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Abstract
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing 
diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management 
of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall 
disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.
Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular 
factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diag-
nosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities 
that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli 
such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon 
longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the 
pathogenesis of ATAA.
This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA 
and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM–VSMC network.
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Introduction

An ascending thoracic aortic aneurysm (ATAA) is a local-
ized dilation in the proximal segment of the aorta. Aortic 
aneurysms represent weakened areas within the aorta, pos-
ing a significant risk of tearing or rupturing and resulting 
in severe, potentially life-threatening internal bleeding. If 
left untreated, ATAA can lead to severe complications such 
as aortic dissection (ATAAD) and rupture, with mortality 
rates of 50% within 24 h, including 21% mortality in patients 
who arrived alive in the hospital (Fig. 1) [137]. Known 
risk factors for ATAA development include advanced 
age > 65 years, systemic hypertension, and male sex (Fig. 2) 
[40]. Indeed, ATAA is diagnosed more frequently in men, 
which also is reflected in 70% of individuals with ATAAD 
[152]. On the contrary, ATAA severity has been indicated 
to be worse in women compared to men with faster aneu-
rysm growth [32] and increased in-hospital mortality rates 
[134]. The estimated incidence of ATAA ranges from 5–10 

per 100,000 individuals/year [37, 156], with a currently 
increasing trend [107]. Compared to abdominal aortic aneu-
rysm (AAA), ATAA exhibits different flow patterns [176], 
regional variations [185], and developmental origins [193].

Notably, prophylactic treatment options of ATAA are lim-
ited to aortic surgery in which a diameter threshold of 5.5 cm 
and aortic diameter growth rate ≥ 0.3 cm/year are recognized 
as cut-off values [37]. However, it is recognized that most 
patients develop ATAAD before reaching these thresholds 
(Fig. 1) [75, 161, 163].

Therefore, clinical biomarkers, representing early detec-
tion of patients at risk of ATAAD are highly anticipated. 
From an etiological point of view, less than 30% of all ATAA 
cases are genetically triggered, and thus more than 70% are 
sporadic or degenerative [35]. It is tempting to speculate that 
unknown (epi)genetic factors play a key role in initiating and 
progressing degenerative ATAA.

In patients with bicuspid aortic valves (BAV) or genetic 
mutations, ATAA is more commonly observed at a younger 
age [198]. Heritable ATAA has been associated with over 15 
genes, including those encoding ECM-proteins such as fibril-
lin 1 (FBN1), type III collagen (COL3A1), or transforming 
growth factor-β (TGF-β) receptor proteins such as TGFBR1 
and TGFBR2 [204]. It also involves VSMC proteins such as 
smooth muscle cell actin (ACTA2), myosin heavy chain 11 
(MYH11), myosin light chain kinases (MYLK), and protein 
kinase cGMP-dependent type 1 (PRKG1) [159].

Furthermore, arteries are exposed to wall shear stress 
(WSS), which is induced by blood flow and exerted at the 
valvular and vascular endothelial layers [10]. Unequal distri-
bution of WSS at the outer curvature of the ascending aorta 
has been associated with degenerative ATAA [171]. Blood 
pressure also exerts a key hemodynamic influence, i.e., wall 
stress, on the integrity of aortic wall tissue [61].

In the medial layer, vascular smooth muscle cells (VSMC) 
play an important role in vascular remodeling, exhibiting 
characteristic plasticity to adapt to changing flow and pres-
sure conditions, e.g., by switching between a contractile and 
a synthetic phenotype [177]. VSMCs are further supported 
by the extracellular matrix (ECM) which plays a crucial 
role in regulating mechanical behavior and resilience, pro-
viding elasticity, and imparting arterial wall strength [2]. 
Once the ECM–VSMC network is disrupted, mechanosens-
ing and mechano-signaling are impaired, leading to VSMC 
phenotype switching [153]. A compromised structure and 
function of the ECM leads to mechanical abnormalities and 
functional changes at the tissue level associated with aor-
tic disease [208]. Progressive loss of arterial wall strength 
eventually culminates in the development of ATAA and even 
ATAAD.

There is an urgent need to identify novel biomarkers to 
screen patients at high-risk for ATAAD. Here, we summa-
rize the current literature on the pathophysiology of ATAA 
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and ATAAD with a focus on ECM–VSMC dysfunction. We 
highlight gaps in current diagnostic approaches, as well as 
recommend potential clinical biomarkers that may contrib-
ute to advancing our understanding of the development of 
early-stage ATAA, ultimately to predict and prevent morbid-
ity and mortality associated with ATAAD.

Challenges in clinical management

In clinical practice, the characterization of ATAA is pre-
dominantly confined to diameter measurements. The aortic 
diameter is the principal decision-making criterion for surgi-
cal intervention within the Multidisciplinary Aortic Team. 
According to the latest clinical guidelines (EACTS/STS) for 
aortic diseases published in 2024, surgical replacement of 
the aorta is recommended when the aortic diameter is greater 
than 5.5 cm [37]. In high-risk patients with the presence of 

connective tissue disorders (e.g., Marfan or Loeys-Dietz), 
earlier intervention is recommended (≥ 4.5 cm). Patients 
with low-risk are monitored by imaging every year for 
timely detection of the surgical threshold (Fig. 1). How-
ever, up to 96% of ATAAD occurs in vessels with diameters 
below the surgical interventional threshold (< 5.5 cm) and 
60% of ATAAD occurs in aortas with normal diameters 
(< 4 cm) [180]. Also, most patients with ascending aortic 
aneurysms of > 4 cm show little to no further growth during 
annual follow-up [1]. This is a major unmet clinical chal-
lenge for cardiologists and cardiac surgeons in assessing and 
managing ATAA.

Recently, several new parameters such as aortic elonga-
tion and aortic volume have been identified as potentially 
important predictors of ATAAD [74, 87]. Although these 
parameters alongside other morphologic characteristics of 
the vasculature such as the vertebral artery tortuosity show 
promising results [147], they still represent patients at a 

Fig. 1  Central illustration: Development of Precision Medicine 
in Thoracic Aortic Diseases gives a summary of the current clinical 
patient screening management based on diameter threshold (including 
the risk of aneurysm and rupture) and the proposed screening man-

agement with the use of clinical biomarkers as an add-in to imaging 
modalities to prevent invasive surgical repair and high-risk of mortal-
ity
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later stage of disease development and earlier detection of 
patients at risk requires a holistic approach implementing 
multi-scale analysis including vessel wall characterization.

In recent years, imaging modalities such as computed 
tomography (CT) combined with positron emission tomog-
raphy (PET), using fluorodeoxyglucose (18F-FDG) or 
18F-sodium fluoride (18F-NaF) administration provide 
geometrical, molecular, and functional information of aor-
tic disease [56]. Several studies showed promising results 
regarding aortitis [80, 81], aneurysm growth and future 
clinical events [103], atherosclerosis [179], and detecting 
malignant tumors of the aorta [199]. Photon Counting-CT 
is another promising technique, which is still in clinical trial, 
yet has proven its clinical value regarding improved spatial 
resolution, and optimized spectral imaging [221]. Further-
more, this method offers precise tissue characterization and 
improved perfusion imaging while minimizing radiation 
exposure.

Blood-flow characteristics play a key role in ATAA 
formation, with effects on endothelial cell (EC) homeo-
stasis and the response of VSMCs. Therefore, a func-
tional assessment of detailed hemodynamic measure-
ments is required to investigate flow characteristics and 
biomechanical forces. Four-dimensional flow magnetic 
resonance imaging (4D)-flow MRI, where phase-contrast 
methods are used to encode blood flow velocities along 
all dimensions in the aorta [42, 110], has been introduced 

as a powerful non-invasive technique in cardiovascular 
imaging for the assessment of local WSS [30]. WSS, 
which refers to the force per unit area exerted by moving 
fluid in the vessel, can be estimated as a product of wall 
shear rate (WSR) and local blood viscosity. Yet, it has 
not been validated as a clinical screening tool. One of the 
limitations of 4D flow MRI is insufficient spatial resolu-
tion which may underestimate WSS values and affect the 
accuracy of flow patterns [86]. Broader application of 4D 
flow MRI has been impeded by long scan times, costs, and 
data processing and analysis requiring special software. 
These obstacles hinder both reproducibility and clinical 
application [131]. Nevertheless, some longitudinal studies 
showed that 4D flow MRI can be used as a predictive tool 
to distinguish low and high WSS in ATAA patients with 
BAV [14, 20, 67, 144] or without BAV [171] compared to 
healthy volunteers.

Recently, the left ventricular outflow tract angle (LVOT-
angle) has been a region of interest in ATAA pathology. 
Aortas less aligned to the axis of the heart were associated 
with ATAA [97]. Another study showed a positive corre-
lation between LVOT-aortic angle and WSS on the outer 
curvature, indicating that increased LVOT-aortic angles 
(> 58.5º) were linked to elevated levels of WSS [184]. 
Geometrical biomarkers combined with flow patterns may 
improve the prediction of ATAA at risk or those who need 
an earlier intervention.

Fig. 2  Schematic overview 
of major clinical risk factors 
in ATAA. Besides genetic 
syndromes, connective tissue 
disease, and bicuspid aortic 
valve morphology, these include 
hypertension, smoking, male 
sex, age, and COPD
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Pathophysiology

VSMC phenotypic switching in ATAA 

In the adult arterial vessel wall, VSMCs are present in both 
the contractile and synthetic phenotype. Contractile 
VSMCs are connected via integrins to the ECM and are 
in a quiescent, non-proliferative state and facilitate con-
traction and dilation of resistance vessels and microvas-
culature, thereby regulating blood flow [160]. Contrac-
tile phenotype markers include smooth muscle-myosin 
heavy chain 11 (MYH11), calponin, smooth muscle-22 α 
(SM22α), and α‐smooth muscle actin (ACTA2) (Table 1). 
After VSMCs are released from the ECM, integrins trig-
ger intracellular signaling and regulate VSMC phenotypic 
switching from “contractile” to “synthetic” phenotype. 
Synthetic VSMCs are characterized by reduced expres-
sion of contractile markers (Table 1) [57], and increased 
production of matrix metalloproteinase (MMP) thereby 
shifting the balance towards cell migration and ECM 
remodeling [27]. This transition of VSMCs toward syn-
thetic phenotype can be assessed by integrin detection by 

flow cytometry, immunocytochemistry, and immunopre-
cipitation [88, 194].

In larger and so-deemed ‘elastic’ arteries and especially 
in the aorta, the precise role and relevance of the contractile 
phenotype and contractile responses to mechanical vessel 
wall stress and biomechanical stretch are not fully under-
stood. Notably varying sites of the aorta are derived devel-
opmentally from different embryonic origins. VSMCs of the 
aortic root are predominantly derived from the lateral meso-
derm. In contrast, VSMCs of the aortic arch are derived from 
the neural crest, and the descending aorta VSMCs originate 
from the paraxial mesoderm (Fig. 3) [193]. Notwithstanding 
there is overlap in the descending aorta wherein spatially 
distinct domains, have been noted by lineage fate tracing in 
mice [186]. However, the use of lineage-specific differentia-
tion to VSMCs from human-induced pluripotent stem cells 
(hiPSCs) has yielded distinct cellular phenotypes suggesting 
lateral mesoderm malformations correlating to root dilation 
in Loeys-Dietz and neural crest VSMCs in Marfan associ-
ated ATAA [65, 234].

Disruption of homeostasis for vascular repair may result 
in a key role of VSMCs contributing to vascular pathology. 
Owens and colleagues showed that the high plasticity of 
VSMCs facilitates phenotypic switching towards synthetic 

Table 1  Characteristics of widely used protein markers for VSMCs, distinguishing between contractile and synthetic phenotypes

(h) High molecular weight; ( +) present;( -) reduced;( -/mut) reduced or mutation; NA no conclusive evidence

Protein marker Gene code Subcellular locali-
zation

Function VSMC Phenotype 
specificity

Expression in 
ATAAExpression 
in ATAA 

Ref

Contractile Synthetic (± /mut)

α-smooth muscle 
actin

ACTA2 Contractile fila-
ments

Cellular contraction  + - −/mut Guo et al., 2007
Gillis et al., 2013
Branchetti et al., 

2013
Smooth muscle-

myosin heavy 
chain

MYH11 Contractile fila-
ments

Cellular contraction  + - −/mut Zhu et al., [235] Gil-
lis et al., 2013

Smooth Muscle 
22α

SM22α Actin-associated Cellular contraction  + - - Ignatieva et al., 2017

SM-calponin CNN Actin-associated/
cytoskeleton

Cellular contrac-
tion/

signal transduction

 + - - Grewal et al., 2014

Smoothelin (B) SMTN Actin-associated Cellular contraction  + - - Grewal et al., 2014
Branchetti et al., 

2013
h-Calmodulin CALM Cytoplasm/nucleus Cellular contraction  + - −/mut Wang, et al. 2010
h-caldesmon h-CD Actin-associated Cellular contraction -  + NA
Vimentin VIM Actin-associated/

cytoskeleton
Cellular contraction -  +  + Branchetti et al., 

2013
S100 calcium-bind-

ing protein A4
S100A4 Cytoplasm/nucleus Cellular prolifera-

tion
-  +  + Cao et al., 2013

Osteopontin OPN Nucleus Cellular prolifera-
tion

-  +  + An et al., 2017



376 Basic Research in Cardiology (2024) 119:371–395

VSMCs to adapt to environmental stress [160]. Furthermore, 
it has been shown in a co-culture model of ECs-VSMCs, 
that altered flow on ECs already induces a synthetic VSMC 
phenotype [183]. Also, the local inflammatory cascade can 
induce a phenotypic switch of VSMCs and transform them 
into synthetic VSMCs with fibroblast-like characteristics 
[195]. This phenotypic transition often leads to an increase 
in MMP production [192].

The impact of aberrant wall shear stress 
on mechanotransduction

Mechanobiology implies that cellular mechanosensing and 
ECM regulation are critical for maintaining mechanical 
homeostasis and proper vascular function [80]. Mecha-
notransduction is the biochemical process through which 
ECs and VSMCs convert mechanical stimuli through the 
cytoskeleton, leading to intracellular responses and extra-
cellular changes [166]. In addition, EC integrins play a cru-
cial role in the mechanotransduction of VSMC contractility 
[151].

Shear stress activates EC integrins by switching them to 
an active conformation, thereby increasing affinity to ECM 
proteins [220]. During systole, ECs, and VSMCs experience 
both longitudinal and circumferential mechanical deforma-
tion (‘strain’). The disruption of elastin-VSMC connections 
plays a critical role in aneurysm formation, not only by dam-
aging the structural integrity of the aortic wall but also by 
altering cellular processes such as mechanotransduction and 
cytoskeletal remodeling of VSMCs [241]. ECs regulate these 
processes by activating mechanosensors, including vascular 
endothelial growth factor receptor 2 (VEGFR2), vascular 
endothelial-cadherin (VE-cadherin), and platelet EC adhe-
sion molecule (PECAM-1) [232]. It has been demonstrated 

that ECs derived from the aortic wall of an aneurysm pre-
sent decreased levels of VE-cadherin, von Willebrand factor 
(vWF), and PECAM-1 [134]. These decreased levels disrupt 
mechanotransduction and induce macrophage infiltration in 
the media and adventitia through nuclear factor-kB NF-κB 
activation [190, 200].

Different studies on BAV patients with ATAA have con-
firmed increased WSS in the greater curvature of the ascend-
ing aorta [45, 46]. In this greater curvature region, there was 
evidence of increased medial degeneration with reduced col-
lagen type I and III and increased VSMC apoptosis [45, 46]. 
Moreover, it has been demonstrated that the WSS effect on 
media degeneration and VSMC phenotype change (express-
ing synthetic marker MYH10) has been shown in ATAA 
patient samples [102]. High WSS is a frictional force at the 
EC surface produced by blood flow which induces impaired 
mechanotransduction leading to vascular remodeling and 
potentially ATAA formation [192]. The initial sensing event 
and transduction of the mechano-signaling pathway are as 
follows: under constant laminar flow, the mechanosome is 
quiescent and inactive. However, when shear stress changes, 
the mechanosome consisting of PECAM-1, VEGFR2, and 
VE-cadherin triggers the activation of NOX2 and eNOS, 
resulting in the release of ROS and NO [31]. In addition, 
increased WSS corresponded with changes in the ascend-
ing aorta using pre-operative WSS mapping [71]. Here, 
increased elastin degradation in regions of high WSS, as 
well as increased TGF-β1 and MMP-1, MMP-2, and MMP-3 
were reported [71].

However, the relation between WSS and gene expres-
sion, and protein synthesis remains unclear and needs fur-
ther investigation. Such information is key for fundamental 
research on shear stress–mechanotransduction mechanisms. 
Clinically, it could aid in explaining why certain patients 

Fig. 3  Regional heterogeneity and embryological diversity within human aorta: LM lateral mesoderm (green, located in aortic root), NC neural 
crest (pink, located in ascending/arch), PM paraxial mesoderm (red, located in descending aorta)
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with an aortic diameter below the current intervention cri-
teria still develop acute aortic complications.

ECM degradation

The major histopathological features associated with ATAA 
are abnormalities of cellular and matrix constituents of the 
media. These include elastin degradation and fragmenta-
tion, collagen disorganization, and loss of VSMC number 
[132]. In addition, mucoid ECM accumulation is a com-
mon pathologic finding in TAA and can serve as a marker 
for ECM degradation [72]. Furthermore, elastic fiber frag-
mentation has been reported to be greatest in the proximal 
aneurysmal ascending aorta compared to the middle or distal 
regions [197]. Furthermore, fibulin-4 (Fbln4), a component 
of elastic fibers essential for maintaining aortic wall integ-
rity has been implicated in aneurysm formation. Loss of 
Fbln4 was associated with significantly upregulated levels 
of thrombospondin-1 (Thbs1), a homotrimeric glycoprotein 
[227]. Fhbs4 expression is induced by mechanical stretch 
resulting in disruption of elastin-VSMC connections and 
decreased mechanosensing. Under physiologic conditions, 
VSMCs maintain ECM homeostasis by a balanced secretion 
of MMPs and their inhibitors TIMPs to maintain a load-
bearing mechanical state.

The disturbed balance between TIMPs/MMPs

In ATAA, dysfunction of VSMCs causes an imbalance 
between the production of active MMPs [219], especially 
MMP-2 and MMP-9 [83, 123], and a decreased expression 
of TIMPs, mainly TIMP-1[6]. Other proteolytic enzymes 
have also been found to modulate both ECM and VSMC 
function in ATAA, such as A-disintegrin metalloproteinase 
(ADAMTS-1, ADAMTS-4) [172]. Recent data have dem-
onstrated that MMP-1, -2, -3, -9, -12, and -13 play roles 
in the progression of ATAA [111, 114, 169, 216]. Specifi-
cally, MMP-2 and MMP-9 are known to degrade collagen 
fragments and MMP-2, MMP-9, and MMP-12 elastin frag-
ments [122]. This, in turn, facilitates the disengagement of 
VSMCs resulting in aortic tissue remodeling [4, 139, 177, 
181]. In a mouse model deficient in MMP-2, ANG-II infu-
sion resulted in exacerbated ATAA. The same study unveils 
the dual role of MMP-2 in both degrading and synthesizing 
ECM, showcasing its multifaceted role in tissue remodeling 
[191]. Nevertheless, MMPs and TIMPs are widely distrib-
uted throughout physiologic processes in different organs, 
suggesting that MMP and TIMP blood levels may not rep-
resent reliable biomarkers to correlate with aortic aneurysm 
levels.

In individuals with BAVs, MMP-2 levels are higher com-
pared to those with TAVs. However, MMP-13 levels in TAV 
samples are significantly higher than in BAVs [84]. MMP-13 

is a member of the collagenase subgroup within the MMP 
family, and previous studies have shown its upregulation 
in both human AAA [130, 206] and ATAAD [232] tissues. 
MMP-13 is primarily synthesized by VSMCs present in the 
aortic wall [130] triggered by JNK, ERK, and p38 kinases of 
the MAPK family. It not only degrades elements of the aortic 
collagen network, such as type I and III collagen [34], but 
also proteins within the elastic fiber networks, such as fibril-
lin 1[9], fibronectin [196], and decorin. This degradation has 
a significant impact on the structure of the ECM, potentially 
contributing to the growth and dissection of the aorta. A 
separate study provided initial evidence indicating that the 
collagenase MMP-13 contributes to aneurysm development 
in mouse models of Marfan syndrome. Pharmaceutical inhi-
bition of MMP-13 in Fbn1 GT8 Marfan mice effectively 
prevents aortic root dilatation, underling the relevance of 
MMP-13 as a potential therapeutic target for managing aor-
tic aneurysms [237].

In ATAA, a decrease in the elastin-to-collagen (ELN/
COL) ratio is associated with increased aortic stiffness 
[108]. Typically, the ELN/COL ratio in the media of healthy 
aorta is some 1.7–1.9, whereas in the media of ATAA aortas, 
ELN/COL ratios are as low as 0.83–0.81 [223]. Increased 
collagen expression in the vasculature is most likely a com-
pensatory response to elastin degradation and thus vascular 
remodeling [19] which results in the thickening of the arte-
rial wall and increased vascular stiffness [78, 236].

Vascular calcification in ATAA 

Vascular calcification has been suggested as a potential 
measure strongly associated with atherosclerosis [190], 
ATAA, and AAA [13]. It has been reported that ATAA 
patients develop extensive medial calcification associated 
with a phenotypic switch of VSMCs into osteoblastic-like- 
cells therefore creating a pro-calcifying environment [151, 
224]. There is emerging evidence indicating that Krüppel-
like factor 4 (KLF4), a potent tumor repressor, regulates 
the transition of VSMCs into osteogenic phenotypes in both 
murine and humans [5]. Initial calcifications, often referred 
to as micro-calcifications, typically measure less than 50 μm 
in size [98] and primarily originate from extracellular vesi-
cles of osteochondrogenic VSMCs [89]. Increased medial 
micro-calcification was associated with mild and moder-
ate histopathological degeneration (mild/moderate elastin 
fragmentation) [53]. Instead, patients with severe histo-
pathological degeneration (severe elastin fragmentation), 
exhibited reduced medial micro-calcification [53]. This 
mechanism relies on intact elastin fibers for the deposition 
of micro-calcification.

In the early stage of the disease, micro-calcification can 
be measured ex vivo by the expression of osteogenic VSMC 
markers alkaline phosphatase (AP) and osteopontin (OP), or 
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in vivo using 18F-sodium fluoride autoradiography (18F-
NaF) [53]. The deposition of micro-calcification in com-
bination with the local fragmentation of elastin fibers is 
associated with an increased risk of aortic wall rupture, as 
a result of stiffened regions of the soft ECM in the vessel 
wall [53, 220].

Matrix Gla-protein (MGP) is an inhibitor of medial 
micro-calcification that is widely recognized for its impor-
tance. It is predominantly secreted by VSMCs and is a vita-
min K-dependent protein (VKDP). For MGP to become 
biologically active, it must undergo post-translational 
modification via vitamin K-dependent carboxylation by 
the enzyme gamma-glutamyl carboxylase (GGCX) [21]. 
Oral anticoagulation or a deficiency in vitamin K can result 
in inactive MGP. This is indicated by increased levels of 
dephosphorylated undercarboxylated MGP (dp-ucMGP) in 
the circulation. It should be noted that dp-ucMGP is a bio-
marker of vitamin K status and has been related to vascular 
calcification [91]. In humans, MGP deficiency is known 
as Keutel Syndrome, a genetic condition characterized by 
soft tissue calcification [79]. It has been demonstrated that 
MGP deficiency in humans may exhibit a gradual onset of 
calcification in both arteries [91] and heart valves [29]. Fur-
ther, there appears to be a correlation between MGP defi-
ciency and elastin calcification [188]. This data indicates 
a link between impaired carboxylation of MGP and the 
development of calcification starting around elastin fibers 
in the tunica media of patients who underwent percutane-
ous coronary intervention. It also implies the crucial role of 
vitamin K in activating MGP to effectively prevent vascular 
calcification.

Regulatory pathways

Arterial remodeling modulated by TGF‑β signaling

Various molecular pathways involved in the synthesis of 
the ECM exhibit alterations in ATAA. This is evident for 
example through the upregulation of fibrogenic growth fac-
tors like TGF-β, platelet-derived growth factors (PDGF), and 
connective tissue growth factor (CTGF) [77, 95, 174]. Plate-
let-derived growth factor-BB (PDGF-BB) and TGF-β serve 
as pivotal mediators in VSMC phenotypic switching [27, 
214, 235]. For example, it has been reported that in Marfan 
syndrome, an increased expression of TGF-β in VSMCs, 
results in the activation of SMAD3 and Erk signaling con-
tributing to aneurysm progression [149, 229]. Other factors 
that alter the aortic wall integrity include angiogenic factors 
including angiopoietin-1, angiopoietin-2, thrombospondin-1, 
and fibroblast growth factor-1 [100].

Activation of TGF-β can be triggered by multiple factors, 
such as thrombospondin [187], and reactive oxygen species 

(ROS) [51, 120]. Increased expression of TGF-β in VSMCs 
of patients with Marfan syndrome has been associated with 
increases in ROS production [93, 229]. In addition, TGF-β 
activation occurs through the proteolytic degradation of the 
latent TGF-β complex by MMP-2 and MMP-9. Also, integ-
rin αV can activate TGF-β1 by establishing a close connec-
tion between the latent TGF-β complex and MMPs [222, 
230]. It thus appears that TGF-β1 induces VSMC senescence 
via ROS-mediated activation of NF-κB signaling, potentially 
contributing to aneurysm formation in Marfan patients.

Another pathway involved in TGF-β signaling is the 
PRKG1 which regulates VSMC relaxation through type I 
cGMP-dependent protein kinase (PKG-1) [69]. In ATAA, 
the impaired PRKG1 pathway inhibits Rho-associated pro-
tein kinase (ROCK), ensuring the myosin light chain remains 
in a relaxed state and leading to a reduction in VSMC con-
tractility [202].

Moreover, SMAD3 is a critical transcription factor in 
the TGF-β signaling pathway, regulating VSMC differ-
entiation and matrix deposition. Heterozygous SMAD3 
mutations increase the risk of aortic root aneurysms, which 
may progress to type A aortic dissections without surgical 
intervention [62]. Hence, TGF-β through SMAD3 signal-
ing stimulates the proliferation and differentiation of neu-
ral crest-derived VSMCs in the ascending aorta [207]. 
Patients with Loeys–Dietz syndrome (LDS) are character-
ized by mutations in genes encoding for TGF-β receptors 
1 and 2 [214]. In patients with LDS, increased secretion of 
TGF-β ligands activates TGFBR1/TGFBR2 complexes and 
enhances TGF-β signaling [60]. In vitro, VSMC explants 
from patients with heterozygous mutations in TGFBR2 
showed decreased expression of VSMC contractile proteins 
and displayed a synthetic VSMC phenotype [85]. Further, 
in human ATAAD genetic variants in SMAD4, a second-
ary messenger of the TGF-β pathway, correlate with VSMC 
apoptosis, reduced contractile markers, and ECM degrada-
tion [49].

Down‑regulation of YAP in response to mechanical 
stress

Involvement of the Hippo pathway in ATAA has been sel-
dom reported, which is surprising due to the pivotal role of 
mechanobiological processes in aneurysm formation. The 
Hippo/Yes Associated Protein (YAP) signaling pathway is a 
highly evolutionary conserved mechanism with a central role 
in regeneration, proliferation, migration, and cell fate biol-
ogy [59]. By initiating a cascade of several kinases, YAP, 
and its WW-domain-containing transcription regulator 1 
(WWTR1; also known as and hereafter referred to as TAZ) 
are controlled in mammalian cells. Diverse upstream biome-
chanical and mechanobiological cues, such as WSS, vascular 
stiffness, or hypertrophic responses, regulate the Hippo/YAP 
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signaling pathway which results in a dynamic interaction 
between vascular cells and their surrounding ECM [73]. 
YAP was identified as a key transcription factor in a mouse 
model, driving a pivotal adaptive response mechanism that 
appeared to be critical for maintaining aortic homeostasis 
and preventing ATAAD in mice [231]. This study demon-
strates that YAP signaling plays a crucial role in the vascular 
remodeling of aneurysmal specimens, as evidenced by the 
elevated medial thickness, indicating an adaptive response 
to increased wall stress.

Mechanical stress-induced YAP down-regulation has 
been reported in human aortic samples from patients with 
type A aortic dissection [116]. The induced aortic stress ini-
tiated a YAP nuclear translocation which led to the protec-
tion of the aorta from medial degeneration and the develop-
ment of aneurysm and dissection.

The Hippo/YAP pathway alters ECM production or deg-
radation and the growth, death, and migration of VSMC and 
endothelial cells, which contributes to vascular remodeling 
in aortic aneurysms. A similar phenomenon was observed 
in a mouse BAPN-induced Stanford type A aortic dissection 
model [92].

Via KEGG pathway identification, a series of different 
target genes and pathways were identified in human tissues 
linked to aneurysm formation, including the Hippo pathway 
[3, 23]. In line with the notion that Hippo’s transcriptional 
activator YAP and extracellular signal-regulated kinase 1/2 
(Erk1/2) activities are related, Bertrand et al. showed that 
impaired mechanotransduction results in a hyperinduction of 
mechanical stress, subsequently activating YAP and increas-
ing Erk1/2 signaling [17].

In addition, the Hippo pathway is a convergence point of 
cellular signaling with multiple major pathways, including 
Wnt/β-catenin, insulin-like growth factor (IGF), Phospho-
inositide 3-kinases—RACα serine/threonine-protein kinase 
(Pi3K-AKT), and mammalian target of rapamycin (mTOR) 
signaling [138]. The regulation of YAP through these 
diverse pathways may expand the known mechanisms of 
vascular remodeling regulated by the Hippo/YAP pathway.

Alteration in notch signaling

The notch signaling pathway in ATAA is not well-defined 
in patients. However, several in vitro investigations have 
illustrated the involvement of Jagged–Notch signaling 
in impaired mechanosensing, resulting in the initiation 
of phenotype switching and differentiation of VSMCs 
[121, 148]. This compromised Notch signaling has been 
observed in human tissues originating from both ATAA 
and ATAAD [128, 238]. The Notch pathway and Wnt sign-
aling are involved in vascular development and physiology 
and play a critical role in controlling phenotypic switch-
ing of VSMCs [11, 48, 119]. Through interactions with 

TGF-β [222] and PDGF [94], Notch signaling regulates 
the migration and differentiation of VSMCs. In addition, 
Wnt inhibitory factor-1 acts as an inhibitor, suppressing 
PDGF-BB-induced proliferation of VSMCs [209]. These 
pathways collectively contribute to the intricate regulation 
of VSMC behavior. Key mediators in this highly conserved 
pathway in ATAA are Notch 1, Notch 3, and Jagged 1 
(Fig. 4). Notch 1 and Notch 3 [64, 127] regulate the migra-
tion and proliferation of VSMCs in vascular injury models, 
and mutations in these receptors lead to defects in VSMC 
development [24, 118, 218].

There is supporting evidence indicating that the mecha-
nosensor Piezo1 plays a crucial role in responding to shear 
stress [28]. This response involves the activation of a disin-
tegrin and metalloproteinase domain-containing protein 10 
(ADAM10), ultimately leading to the cleavage of Notch1, 
which then translocates to the nucleus, initiating the tran-
scriptional activation of downstream targets [28]. These cel-
lular processes are crucial in maintaining vascular integrity 
and may be implicated in the context of ATAA where struc-
tural changes occur.

Importantly, Notch is severely affected by biomechanical 
stimulation, inhibiting VSMC proliferation, while increas-
ing apoptosis [148]. Although Notch is linked to vascular 
development, there is still no evidence of the precise mecha-
nisms involved during mechanosensitive cell cycle entry and 
phenotypic switching. Elucidation of mechanisms by which 
Notch exploits these processes is of critical importance for 
understanding both normal VSMC development as well as 
the underlying causes of significant human vascular condi-
tions such as ATAA. So far, the exact mechanism and more 
specifically the connection and enhancement/inhibition of 
pathways involved in mechanosensing and response underly-
ing vascular pathology and the interaction of the ECM with 
vascular cells in the context of ATAA remains elusive.

Identified genes in familial ATAA 

In recent years, major progress has been made in unraveling 
gene mutations as molecular markers for predisposition to 
ATAA. This has been by the identification of a variety of 
single nucleotide polymorphisms (SNPs) from genome-wide 
association studies (GWAS) suggestive of having a role in 
ATAA pathophysiology [165]. Also, genetic mutations in 
ATAA pathophysiology including systemic features are fre-
quently classified by clinicians as a syndromic disease with 
clear connective tissue anomalies [129]. In the absence of 
these features, gene mutations in ATAA are often described 
as causative of a monogenetic connective tissue disorder, 
affecting proteins encoding for VSMC contractile apparatus 
or ECM of the aortic wall (Table 2) [213].
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Genome‑wide association studies identifying SNPs 
in ATAA 

In the context of GWAS, various SNPs have been discov-
ered to be associated with either a decreased or elevated 
risk of ATAA progression. In addition, several novel 
genes, including CD40 [36], ESR1 [233], COQB1 [109], 
ENTPD1, PDLIM5 (PDZ and LIM domain 5), ACTN4 
(alpha-actinin-4), and GLRX [33] have been identified in 
the context of ATAA.

The association of ESR1 with CD8 + T-cells has been 
identified as a positive correlate with ATAA [233]. However, 
exploring the reduced inflammatory pathogenesis in ATAA 
requires additional investigation. The mechanistic involve-
ment of COQB1 in the association with ATAA is explained 
by the negative feedback of rs386542, which elevates 
COQB1 expression. This increase in COQB1 expression 
leads to heightened VSMC metabolic activity, ultimately 
resulting in a decreased risk of ATAA [109].

The increased risk of developing ATAA has been linked 
to genetic loci, with several genes implicated in predispos-
ing to ATAA, including VKORC1, CTNNA3, FRMD6, MBP, 
TCF7L2, TGF-B2, and FBN1 [8, 82, 113, 178, 189, 212]. 

Further, the genetic loci of 9q21, 18q11, 15q21, and 2q35, 
have been identified as risk regions in ATAA. Interestingly 
FBN1, the predominate genetic source (including gene loci 
15q21) of Marfan syndrome has been identified by multiple 
studies on separate populations as strongly associated SNPs 
with ATAA progression and development [82, 113, 212].

GWAS has pinpointed various shared factors in the 
development of ATAA, whether involving VSMC or ECM 
roles. However, apart from FBN1, there has been limited 
subsequent exploration to reinforce earlier discoveries of the 
ATAA association. Notably, no GWAS has identified mark-
ers related to VSMC contractility as implicated in ATAA.

Mutations in genes encoding for the contractile 
apparatus of VSMCs

VSMCs consist of thin filaments such as α-actin (encoded 
by ACTA2) and thick filament myosin heavy chains 
(encoded by MYH11), connected by two essential light 
chains (LC) and regulatory light chains. Contraction of 
VSMCs is initiated by calcium-calmodulin complex (Ca-
CaM) and the force is generated by ATP-dependent cyclic 

Fig. 4  An overview of suggested intra- and intercellular mechano-
sensitive pathways involved in vascular homeostasis (black arrows) 
and pathologic condition in ATAA (red arrows). In impaired vascular 
homeostasis, intracellular pathways leading to nuclear translocation 
of Hippo pathway effector YAP inducing proliferation. Downregula-
tion of Notch1 and DLL1/4 proteins can have significant effects on 
cellular function and may impact various physiologic processes. 

When Notch1 and DLL1/4 proteins are downregulated, it can lead 
to reduced activation of Notch Intracellular Domain (NICD). In this 
scenario, the transcriptional repressor Hes1 fails to activate, which is 
pivotal for VSMC proliferation. Therefore, dysregulation of the Notch 
signaling pathway could potentially contribute to pathologic pro-
cesses involved in the development and progression of ATAA 
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interactions between isoforms of α-actin and myosin 
heavy chain [143]. The impact of ACTA2 mutations on 
α-actin function was studied using in vitro assays [124]. 
Mutant α-actin showed functional defects, such as dis-
rupted force generation and defective contractile VSMC 
function [68, 124, 146]. Besides ACTA2 mutations, also 
MYH11 mutations have been shown to disrupt cyclic inter-
action, which is predisposed in ATAA [172, 235]. Interest-
ingly, increased expression of MYH11 increases the risk 
of ATAAD by approximately tenfold [105]. Mutations in 
the genes ACTA2 and MYH11 are the two most common 
mutations causing familial ATAAD. However, heterozy-
gous loss-of-function mutations in myosin light chain 
kinase (MYLK) [217] and type I cGMP-dependent pro-
tein kinase (PRKG1) [69] have been reported in heritable 
ATAAD as well. Loss-of-function mutations in MYLK and 
PRKG1 disrupt kinase binding to calmodulin (CaM) and 
reduce kinase activity. Taken together, this demonstrates 
that proper VSMC-contractile function is critical for main-
taining the integrity of the thoracic aorta throughout life.

Mutations in genes encoding for ECM proteins

As mentioned above, the contractile apparatus of VSMCs 
binds microfibrils surrounding elastin fibers through 
focal adhesions on the cell surface of VSMCs. Fibrillin-1 
(encoded FBN1), a large glycoprotein, is the major protein 
in microfibrils. Heterozygous FBN1 mutations in the gene 
coding for this protein predispose to ATAAD in patients 
with Marfan syndrome [113, 182]. Moreover, the use of 
pluripotent stem cells to model various embryonic origins 
of VSMCs has revealed an inherent upregulation of FBN1 
expression in neural crest VSMCs that drives the incidence 
of ATAA in Marfan syndrome [65].

The role of FBN1 mutations in ATAA has been thor-
oughly investigated and confirmed that mutations in FBN1 
disrupt the structure and deposition of ECM microfibrils 
[76, 141]. It has been suspected that the aortic wall of Mar-
fan patients contains low levels of fibrillin-1, which cor-
responds with findings in undifferentiated VSMCs. [66] 
These findings have been confirmed in animal studies, where 
VSMCs from Marfan mice showed VSMC detachment 

Table 2  A Comprehensive overview of key genes in hereditary thoracic aortic aneurysm and dissection

a %- pathogenic variant: ( +) 1–25%; (+ +) 26–75%; (+ + +) 75–100%

Clinical grade HTAAD genes panel Protein %-patho-
genic 
 varianta

Syndrome

CAT A1/A2
definitive/
strong

ACTA2 Smooth muscle alpha 2 actin  +  +  + Multiple SMC dysfunction syndrome
COL3A1 Collagen alpha 1(III) chain  +  +  + Ehlers-Danlos syndrome type IV
FBN1 Fibrillin-1  +  +  + Marfan syndrome
SMAD3 SMAD family member 3  +  +  + Loeys-Dietz, aneurysms osteoarthritis 

syndrome
TGFβ2 Transforming growth factor beta-2  +  +  + Loeys-Dietz syndrome
TGFBR1 Transforming growth factor beta receptor 1  +  +  + Loeys-Dietz syndrome
MYH11 Smooth muscle-myosin heavy chain 11  +  +  + Familial aortic aneurysm
MYLK Myosin light chain kinase  +  +  + Familial aortic aneurysm
LOX Lysyl oxidase  +  + Not yet classified
PRKG1 Protein kinase, cGMP-dependent 1  +  + Familial aortic aneurysm
EFEMP2 Fibulin 4  +  + Cutis laxa type Ib

CAT B
moderate/
limited

ELN Tropoelastin  + Cutis laxa, Williams Syndrome
FBN2 Fibrillin-2  +  +  + Congenital contractural archnodactyly
FLNA Filamin A  +  + Periventricular nodular heterotopia
NOTCH1 Notch1  +  + BAV with aneurysm
SLC2A10 Glucose transporter protein type 10  +  +  + Arterial tortuosity syndrome
SMAD4 SMAD family member 4  +  + JP/HHT syndrome
SKI SKI proto-oncogene  +  +  + Shprintzen-Goldberg syndrome
TGFB3 Transforming growth factor beta-3  +  + Loeys-Dietz syndrome

Undetermined BGN Small leucine-rich proteoglycan  +  + Meester-loeys syndrome
FOXE3 Forkhead box E3  +  + Familial aortic aneurysm
MAT2A Methionine adenosyltransferase IIA  +  + Familial aortic aneurysm
MFAP2 Microfibril-associated protein 2  +  + Familial aortic aneurysm
SMAD2 SMAD family member 2  + Not yet classified
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from the ECM causing VSMC phenotypic switching [26] 
and impaired cytoskeleton and focal adhesion organization 
[213]. This is supportive of findings from the use of iPSC-
VSMCs derived from various lineages, wherein increased 
expression of FBN1 in neural crest VSMCs was found. In 
addition, it was reported that neural crest VSMCs of Marfan 
harboring mutations to FBN1 resulted in increased apopto-
sis compared to VSMC that had been FBN1 CRISPR cor-
rected as well as to wild-type neural crest VSMCs [65]. It 
is well known that these signaling pathways are involved in 
the proliferation, apoptosis, inflammation, and phenotypic 
switching of VSMCs. Besides FBN1, there are other genes 
known to affect the ECM with pathogenic outcomes, such as 
COL5A1/2, COL1A1, and COL1A2 in Ehlers–Danlos syn-
drome [38]. Furthermore, lysyl oxidase (LOX) mutations 
encoding for an enzyme aiding the cross-linking of collagen 
and elastin in the aortic wall may lead to ATAAD [112].

The role of aging

Aging is the biggest risk factor for impaired cardiovascular 
health, with cardiovascular disease being the cause of death 
in 40% of individuals over 65 years old. The remodeling of 
the human thoracic aorta correlates with aging [115, 140] 
and ATAA related to aging is often labeled as a degenera-
tive disease. As a main component of the vessel wall, elastin 
fulfills a key role in the remodeling process. Elastin content 
progressively decreases with a half-life of some 75 years in 
humans [203]. Several studies reported that with progress-
ing age, alterations in the quantity and quality of elastin and 
collagen cause a decrease in total arterial compliance [208, 
225]. Aging is associated with the destruction of interlami-
nar fibrillar elastic structures as well as a decreased amount 
of medial VSMCs [208]. This results in a reduction or loss 
of elastic and vasoactive function of the vascular system 
[58]. Loss of aortic elasticity is not only related to damage of 
elastin but also changes in collagen content. As individuals 
age, collagen type I remains consistently predominant, while 
the quantity of collagen type III declines gradually from the 
heart to the distal portion of the aorta [133].

Senescence-associated β-galactosidase (SA-β-Gal) activ-
ity is used as a tool for in vivo assessment of aging. The 
increase of SA-β-Gal is a result of increased lysosomal con-
tent, the expression of cyclin-dependent kinase inhibitors, 
the presence of DNA damage, or the presence of critically 
short telomere length [44, 63]. Telomere length provides a 
potential marker for an individual’s biologic age. Several 
studies suggested that telomerase plays a protective role in 
AAA [47] and ATAA [7]. Telomeres shortening, reduced 
telomerase function, and cellular senescence of VSMCs play 
a crucial role in the development of ATAAs. Significantly 
higher expressions of stress-induced senescence markers 

p16(INK4a) and p19(ARF) in telomerase-deficient mice 
were shown compared to wild-type mice [18]. Further, tel-
omere shortening in human blood leukocytes reveals its use 
as a potential biomarker for ATAA [12].

Other important macromolecules contributing to the 
pathogenesis of ATAAD, are glycosaminoglycans (GAGs) 
and proteoglycans (PG), fundamental contributors to the 
structure and function of the aortic wall. There is contra-
dictory data regarding changes in GAGs upon aging, most 
studies reported an increase in GAGs, often followed by 
a decrease upon further in an aging aorta [16, 154]. In 
ATAAD, multiple structural disruptions are reported as a 
result of localized GAG accumulation leading to increased 
interlamellar pressure [175]. Mitochondria also play an 
important role in aging. Tyrrell et al. demonstrated that 
with aging mitochondrial dysfunction may activate innate 
immune pathways including the TLR9, inflammasome, and 
STING pathways [210]. Recently, it was demonstrated in 
mice that the mitochondrial function of VSMCs is controlled 
by the ECM and drives the development of aortic aneurysms 
in Marfan syndrome [157].

Alteration in connective fibers within the aorta impairs 
the elastic recoil and reduces adhesive strength between the 
aortic wall layers. This may impair the functionality of aortic 
cells and subsequently lead to ATAA formation or aortic 
rupture in case pressure-induced wall stresses exceed this 
strength.

Sex differences

Sex differences play a significant role in the development, 
management, and clinical outcomes of aorta pathology. 
Biologically, women are protected against ATAA due to 
premenopausal levels of estrogen and therefore often pre-
sent with ATAA at an older age than men [150]. Although 
ATAA is less prevalent in women, a recent epidemiologic 
study demonstrates that women have a 40% increased risk 
of mortality [152] and a threefold increased risk of ATAAD 
or rupture compared to men [43]. Although heritable ATAA 
growth rates were similar, ATAA growth rates were over 
three-fold higher in women than in men with degenera-
tive ATAA [32]. These differences in sex etiology can be 
explained by anatomic differences such as aorta size and 
proportional dilation between genders. Despite the correc-
tion of aneurysm size to body size, acute aortic syndromes 
occur at smaller aneurysm sizes in women than in men 
with worse ATAA-related outcomes [55]. Thus, a smaller 
diameter of the aorta can progress more rapidly in women 
requiring close monitoring. In vitro and animal studies have 
indicated that estrogen can reduce collagen deposition and 
increase elastin in the aortic wall, potentially contributing 
to the prevention of TAA development [150, 168]. However, 
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during and after menopause women exhibit a greater aortic 
stiffening and impairment of elastic properties, which cor-
relates with declining levels of estrogen [215]. This may 
explain why women have a more progressed state of aortic 
disease and need to undergo surgery for ATAA at an older 
age [15].

Sporadic and genetic biomarkers in ATAA(D)

Sporadic or nonfamilial biomarkers

Matrix metalloproteinases

MMPs have emerged as valuable circulating markers for 
ATAA pathology. Studies have highlighted the significance 
of circulating MMP-1 and MMP-2 [162], MMP-3 [200], and 
MMP-9 [117] as potential indicators in assessing and moni-
toring ATAA. Specifically, circulating MMP-3 and insulin-
like growth factor binding protein 2 (IGFBP-2) have been 
associated with aortic diameter in patients with ATAA [200]. 
Following the acute phase of aortic dissection, there is an 
increase in circulating MMP-9 levels, with plasma MMP-9 
expression reaching its maximum approximately 2 weeks 
after the onset of symptoms [205]. In addition, increased 
expression of MMP-1, TIMP-1, and MMP-12 was positively 
associated with systolic WSS and TAWSS observed in the 
proximal ascending aorta (Table 3) [162], further underlin-
ing the importance of MMPs in assessing and monitoring 
aortic diseases. In the context of AAA, it is noteworthy 
that the administration of a pan-MMP inhibitor resulted 
in a slight exacerbation of aneurysm severity, in terms of 
aneurysm growth [136]. This suggests that the mechanism 
underlying MMPs and aneurysm formation/progression is 
complex and that a targeted approach may be required to 
effectively modulate MMPs in the context of AAA.

α‑1‑Antitrypsin protein

α1-Antitrypsin (A1AT) is a circulating serine proteinase 
inhibitor crucial for maintaining connective tissue integrity. 
A deficiency in A1AT is characterized by decreased levels, 
potentially leading to arterial wall degradation due to insuffi-
cient protection against the proteolytic effects of elastase and 
collagenase. Notably, heightened levels of MMP-9 have been 
identified in the vessel walls of aortic aneurysms, and these 
levels correlate with aortic diameter [126]. Researchers indi-
cate that A1AT may inhibit MMP-9 activity by deactivat-
ing elastase and restraining gelatinase B within neutrophils 
[90]. The first controlled study investigating the relationship 
between A1AT deficiency and ascending aortic diameter has 
recently been published [39]. In this study, serum A1AT 
levels in the aneurysmal group were approximately 9.5 times 

lower than those in the nonaneurysmal group [39]. The link 
between reduced A1AT levels and aortic aneurysm provides 
additional support for its significance in evaluating the risk 
of ATAAD (Table 3).

Proteoglycans

Plasma levels of aggrecan (ACAN), a multimodular proteo-
glycan (PG) protein, were significantly enhanced in plasma 
samples of ATAAD patients compared to samples from 
healthy patients [104]. Also, increased levels of PG) and 
glycosaminoglycan (GAG) were detected in the serum of 
ATAAD patients (Table 3) [170].

Desmosine (DES)and isodesmosine (IDES)

As the aorta contains elastin, novel biomarkers for thoracic 
aortopathies are potentially the breakdown products of elas-
tin: desmosine (DES) and isodesmosine (IDES), which are 
released in plasma, urine, or sputum [125]. Desmosine plays 
a pivotal role in cross-linking tropoelastin, offering valuable 
insights into disease mechanisms [54]. Researchers have 
investigated the use of desmosine as a biomarker to assess 
the extent of elastin degradation in the aorta, helping in the 
diagnosis and monitoring of aortic aneurysm progression 
[52, 145]. Elevated levels of DES in blood or urine samples 
may indicate increased elastin turnover, suggesting ongo-
ing damage to the aortic wall. DES and IDES have been 
previously associated with AAA size, risk of rupture [50, 
145, 211], and as a prognostic marker in acute myocardial 
infarction [5].

Interestingly, when combined with MRI, DES may enable 
the direct visualization of biologic processes at precise ana-
tomic sites. This has been demonstrated in a Marfan mouse 
model [155]. Currently, there is a lack of available data on 
DES/IDES in ATAA. The exploration of plasma DES con-
centrations in studies to predict dissection or rupture in tho-
racic aortopathy holds significant value (Table 3).

Microcalcification

An association has been identified between reduced levels of 
alpha-2-HS-glycoprotein (AHSG), also known as Fetuin-A, 
in human blood plasma, as determined through mass spec-
trometry-based proteomic analysis, and an increased risk of 
ATAA formation [99]. AHSG binds to calciprotein particles 
(CPPs), forming essential complexes for regulating mineral 
metabolism. This interaction is essential for stabilizing and 
facilitating the clearance of calcium and phosphate from the 
circulation [106].

Plasma AHSG concentrations can differentiate between 
patients with ATAA and healthy controls [99]. AHSG defi-
ciency is associated with inflammation and links vascular 
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calcification to mortality in patients on dialysis [101]. 
This suggests that it might be a promising bloodborne 
biomarker for early ATAA diagnosis. It is worth noting 
that during the vascular calcification process, VSMCs 
may undergo phenotypic changes from a synthetic state to 
a chondrogenic state, which may be accompanied by the 
release of EVs in the bloodstream [96]. Small extracellular 
vesicle-derived miR-574-5p was significantly up-regulated 
in the serum of patients with ATAA compared to the con-
trol, and this up-regulation was higher in patients with 
large aneurysms (> 49 mm) [22].

Furthermore, circulating dp-ucMGP has been associated 
with elastin degradation, although it has not been studied 
in the context of ATAA [164, 188]. Findings indicate that 
dp-ucMGP serves as a potential biomarker for identify-
ing individuals at risk of developing arterial and valvular 
calcification, suggesting its potential utility in the clinical 
assessment of diseases before their clinical manifestation. 
Although the association between dp-ucMGP and ATAAD 
remains unclear, it's worth noting that vitamin K defi-
ciency, as indicated by dp-ucMGP, correlates with circulat-
ing plasma DES and IDES levels in both CVD and COPD 

Table 3  Promising clinical biomarkers for predicting and monitoring the progression of ascending thoracic aortic aneurysm and dissection

MMP matrix metalloproteinases, TIMP Tissue inhibitors of metalloproteinases, A1AT Alpha1 Antitrypsin, ACAN Aggrecan, PG Proteogly-
can, GAG  Glycosaminoglycans, AHSG Alpha-2-HS-Glycoprotein; IL = interleukin, GDF-15 Growth differentiation factor 15, TLT-2 Triggering 
receptor expressed on myeloid cell-like transcript 2, ICAM1 Intercellular adhesion molecule-1, CCL5 C–C Motif Chemokine ligand 5, HBD1 
Human beta-defensin 1

Category Biomarker Disease Source Number 
of patients 
(n)

Relation between biomark-
ers and TAA/D

Author, year

Matrix metalloproteinases MMP-1 TAA Plasma 125 Upregulated,
(P = 0.031)

Pasta S et al. [162]

MMP-2 TAA Plasma 125 Upregulated,
(P = 0.020)

Pasta S et al.[162]; Sangiorgi G et al., 
2006

MMP-3 TAA Plasma 158 Upregulated,
(P = 0.019)

Thijssen CGE et al. [200]

MMP-9 TAA Serum 79 Upregulated,
(P < 0.05)

Li T et al., 2018; Sangiorgi G et al., 
2006; Maguire et al., 2019

TIMP-1 TAA Plasma 125 Upregulated Pasta S et al. [162]
Serine proteinase inhibitor A1AT TAA/

TAAD
Serum 51 Downregulated (P = 0.0016) Dako F et al. [39]

ECM degradation ACAN TAAD Plasma 33 Upregulated,
(p < 0.001)

König KC et al., [104]

PG TAAD Serum 24 Upregulated Rai P et al. [170]
GAG TAAD Serum 24 Upregulated

Microcalcification AHSG TAA/D Serum 14 downregulated,
(p = 0.0002)

Kazamia R et al. [99]

miR-574-5p TAA/D Serum 28 Upregulated,
(p < 0.001)

Boileau A et al., [22]

Inflammation IL-6 TAAD Plasma 158 Upregulated,
(p = 0.018)

Meccanici F et al. [135]

GDF-15 TAAD Plasma 158 Upregulated,
(p = 0.006)

Meccanici F et al. [135]

TLT-2 TAAD Plasma 158 Upregulated (P = 0.00042) Thijssen CGE et al. [200]
C18-ceramide TAAD Plasma 70 upregulated

(p < 0.001)
Yang H et al. [222]

IL-8 TAA Serum 52 Upregulated
(p < 0.0001)

Daskalopoulou A et al. [41]

ICAM1 TAA Serum 52 Upregulated
(p < 0.0001)

Daskalopoulou A et al. [41]

CCL5 TAA Serum 52 Upregulated
(p < 0.0001)

Daskalopoulou A et al. [41]

HBD1 TAA Serum 52 Upregulated
(p < 0.0001)

Daskalopoulou A et al. [41]
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[166]. This unexplored avenue presents an opportunity for 
further research to elucidate the potential implications of 
circulating dp-ucMGP in the context of ATAA, bridging 
the gap between vitamin K deficiency, vitamin K antagonist 
use, and elastin degradation. In addition, the conjugation 
of circulating dp-ucMGP with 18F-NaF PET presents the 
potential to develop a non-invasive imaging tool capable of 
precisely quantifying and colocalizing active micro-calci-
fication within the arterial wall. This innovative approach 
holds promise for advancing our understanding of micro-cal-
cification dynamics and its role in vascular health (Table 3).

Inflammation

Although the role of inflammation in ATAA is currently 
insufficient, several markers suggest activation of the innate 
immune system and the subsequent development of a low-
grade chronic inflammatory reaction, which may lead to the 
evolution of ATAA. In this cross-sectional study, the blood 
of 158 patients with ATAAD was analyzed, and several cir-
culating blood biomarkers were associated with the maximal 
thoracic aortic diameter estimated by CT-angiography or 
transthoracic echocardiography. The biomarkers that were 
found to be significantly associated with aortic size were 
primarily inflammatory markers IL-6 and GDF-15 [135]. 
Another study associated elevated levels of TLT-2 expressed 
in cells of the immune system [200] and IL-11[226] with 
ATAAD. Yang et al., demonstrated an increase in C18-cer-
amide in ATAAD, suggesting its role in aortic inflamma-
tion via association with NLRP3 in the NLR family [228]. 
Moreover, a novel comparison of a targeted proteomic 
approach has shown that patients with ATAA have increased 
serum levels of several inflammatory markers, such as IL-8, 
intracellular adhesion molecule-1 (ICAM1), C–C motif 
chemokine ligand 5 (CCL5), and human beta-defensin 1 
(HBD1) (Table 3) [41].

Genetic biomarkers

Over the last 2 decades, there has been an emergence of 
newly discovered causative genes and syndromes associ-
ated with subtle or even non-existent external phenotypes. 
Genetic heterogeneity of hereditary ATAAD has been estab-
lished by the ClinGen Aortopathy Working Group [173]. 
The genes were selected based on the published data and 
genes tested on clinical aortopathy gene panels that are 
currently available. Out of the 53 genes subjected to test-
ing, the following 11 genes were conclusively identified as 
having a definite association with heritable ATAAD, and 
are clinically actionable listed in highly penetrant risk cat-
egory (A1): ACTA2, COL3A1, FBN1, MYH11, SMAD3, 
TGF-B2, TGFBR1, TGTBR2, MYLK, LOX, PRKG1 [173]. 
These genes were identified over three years ago, and their 

association with ATAAD has been well-documented [25, 70, 
142]. These genes play a role in encoding proteins associ-
ated with contraction and adhesion of VSMCs to ECM. In 
additiony, they contribute to TGF-β signaling pathways and 
VSMC metabolism. Recently, novel genes have been discov-
ered. Tomida et al. [201] unveiled a previously overlooked 
mechanism connecting familial thoracic aortic aneurysm 
and dissection to impaired calcium ion uptake by MYH11, 
suggesting that elevating cytosolic Ca2 + levels could poten-
tially prevent ATAAD [201]. Two additional studies have 
reported evidence suggesting that specific genetic variation 
at the rs2118181 locus within the FBN1 gene may be associ-
ated with an increased risk of developing ATAAD (Table 3) 
[82, 113].

Future outlook

Significant progress has been made over the last decades 
in understanding the pathophysiology of ATAA. However, 
important gaps remain in the early detection of acute aortic 
pathologies such as ATAAD. The autopsy reports indicate 
that up to 25% of patients with ATAAD die before diagno-
sis [158], and these cases often involve younger individuals 
[167]. Relying solely on aortic diameter for risk assessment 
is inadequate to distinguish between different pathologic 
processes with varying risks of acute complications.

Most of the recent literature on ATAA focused on iden-
tifying circulating biomarkers to improve diagnosis. While 
these biomarkers show promising results, their isolated use 
may lack specificity in indicating disease progression due to 
their involvement in multiple processes throughout the body. 
Understanding the patient-specific cellular and molecular 
mechanisms and integrating complementary diagnostic tools 
by combining circulating biomarkers, with advanced imag-
ing tools, such as molecular imaging probes could enable 
direct visualization of biologic processes at specific ana-
tomic locations.

Further investigation emphasizes the need for more per-
sonalized strategies to improve risk assessment such as inte-
grating imaging data with genotypes and circulating bio-
markers to identify patients at high-risk and guide surgical 
decision-making.
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