The attachment of ubiquitin initiates the 
transcription factor catabolic process (Porter et al. 2012), 
which limits the availability of these proteins and their bind
ing to genomic promoters like RNA polymerase I promoters 
(Conaway et al. 2002). Genes with RNA polymerase I pro
moters encode ribosomal RNAs (rRNA) crucial for ribosome 
construction. Hence, these three GO BP terms participate in 
the regulation of rRNA transcription. In contrast, the fourth 
GO BP term associated with axis 116 (GO: 0030901) is 
highly semantically dissimilar to the previous three (semantic 
similarity of 0.05) and represents midbrain development. The 
dysregulation of rRNA transcription has been implicated in 
various neurological pathologies, including Parkinson’s dis
ease (Kang and Shin 2015) and Alzheimer’s disease (Tuorto 
and Parlato 2019), underscoring the significance of this regu
latory process in brain function. However, to date, the in
volvement of rRNA synthesis in the early developmental 
stages of the brain remains unexplored.

In conclusion, the functional interactions captured by the 
axes are in good agreement with GO ontology. However, we 
show that the axes also captured new, data-driven interac
tions not described in GO that represent higher-order cellular 
processes (see Supplementary Section 2.8 for an extended dis
cussion). In the next section, we investigate the higher-order 
cellular processes that arise from the functional interactions 
captured by our methodology.

3.3 The axes of the embedding space capture the 
functional mechanisms of the cell
We analyze the higher-order cellular processes that arise from 
the functional interactions between the GO BP terms cap
tured by each embedding axis. To this end, we summarize the 
set of GO BP terms captured by each axis into ASFAs. ASFAs 
are composed of a set of keywords that provide a synopsis of 
the annotations associated with the axes (detailed in section 
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Generating the Axes-Specific Functional Annotations). We 
assess whether ASFAs correctly summarize the set of GO BP 
terms captured by the axes and evaluate their coherence in 
describing biological functions through literature curation.

We find that ASFAs correctly summarize the biological in
formation captured by the axes and describe coherent human 
cellular functions (see Table 1). For instance, axis 51 captures 
twenty-seven GO BP terms that describe the regulation of 
telomere (GO: 0032204, GO: 0032206, GO: 0032210, GO: 
0032212, GO: 1904356, GO: 1904358, GO: 0051972, GO: 
0051973, GO: 1904816, GO: 1904851, GO: 2001252, 
0070203 and GO: 1904814), chromosome stability (GO: 
0033044), Cajal body (GO: 0090666, GO: 0090670, GO: 
1904872 and GO: 1904874), protein location and stability 
(GO: 0031647, GO: 0050821, GO: 0070202, GO: 1903829 
and GO: 1904951), and RNA location to the nucleus and 
gene expression (GO: 0006403, GO: 2000573, GO: 

0090685 and GO: 2000278). The resulting ASFA combines 
and summarizes the keywords of these terms (maintenance, 
activity, telomere, scaRNA, RNA, telomeric, biosynthetic, 
Cajal, regulation, protein, stability, nucleus, localization, pro
cess, lengthening, establishment, body, DNA, positive, via, 
stabilization, telomerase, chromosome, and organization) 
and reflects the functions of Cajal bodies, including biogene
sis and modification of Cajal body-specific RNPs (scaRNPs) 
and telomerase (Meier 2017).

The observed biological coherence of our ASFAs can be 
explained by the fact that GO BP terms associated with the 
axes are already functionally coherent (see Supplementary 
Fig. 6). We find similar results for the other species (see 
Supplementary Section 2.9 for more examples of human and 
the other species).

So far, we have used GO BP terms to find the higher-order 
functions represented by the axes of the embedding space. 

Figure 2. The embedding axes uncover new functional interactions between cellular functions. The plot shows the pairwise Lin’s semantic similarity 
between the GO BP terms associated with the axis 116 of the human PPI network embedding space. As shown in the plot, three GO BP terms 
associated with this axis participate in the regulation of ribosomal RNA transcription. In contrast, GO: 0030901, which represents midbrain development, 
is not related to this group of GO BP terms according to the Gene Ontology.

Table 1. The ASFAs describe coherent functions of the human cell.a

Axis Terms #GO Taxons

51 Maintenance, activity, telomere, scaRNA, RNA, telo
meric, biosynthetic, Cajal, regulation, protein, stability, 
nucleus, localization, process, lengthening, establish
ment, body, DNA, positive, via, stabilization, telome
rase, chromosome, organization

27 3702, 4896, 6239, 7227, 7955, 
9031, 9606, 9615, 9823, 9913, 
10090, 10116, 352472, 
511145, 559292

144 Activity, anion, negative, aminobutyric, regulation, sig
naling, inhibitory, assembly, inorganic, chloride, store, 
pathway, acid, transmembrane, transport, synapse, op
erated, gamma, calcium, channel

8 4896, 10116, 9606, 9031, 
511145, 10090, 9615, 7955, 
3702, 352472, 7227, 
559292, 6239

64 Neural, crest, cell, stem, specification, fate 3 6239, 7227, 7955, 9031, 
9606, 10090

68 Cranial, development, nerve 2 7955, 9031, 9606, 10090, 10116
402 Remodeling, regulation, bone, positive, resorption 3 9606, 10090, 10116
36 Muscle, skeletal, regeneration, tissue 1 9606, 10090, 10116
406 Potential, action, cell, muscle, cardiac 1 7955, 9606, 10090, 10116

a For the human ONMTF embedding space, we use the GO BP terms associated with its axes to generate the ASFAs. The first column, ‘Axis’, lists the 
number of the axes from which each ASFA was obtained. The second column, ‘Terms’, shows the description of the ASFAs. The third column, ‘#GO’, 
displays the number of GO BP terms that are associated with the axis. The fourth column, ‘Taxons’, shows the Taxonomy ID of the different species for 
which the associated GO BP terms appear. The complete Table with all the human ASFAs and assigned GO terms can be found in the Supplementary 
online data.
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However, due to the incompleteness of GO annotations (only 
48.6% of human genes in the PPI network are annotated), 
not all axes have GO BP terms associated with them (41:2%

of the ONMTF human embedding space’s axes remain unan
notated). To assess whether this is an artifact of the GO BP 
terms annotations incompleteness, we also annotate the axes 
with simpler and more comprehensive sets of annotations, in
cluding GO Molecular Functions (MF), GO Cellular 
Components (CC) and Reactome Pathways (RP) terms. As 
shown in Supplementary Plot 8, the axes of the embedding 
space capture almost 70% of the embedded GO CC terms 
and 77% of the embedded RP terms, which indicates that 
unannotated axes are related with the incompleteness, noisi
ness and overlapping of biological annotations (Li and Yu 
2014, Yu et al. 2019).

To assess the consistency between the different types of 
annotations (GO BP, GO MF, GO CC and RP terms) cap
tured by the axes of the human PPI network embedding 
space, we test if the genes annotated by functions captured by 
a given axis are closer in the PPI network than genes anno
tated by functions captured from different axes. As shown in 
Supplementary Table 10, for each pair of annotations, the av
erage shortest path distance of the genes associated with the 
functions captured by an axis is statistically significant 
smaller (P-values of the Mann-Whitney U test <10− 9) than 
the average shortest path distance among genes associated 
with the functions captured from different axes. Hence, the 
different types of annotations assigned to the axes of the em
bedding space form coherent modules in the PPI network. In 
Supplementary Section 2.10, we give examples demonstrating 
that these different types of annotations captured by a given 
axis provide a complementary view on the same higher-order 
biological function.

Our results indicate that even though some axes remain 
unannotated according to BP annotations, they still capture 
biological information according to the other types of annota
tion (GO CC, GO MF, and RP terms). However, despite using 
all these annotation types collectively, 21.4% of the axes re
main unannotated. Hence, we investigate how to uncover 
functional information for the remaining axes (Supplementary 
Section 2.11). To this end, we propose to associate genes with 
the embedding space’s axes and use the text descriptions of 
the genes from the Alliance of Genome Resources database to 
generate the corresponding ASFAs. Using this approach, we 
obtain the ASFAs for 97:8% of the ONMTF human embed
ding space’s axes. We demonstrate that each of these ASFAs is 
generated from a group of functionally related genes by show
ing that genes associated with the same axis form more 
densely connected subnetworks (higher clustering coefficient) 
in the original human PPI network than randomly chosen 
genes (Mann–Whitney U test with P-value of 6:46×10− 28). 
Furthermore, we demonstrate that these newly generated 
ASFAs are biologically coherent and complement the ASFAs 
derived from GO BP terms. Thus, we show that all axes of the 
embedding space are functionally relevant.

In conclusion, by analyzing the biological coherence of the 
ASFAs, we demonstrate that the axes of the embedding space 
capture coherent complex cellular functions from the func
tional organization of the embedding space. These results 
open a new opportunity for the development of data-driven 
ontologies using the set of ASFAs to summarize the cell’s 
functional organization.

3.4 The axes of the embedding space uncover the 
human evolutionary history
Having demonstrated that our ASFAs represent coherent 
functions of the human cells, we investigate if they can be 
used to get insights into humans’ evolutionary history. To 
this end, we propose to investigate the link between the 
ASFAs and evolution. We introduce the concept of 
‘conservation degree’, which quantifies the evolutionary con
servation of a given GO BP term by the number of different 
taxons in which it appears (detailed in section Quantifying 
the evolutionary conservation of biological functions). The 
higher the conservation degree of a GO BP, the more evolu
tionary conserved it is. We extend this concept to ASFAs: for 
a given ASFA, the conservation degree is the union of the dif
ferent taxons in which the GO BP terms associated with its 
corresponding axis appear. We divide the ASFAs according 
to their conservation degree into three classes:‘prokaryotes’, 
‘eukaryotes,’ and ‘vertebrates’ (detailed in section Quantifying 
the evolution conservation degrees of the ASFAs). We end up 
with 156 (53%), 101 (35%), and 31 (10%) ASFAs classified as 
‘prokaryotes’, ‘eukaryotes’, and ‘vertebrates’ in the human PPI 
network embedding space, respectively. We analyze the mean
ing of these groups of ASFAs in the context of evolution.

We find that ‘prokaryotes’ ASFAs define highly conserved 
functions in evolution (average conservation degree of 13.7, 
see Fig. 3). These functions connect complex human cellular 
functions to ancient prokaryote ones (see Table 1). For in
stance, axis 144’s ASFA has a conservation degree of 13. 
Among the taxons that are connected to this ASFA, we find 
several vertebrates, including rats (taxon id: 10116), mice 
(taxon id: 10116), and chicken (taxon id: 9031), but also 
bacteria, such as E. coli (taxon id: 511145). This suggests 
that the biological function represented by this ASFA may 
have originated in prokaryotes, but is conserved across evolu
tion. Indeed, it describes the regulation of neuronal synapses 
in vertebrates by gamma-Aminobutyric acid. Interestingly, 
the sets of proteins comprising synapse receptors, signaling, 
and biosynthetic pathways necessary for this regulation arose 
in prokaryotes to enable prokaryotic organisms to adapt to 
changing environments (Emes and Grant 2012, Ovsepian 
et al. 2020).

In contrast, ‘eukaryotes’ ASFAs are newer in evolution 
with an average conservation degree of 7.3, which is lower 
than that of ‘prokaryotes’ ASFAs (13.7, see Fig. 3). These 
ASFAs uncover evolutionary connections between humans 
and other eukaryotes (see Table 1). For instance, axis 64’s 
ASFA sheds light on the evolutionary divergence in neurogen
esis. In particular, it is connected to the embryonic stem cell 
differentiation into neural crest. Surprisingly, although this 
process is considered a functional innovation of vertebrates, 
we find that this ASFA is connected to two invertebrates: 
fruit fly (taxon id: 7227) and worm C. elegans (taxon id: 
6239). To understand this observation, we analyze the three 
GO BP terms associated with axis 64 and find that they are 
connected to stem cell fate differentiation (GO: 0001708 and 
GO: 0048866) and neural crest stem cell differentiation (GO: 
0014036). Interestingly, GO: 0001708 and GO: 0048866 ap
pear in fruit fly and C. elegans, which supports the hypothesis 
that the regulatory programs involved in neural crest forma
tion evolved from programs already present in the common 
vertebrate-invertebrate ancestor (Kee et al. 2007). Indeed, re
cently, a group of cells in invertebrates was identified with 
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the characteristics of the neural crest ones (Martik and 
Bronner 2021).

Finally, the ‘vertebrate’ ASFAs are on average the newest 
in the evolutionary history of humans (average conservation 
degree of 3.4, see Fig. 3). In general, they describe specific 
traits that are unique to vertebrates. For instance, we find 
eight ASFAs that define functions connected to the develop
ment of tissues that are unique to vertebrates, such as cranial 
development, bone remodeling, skeletal muscle and cardiac 
muscle (see axes 68, 402, 36, and 406 in Table 1, 
respectively).

In conclusion, we demonstrate that each axis of the embed
ding space represents a well-defined function of the human 
cell. Moreover, by analyzing our new ASFAs, we find evolu
tionary connections between different species. We find simi
lar results for other species as well (see Supplementary 
Section 2.12 for more examples of human and the 
other species).

4 Conclusions
By introducing our new axes-based method, we shift the ex
ploration of the gene embedding spaces’ organization from 
the genes’ embedding vectors to the axes of the embedding 
space. This is the first study that does not discard the axes of 
the gene embedding space; instead, we demonstrate that they 
can be used to decipher biological information from the gene 
embedding space. We show that our axes-based method cap
tures 1.32 times more functional information (GO BP terms 
associated with the axes) compared to the classic gene-centric 

approach. Moreover, we show that the resulting higher-order 
functions are 1.42 times more semantically coherent than the 
ones obtained from the gene embeddings. We show that our 
axes-based method outperforms the classic gene-centric ap
proach in capturing the cell’s functional organization. 
Moreover, it also surpasses our previous FMM-based ap
proach by enabling the identification of significant functional 
interactions between GO BP terms, rather than simply cap
turing all interactions.

Furthermore, we show that our methodology captures new 
interactions between pairs of GO BP terms that are not de
scribed in the Gene Ontology, but are biologically coherent. 
We demonstrate that the interactions captured by each axis 
represent a higher-order cellular function (a.k.a. ASFAs) and 
their combination offers a summarized functional fingerprint 
of the cell. This fingerprint can go from a generic overview of 
the cell to the most specific one depending on the number of 
dimensions used for generating the gene embedding space. 
Finally, we leverage our methodology to get insights into the 
evolutionary history of different species.

In this study, we define the higher-order functions as data- 
driven, coherent groups of GO BP (and other ontology) terms 
associated with the axes. Note that we use generic PPI net
works to construct the axes and hence it is not feasible to di
rectly link these higher-order functions with specific cell 
types, or cell states. However, since our NMTF-based meth
odology can be used for multi-omic data fusion, it is possible 
to extend it to integrate and mine single-cell data together 
with biological networks to assess whether our axes relate to 
cell types or cell states (Mihajlovi�c et al. 2023).

Figure 3. The human ASFAs give insights into the evolutionary history of humans. We use the conservation degree of the ASFAs to divide them into 
three groups: ‘prokaryotes’, ‘eukaryotes’, and ‘vertebrates’ (color-coded). Then, we order the ASFAs according to their conservation degree. The 
horizontal axis displays the conservation degree of the ASFAs. The vertical axis shows the number of ASFAs with a certain conservation degree. Each 
ASFA is represented in the plot by the number of the axis from which it was obtained.
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Due to the incompleteness of GO annotations, not all axes 
have GO BP terms associated. Hence, we go beyond GO BP 
terms and use different types of annotations, including GO 
CC, GO MF, and Reactome Pathways terms. We demon
strate that all annotations captured by the axes are coherent 
and biological meaningful. Nonetheless, even when we use all 
annotations collectively, 21.4% of the axes remain unanno
tated. We overcome this limitation by associating genes with 
the embedding space’s axes and using the gene descriptions 
to generate the corresponding ASFAs; we demonstrate that 
these newly generated ASFAs are biologically coherent and 
complement the ASFAs derived from the annotations de
tailed above.

To conclude, our methodology could be easily applied to 
other bioinformatics tasks, such as the development of molec
ular network data-driven ontology (using the ASFAs as func
tional annotations and connecting them based on their 
similarity), or as the bases for molecular network drawing 
algorithms by using the axes to summarize the functional or
ganization of molecular networks. Furthermore, our method
ology is generic and can be applied to any discipline that 
analyzes the organization of networks by using network 
embeddings, e.g. social, or economic networks, paving the 
road to new algorithms for functionally mining the data by 
utilizing the axes of the embedding space.
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Advances online.
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