Table 3.
Methods | F1-score | Sensitivity | Precision | Specificity | Hamming loss | Accuracy | G-mean | AUC |
---|---|---|---|---|---|---|---|---|
ARF-OOBEE | 0.9022 ± 0.0098 | 0.8949 ± 0.0118 | 0.9151 ± 0.0165 | 0.9805 ± 0.0338 | 0.0296 ± 0.0055 | 0.9704 ± 0.0168 | 0.9367 ± 0.0138 | 0.9830 ± 0.0202 |
GcForest | 0.9140 ± 0.0145 | 0.8980 ± 0.0144 | 0.9420 ± 0.0169 | 0.9810 ± 0.0392 | 0.0252 ± 0.0078 | 0.9748 ± 0.0210 | 0.9386 ± 0.0236 | 0.9528 ± 0.0214 |
LR | 0.8052 ± 0.0136 | 0.7905 ± 0.0110 | 0.8622 ± 0.0160 | 0.9581 ± 0.0300 | 0.0520 ± 0.0079 | 0.9480 ± 0.0196 | 0.8703 ± 0.0210 | 0.9616 ± 0.0225 |
Naive Bayes | 0.7587 ± 0.0148 | 0.8085 ± 0.0106 | 0.7404 ± 0.0130 | 0.9113 ± 0.0380 | 0.0962 ± 0.038 | 0.9038 ± 0.0213 | 0.8584 ± 0.0220 | 0.9153 ± 0.0222 |
MLP | 0.7673 ± 0.0152 | 0.7532 ± 0.0126 | 0.8327 ± 0.0165 | 0.9409 ± 0.0099 | 0.0745 ± 0.0380 | 0.9255 ± 0.0226 | 0.8418 ± 0.0232 | 0.9070 ± 0.0236 |
SVM | 0.7411 ± 0.0133 | 0.7949 ± 0.0119 | 0.7137 ± 0.0135 | 0.8941 ± 0.0333 | 0.1090 ± 0.0083 | 0.8910 ± 0.0212 | 0.8430 ± 0.0231 | 0.8789 ± 0.0230 |
XGBoost | 0.8804 ± 0.0116 | 0.8552 ± 0.0114 | 0.9435 ± 0.0176 | 0.9725 ± 0.0353 | 0.0335 ± 0.0079 | 0.9665 ± 0.0185 | 0.9120 ± 0.0227 | 0.9726 ± 0.0189 |
ARF-OOBEE, adaptive random forest-out of bag-easy ensemble; AUC, area under the curve; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; XGBoost, extreme gradient boosting.