Skip to main content
. 2023 Dec 18;14(2):56–62. doi: 10.5415/apallergy.0000000000000126

Table 3.

Comprehensive evaluation indicators of various machine learning algorithms

Methods F1-score Sensitivity Precision Specificity Hamming loss Accuracy G-mean AUC
ARF-OOBEE 0.9022 ± 0.0098 0.8949 ± 0.0118 0.9151 ± 0.0165 0.9805 ± 0.0338 0.0296 ± 0.0055 0.9704 ± 0.0168 0.9367 ± 0.0138 0.9830 ± 0.0202
GcForest 0.9140 ± 0.0145 0.8980 ± 0.0144 0.9420 ± 0.0169 0.9810 ± 0.0392 0.0252 ± 0.0078 0.9748 ± 0.0210 0.9386 ± 0.0236 0.9528 ± 0.0214
LR 0.8052 ± 0.0136 0.7905 ± 0.0110 0.8622 ± 0.0160 0.9581 ± 0.0300 0.0520 ± 0.0079 0.9480 ± 0.0196 0.8703 ± 0.0210 0.9616 ± 0.0225
Naive Bayes 0.7587 ± 0.0148 0.8085 ± 0.0106 0.7404 ± 0.0130 0.9113 ± 0.0380 0.0962 ± 0.038 0.9038 ± 0.0213 0.8584 ± 0.0220 0.9153 ± 0.0222
MLP 0.7673 ± 0.0152 0.7532 ± 0.0126 0.8327 ± 0.0165 0.9409 ± 0.0099 0.0745 ± 0.0380 0.9255 ± 0.0226 0.8418 ± 0.0232 0.9070 ± 0.0236
SVM 0.7411 ± 0.0133 0.7949 ± 0.0119 0.7137 ± 0.0135 0.8941 ± 0.0333 0.1090 ± 0.0083 0.8910 ± 0.0212 0.8430 ± 0.0231 0.8789 ± 0.0230
XGBoost 0.8804 ± 0.0116 0.8552 ± 0.0114 0.9435 ± 0.0176 0.9725 ± 0.0353 0.0335 ± 0.0079 0.9665 ± 0.0185 0.9120 ± 0.0227 0.9726 ± 0.0189

ARF-OOBEE, adaptive random forest-out of bag-easy ensemble; AUC, area under the curve; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; XGBoost, extreme gradient boosting.