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Abstract
Introduction  Immunoglobulins play a vital role in host immune response and in the pathogenesis of conditions like asthma. 
Therapeutic agents such as monoclonal antibodies target specific elements of the asthmatic inflammatory cascade. Deci-
sions to utilize these medications are often based on systemic inflammatory profiling without direct insight into the airway 
inflammatory profile. We sought to investigate the relationship between immunoglobulin and cytokine profiles in the airway 
and systemic immune compartments of adult asthmatics.
Methods  Blood sampling and bronchoscopy with bronchoalveolar lavage (BAL) were performed in 76 well-defined adult 
asthmatics. Antibody and cytokine profiles were measured in both BAL and serum using ELISA and quantibody arrays.
Results  There was no relationship between BAL and serum levels of IgE. This is of significance in an asthma population. For 
some analytes, correlation analysis was significant (P < 0.05) indicating representativeness of our cohort and experimental 
setup in those cases. Nevertheless, the predictive power (r2) of the BAL-to-serum comparisons was mostly low except for 
TNF-α (r2 = 0.73) when assuming a simple (linear) relationship.
Conclusion  This study highlights the importance of sample site when investigating the roles of immunoglobulins and 
cytokines in disease pathogenesis and suggests that both localized and systemic immune responses are at play. The prescrip-
tion of asthma monoclonal therapy is generally based on systemic evaluation of cytokine and immunoglobulin levels. Our 
research suggests that this approach may not fully reflect the pathophysiology of the disease and may provide insight into 
why some patients respond to these targeted therapies while others do not.
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Introduction

Asthma prevalence has seen a staggering rise with disease 
burden reaching epidemic proportions in the western world 
[1, 2]. 3–10% of asthmatics have severe asthma where symp-
toms remain poorly controlled despite optimal treatment 
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with inhaled corticosteroids (ICS) and bronchodilators [3]. 
Many patients with severe asthma are treated with monoclo-
nal antibodies which target the asthma inflammatory path-
ways, such as those targeting IgE, Interleukin (IL)-5 and 
its receptor, and the IL-4 receptor α subunit. These agents 
have demonstrated clinical efficacy in the treatment of severe 
asthma with type 2 inflammation [4–8].

It is well documented that the response to monoclonal 
treatment can vary from so-called “super-responders” to 
partial and non-responders. Understanding the reasons 
behind this varied response is complex with phenotypic 
characteristics, such as lower BMI, lower dose of main-
tenance oral steroids, and better baseline lung function, 
all predictors of a better response to treatment [5–8]. It 
has been suggested that how we assess suitability for 
monoclonal treatment, as well as response through serum 
biomarkers of disease may not be completely accurate. 
Certainly, it has been shown that 25% of asthma patients 
can have elevated sputum eosinophils without having 
corresponding elevated serum eosinophils [9]. Similarly, 
sputum rather than blood eosinophilia is a better predic-
tor of response to mepolizumab and benralizumab, yet 
access to these medications is based on demonstrated 
blood eosinophilia [10]. Reliably predicting and assess-
ing response to these agents is essential for better patient 
outcomes and cost effectiveness. As we continue to move 
to an era of personalized, targeted treatments this is of 
increasing relevance.

Immunoglobulins (Ig) play a vital role in the host 
immune response. Immunoglobulins are heterodimeric 
proteins consisting of two heavy chains and two light 
chains classified functionally into variable and constant 
domains [11]. Immunoglobulins function by acting as 
antigen cell surface receptors allowing for cell signal-
ing and activation and also as soluble effector molecules 
which can neutralize potentially harmful antigens [11]. 
IgA, IgD, IgE, IgM and IgG are the main classes of the 
heavy chain constant domains, with IgG further divided 
into subclasses IgG1–IgG4 [11]. IgE has a role in hyper-
sensitivity, allergy, and asthma pathogenesis, while 
IgA has an immune role at mucosal surfaces and IgG 
deficiency has been implicated in asthma exacerbations 
[11, 12]. Great advances have occurred with respect to 
understanding the role of immunoglobulins in immune 
homeostasis, enabling numerous diagnostic and thera-
peutic applications, including their use as monoclonal 
antibodies to treat asthma [11].

Research advancing the current understanding of the 
immunoglobulin profile within the bronchoalveolar lav-
age (BAL) and serum of asthmatic patients, the rela-
tionship between both and variation between individual 

asthmatics is of potential therapeutic relevance. Such 
research may offer real therapeutic insights into personal-
ized targeted treatment options with monoclonal antibody 
therapy but also afford a possible explanation for treat-
ment failures in asthmatics. We sought to gain further 
insight into the relationship between the immunoglobulin 
and cytokine profiles in the local airway and systemic 
immune compartments of adult asthmatic patients.

Materials and Methods

Patient Recruitment

The study was approved by the Clinical Research Ethics 
Committee of the Cork Teaching Hospitals. Informed 
written consent was obtained. 76 adult patients with 
a history of asthma (either documented change in 
FEV1 ≥ 12%/200 ml with bronchodilator or a positive 
methacholine or mannitol challenge) were recruited 
through a dedicated asthma clinic in a tertiary referral 
center [13]. Patients were scheduled for bronchoscopy, 
with spirometry, asthma control questionnaire-7 (ACQ-
7), and blood sampling performed on the day. Spirom-
etry was performed in accordance with ATS/ERS guide-
lines [14]. The cohort was stratified by both severity, as 
per GINA classification [mild (GINA 1 + 2), moderate 
(GINA 3), severe (GINA 4 + 5)], and asthma control as 
per ACQ-7 questionnaire [controlled (ACQ-7 < 1.5), 
uncontrolled (ACQ-7 ≥ 1.5)] [13, 15, 16] (Table  1). 
Patients underwent bronchoscopy in accordance with 
standard guidelines [17]. Bronchoalveolar lavage (BAL) 
was obtained as a standardized 180 ml (3 × 60 ml) sample 
from either the right middle lobe or lingula.

Sample Processing

5 ml of neat BAL was aliquoted for cell differential analysis. 
The remaining BAL and blood were centrifuged at 500 g 
for 10 min at room temperature. The BAL supernatant was 
aliquoted, while the respective plasma (cytokine) and serum 
(immunoglobulin) was removed. All samples were stored at 
− 80 °C for cytokine and immunoglobulin analysis.

Cell Differential Analysis

Neat BAL underwent cytocentrifugation, whereby 200 µl of 
BAL per microscope slide was centrifuged at 400 rpm for 2 
min using a Shandon Cytospin 4 centrifuge (Thermo Fisher, 
Dublin, Ireland). Microscope slides were then differentially 
stained using a Kwik Diff commercial staining kit (Thermo 
Fisher, Dublin, Ireland) and microscopically analyzed to 
determine the BAL immune cell percentage counts.
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Immunoglobulins

Patient BAL and serum immunoglobulins IgM, IgA, IgD, 
IgG1, IgG2, IgG3, and IgG4 and BAL IgE were analyzed 
in accordance with inhouse procedures at RayBiotech 
using a Quantibody Human Ig Isotype Array 1 (Catalog#: 
QAH-ISO-1) (RayBiotech, Georgia, USA) which utilized 
sandwich ELISA-based technology, quantifiably measur-
ing the eight human isotype immunoglobulins. BAL limits 
of detection (LOD): IgA (107-200,000pg/ml), IgD (343-
50,000pg/ml), IgE (359-50,000pg/ml), IgM (134-100,000pg/
ml), IgG1 (483-400,000), IgG2 (926-400,000pg/ml), IgG3 
(23-50,000pg/ml), and IgG4 (22-16,667pg/ml) and serum 
IgA (13-20,0000pg/ml), IgD (94-50,000pg/ml), IgM (50-
100,000pg/ml), IgG1 (80-400,000pg/ml), IgG2 (1951-

400,000pg/ml), IgG3 (112-50,000pg/ml), and IgG4 (120-
50,000pg/ml). Serum IgE was measured using ImmunoCAP 
IgE assays (Thermo Fisher/Phadia, Uppsala, Sweden) in the 
hospital laboratory (LOD 2-5000kU/L).

Cytokines

Interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, 
IL-17, Interferon (IFN)-γ, and tumor necrosis factor (TNF)-α 
were measured in BAL and plasma using an electrochemi-
luminescence QuickPlex SQ 120 imager from Meso Scale 
Discovery (Gaithersburg, MD, USA).

Statistical analyses

GraphPad Prism 9 software was used to perform all statis-
tical analyses and to provide graphical representation of 
data. All data was assessed using normality and log-nor-
mality tests with the Shapiro–Wilk test applied to assess 
the normality of data. Data were considered statistically 
significant when P < 0.05 utilizing appropriate statistical 
tests (Mann–Whitney T test, Spearman’s R) as required. 
Pearson’s correlation and linear regression was performed 
to assess relationships between variables.

Table 1   Patient demographics and clinical characteristics

This table highlights key patient demographics and clinical results obtained on the day of bronchoscopy
Descriptive statistics were used to calculate the mean, standard deviation, median and interquartile range
ACQ-7 Asthma Control Questionnaire, ICS Inhaled Corticosteroid, FEV1 Forced Expiratory Volume in the first second, FeNO Fractional 
exhaled Nitric Oxide, BMI Body Mass Index, IQR Interquartile range

Mild (GINA 1–2) Moderate (GINA 3) Severe (GINA 4–5)

Patients n = 76 (%) 26 (34%) 17 (22%) 33 (44%)
Female 16 (62%) 12 (71%) 20 (61%)
Age (years) [Mean (SD)] [46.9 (15.1)] [52.6 (14.3)] [51 (12.7)]

[Median (IQR)] {49 (33–60)] [57 (39–650] [51 (40.5–73)]
Smoking status Current (%)

Ex-smoker (%)
Never smoker (%)

3 (12%)
6 (23%)
17 (65%)

1 (6%)
4 (24%)
12 (71%)

3 (9%)
11 (33%)
19 (58%)

Asthma control questionnaire-7 (ACQ-7) [Mean (SD)] [1.1 (0.6)] [1.9 (1.0)] [3.2 (1.1)]
[Median (IQR)] [1.1 (0.6–1.6)] [1.9 (1.1–2.6)] [3.1 (2.5–4.1)]

ACQ-7 < 1.5 n = 28 (37%) n = 19 (25%) n = 7 (9%) n = 2 (3%)
ACQ-7 > 1.5 n = 48 (63%) n = 7 (9%) n = 10 (13%) n = 31 (41%)
Inhaled corticosteroids (ICS) (FDP 250) (n = 65) [Mean (SD)] [442.3 (470.7)] [926.5 (521.2)] [1038 (464.0)]

[Median (IQR)] [375 (0-1000)] [1000 (500–1000)] [1000 (750–1250)]
IgE (kU/L) [Mean (SD)] [361.3 (643.2)] [168.8 (237.8)] [270.6 (436.3)]

[Median (IQR)] [96.1 (30.7–399.0)] [138.0 (63.1–180.0)] [100.1 (22.4-286.3)]
FEV1 (%Predicted) [Mean (SD)] [86.9 (13.1)] [86.7 (20.7)] [64.9 (22.7)]

[Median (IQR)] [88.0 (78.8–96.0)] [81.6 (74.0-101.5)] [67.0 (46.5–80.5)]
FeNO (ppb) Readings from 23 14 24

[Mean (SD)] [30.5 (27.4)] [22.7 (11.4)] [20.2 (25.1)]
[Median (IQR)] [21.0 (11.0–43.0) [21.0 (15.5–32.0)] [13.0 (19.3–23.8)]

BMI (kg/m2) [Mean (SD)] [26.0 (4.5)] [27.5 (6.9)] [30.0 (6.5)]
[Median (IQR)] [24.5 (22.4–30.0)] [26.0 (22.5–31.2)] [29.0 (25.1–33.8)]

Blood Eosinophil count (109/L) n = 73 [Mean (SD)] [0.3 (0.2)] [0.3 (0.4)] [0.3 (0.3)]
[Median (IQR)] [0.2 (0.1–0.3)] [0.2 (0.1–0.4)] [0.2 (0.1–0.3)]
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Results

Patient Demographics

The patient cohort consisted of 76 adult asthma patients in 
which total antibody immunoglobulin and cytokine levels 
were measured in BAL and blood. The cohort was stratified 
by severity (GINA) (34% mild (GINA 1 + 2), 22% moderate 
(GINA 3), and 44% severe (GINA 4 + 5) asthma) and level 
of asthma control (ACQ-7) (37% controlled (ACQ-7 < 1.5) 
and 63% were uncontrolled (ACQ-7 ≥ 1.5)). Those with 
severe asthma had overall poorer clinical parameters with 
a higher ACQ-7 score and lower FEV1. Nine patients, all of 
whom were in the severe asthma group (GINA 4 + 5) were 
on long-term, maintenance oral corticosteroids (Range 5–30 
mg), while 14.5% of asthmatics were ICS naïve at time of 
bronchoscopy (Table 1). Of those who were ICS naïve, all 
were classed as GINA 1 or 2, and 45.5% were considered 
uncontrolled as per their ACQ-7 score. No patient was on 
monoclonal therapy at the time of sampling.

BAL and Serum Immunoglobulins

Serum and BAL immunoglobulin levels were signifi-
cantly different between sites with increased levels of IgM, 
IgA, IgD, IgG1, IgG2, IgG3, IgG4 (P < 0.0001), and IgE 
(P < 0.01) in serum versus BAL samples (Fig. 1A). This 
may in part be due to the natural dilution effect of BAL 
sampling. Several correlations were observed to be signifi-
cant (P < 0.05) when serum and BAL levels of some of the 
analytes were compared; serum and BAL IgM (r2 = 0.25, 
P < 0.0001), IgA (r2 = 0.14, P < 0.001), IgG2 (r2 = 0.08, 
P < 0.02), and IgG4 (r2 = 0.33, P < 0.0001) (Fig. 1B–E). 
Overall, however, these relationships were mostly weak as 
denoted by a r2 value of < 0.65 [18]. IgD, IgE, IgG1, and 
IgG3 serum and BAL levels did not correlate. Both BAL 
and serum immunoglobulin levels were analyzed for a pos-
sible relationship with asthma control (ACQ-7) and severity 
(GINA), but no significant relationship was observed for 
either.

Immunoglobulin Levels Reflect Local Airway 
and Systemic Cytokine Signals

Plasma and BAL cytokines were found to significantly dif-
fer between sites with IL-8 (P < 0.0001), IL-1β (P = 0.002), 
and IL-6 levels (P = 0.0002) greater in BAL airway sam-
ples, while IL-17, IL-10, IL-13, IL-4, and TNFα levels 
(P < 0.0001) were greater in plasma (Fig. 2A). IL-5 levels 
were not significantly different between BAL and plasma 
samples. When the relationship between plasma and BAL 
cytokines was explored, although there were significant 

relationships between some analytes (P < 0.05), these were 
found to be mostly weak associations with the exception 
of TNF-α. These cytokines included plasma and BAL IL-
10(r2 = 0.41, P < 0.0001), IL-1β (r2 = 0.17, P = 0.04), IL-4 
(r2 = 0.32, P < 0.0001), IL-6 (r2 = 0.14, P = 0.002), IL-13 
(r2 = 0.54, P < 0.0001), IL-5 (r2 = 0.4, P = 0.001), and TNFα 
(r2 = 0.73, P < 0.0001) (Fig. 2B–G). There was no significant 
correlation observed for IL-8 or IL-17.

Correlations were identified between serum immuno-
globulins and plasma cytokines and within BAL levels of 
immunoglobulins and cytokines, but correlations did not 
exist within both compartments. Again, although these cor-
relations were statistically significant in terms of p value, the 
strength of most of the relationship was weak. Some of these 
correlations are highlighted in Supplementary Figures S1 
and S2.

Discussion

Research which advances the current understanding of the 
immunoglobulin and inflammatory profile within the BAL 
and serum of asthmatic patients, in particular, highlighting 
differences between local airway and systemic profiles, may 
offer real potential therapeutic insights. We therefore sought 
to interrogate and compare the immune response localized to 
the asthmatic airway with that observed systemically, with a 
particular reference to immunoglobulin profiling.

Overall, absolute immunoglobulin levels were higher 
in serum. This was not unanticipated and is potentially 
accounted for by the dilution effect which occurs as part of 
the nature of the BAL sampling process. However, several 
cytokine levels were higher in BAL samples (IL1β, IL-6, 
IL-8), while others were higher in plasma (IL-4, IL-13, 
IL-17, IL-10, and TNFα); therefore, the BAL dilution effect 
is not wholly responsible for varying levels. Instead, this 
probably represents the function of the mucosal, epithelia 
rich, airway site, and the natural distribution of immuno-
globulins. Our analysis detected 28% of IgE in BAL, while 
most other immunoglobulins were detected at 100%. We 
propose that this is not just due to dilution alone. To further 
investigate why 28% of patients had detectable IgE signals 
and the rest did not, we compared the groups and found 
that there was a significant difference in FEV1 values with 
a lower % predicted in those with a detectable IgE (mean 
80.6% v 68.5%, P = 0.03), there were more males and a 
greater proportion of ex-smokers in the IgE-detected group 
(52% v 18%). Therefore, the detection of IgE may reflect 
a more inflammatory clinical phenotype. Furthermore, in 
the IgE-detected group, there was a correlation between 
%eosinophils in BAL and serum eosinophils (P = 0.001, 
r = 0.69) and plasma IL-5 (P = 0.01, r = 0.55) levels which 
may further reflect this.
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Fig. 1   BAL and serum immunoglobulins. IgA, IgD, IgM, IgG1, 
IgG2, IgG3, and IgG4 (P < 0.0001) and IgE (P < 0.01) were found 
to have a significantly greater concentration in serum versus BAL 
fluid (A). Correlations were noted between serum IgA and BAL 
IgA (r2 = 0.14, P < 0.001) (B), serum IgM and BAL IgM (r2 = 0.25, 
P < 0.0001) (C), serum IgG2 and BAL IgG2 (r2 = 0.08, P < 0.02) (D), 

and serum IgG4 and BAL IgG4 (r2 = 0.33, P < 0.0001) (E) but not for 
IgD, IgE, IgG1, or IgG3 (not shown). Although, these correlations 
were statistically significant they were weak correlations as per the 
r2 value. N = 76. Statistical tests employed included Mann–Whitney, 
Pearson correlation, and linear regression analysis
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Fig. 2   BAL and plasma Cytokines. IL-8 (P < 0.0001), IL-1β 
(P = 0.002), and IL-6 (P = 0.0002) were present in greater quanti-
ties in BAL, while IL-17, IL-10, IL-13, IL-4, and TNF-α were sig-
nificantly greater in plasma (P < 0.0001) (A). No difference was 
noted for IL-5. Correlations were found between serum and BAL 
for some cytokines, including IL-10 (r2 = 0.41, P < 0.0001) (B), 
IL-13 (r2 = 0.54, P < 0.0001) (C), IL-5 (r2 = 04, P = 0.001) (D), 

IL-1β (r2 = 0.17, P = 0.04) (E), IL-4 (r2 = 0.32, P < 0.0001) (F), 
TNF-α (r2 = 0.73, P < 0.0001) (G), and IL-6 (r2 = 0.14, P = 0.002) 
(not shown). Although these relationships were statistically signifi-
cant, with the exception of TNF-α which demonstrates a strong cor-
relation, all other relationships were weak. A strong relationship was 
considered to be one where r2 > 0.65. N = 76. Statistical tests included 
Mann–Whitney, Pearson's correlation, and linear regression analysis
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Our study demonstrated weak relationships between BAL 
and serum levels of IgM, IgA, IgG2, and IgG4,(Fig. 1B–E), 
while no correlation was observed between airway and 
systemic levels of IgD, IgE, IgG1, and IgG3, suggesting 
systemic and local airway immunoglobulin levels are not 
fully in concordance. Furthermore, with the exception of 
TNF-α, weak relationships were also found between BAL 
and plasma levels of IL-10, IL-1β, IL-4, IL-5, IL-6, and 
IL-13 (Fig. 2B–G). Overall, the best predictor of the BAL 
analyte level was serum TNF-α with a coefficient of deter-
mination of 0.73 meaning that 73% of TNF-α BAL levels 
can be deduced from its serum levels. The same could not 
be said for any of the other analytes examined in this study. 
Treatment decisions, therefore, should be made with great 
caution when only serum immunoglobulin and cytokine 
levels other than those of TNF-α are available, as systemic 
and BAL levels of both immunoglobins and cytokines are 
not fully reflective of each other and measurements in one 
compartment may not be an accurate representation of the 
pathophysiology occurring in the other.

IgE is a potent monomeric immunoglobulin associated 
with hypersensitivity and allergic asthma and is the most 
clinically relevant of the immunoglobulins analyzed in our 
study [11]. IgE is a target of omalizumab, a humanized 
anti-IgE monoclonal antibody used to treat severe asthma 
[5]. The prescription of omalizumab is based on serum IgE 
levels which our data suggest may not be reflective of the 
airway inflammatory profile. Studies which have compared 
induced sputum levels of IgE to that of serum IgE have 
shown contradictory reports with some showing a correla-
tion between the two levels, while others have shown no 
correlation between the two compartments [19–22]. Further-
more, studies which use more invasive measures of airway 
sampling would suggest that IgE levels are higher in the 
airways which may indicate localized production of IgE not 
reflected in the serum [23]. Therefore, the use of serum IgE 
as a marker for commencing biological therapy in severe 
asthma may not be appropriate. In fact, these discrepancies 
may explain why some patients meeting the current clini-
cal criteria for treatment with omalizumab therapy fail to 
display a beneficial clinical response [24–26].

Our study highlights immunoglobulin variation is not 
only present between different individuals but also within 
individuals, with variation in immunoglobulin levels exist-
ing within the airway and systemically. The lack of an 
observed relationship between airway and systemic IgE is 
of clinical relevance to asthma, having possible implications 
for drug efficacy within an asthmatic cohort. As mentioned, 
important therapeutic interventions with omalizumab are 
made based on systemic rather than airway immunoglobu-
lin profiles. The response to this therapy is not universally 
positive. This suggests that such an approach for anti-IgE 
monoclonal therapy may not be optimal in all cases and that 

perhaps further defining the airway inflammatory profile 
may afford a more sophisticated, targeted, individualized 
approach to patient treatment with such agents. We believe 
that our findings may partly explain the clinical variation in 
response to omalizumab and given the costs associated with 
such treatment in ‘non-responders’ may justify further indi-
vidual patient profiling prior to prescription of these medi-
cations. We believe that studies assessing clinical response 
based on airway profiling, in addition to the current systemic 
profiling are now warranted.

Advantages and Limitations

There are some potential limitations to our study. The lack 
of correlation between serum and BAL IgE could possibly 
be because IgE was analyzed using an ImmunoCAP sys-
tem while the other immunoglobulins were analyzed with 
sandwich ELISA which slightly vary in target detection. 
Furthermore, only 28% of samples had detectable BAL IgE 
levels compared with nearly 100% detection for other immu-
noglobulins, but we did explore this further and believe it 
may reflect a group of patients with elevated inflammation 
within the airways. Dilution because of BAL sampling may 
also have affected results when compared to serum levels of 
immunoglobulins, but this was not the case with cytokine 
levels. However, our study has several strengths. We have 
a large patient number of clinically well-defined asthma 
patients. Furthermore, both BAL and blood samples were 
acquired on the same day and analyzed in a similar man-
ner to minimize potential confounders. We acknowledge 
that bronchoscopy may not be viable in all centers or in all 
patients who are being screened prior to starting monoclo-
nal therapy; however, studies on the relationship between 
sputum and blood IgE have been contradictory [19–22]. 
Bronchoscopy offers an advantage in that it allows for visual 
inspection and guarantees sample acquisition to fully pheno-
type patients prior to starting monoclonals.

Conclusion

Overall, our study highlights the importance of sample site 
when measuring and investigating immunoglobulins and 
inflammation and their potential pathophysiological roles 
in airway diseases, such as asthma. The decision to utilize 
monoclonal therapy in asthma is generally taken based on 
systemic evaluation of cytokine and immunoglobulin levels 
without clear sight of how such measurements relate to the 
local airway levels. Our research suggests that this approach 
may not always accurately reflect the processes driving the 
pathophysiology relevant to the disease, especially when 
extrapolating possible relationships to individual patients. 
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Furthermore, our observations may explain why some 
patients demonstrate a positive response to these targeted 
therapies, while others do not.

Supplementary Information  The online version contains supplemen-
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