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Prognostic subgroups of chronic 
pain patients using latent 
variable mixture modeling 
within a supervised machine 
learning framework
Xiang Zhao 1, Katharina Dannenberg 2, Dirk Repsilber 2, Björn Gerdle 3,5, 
Peter Molander 3,4 & Hugo Hesser 1,4*

The present study combined a supervised machine learning framework with an unsupervised method, 
finite mixture modeling, to identify prognostically meaningful subgroups of diverse chronic pain 
patients undergoing interdisciplinary treatment. Questionnaire data collected at pre-treatment and 
1-year follow up from 11,995 patients from the Swedish Quality Registry for Pain Rehabilitation were 
used. Indicators measuring pain characteristics, psychological aspects, and social functioning and 
general health status were used to form subgroups, and pain interference at follow-up was used for 
the selection and the performance evaluation of models. A nested cross-validation procedure was 
used for determining the number of classes (inner cross-validation) and the prediction accuracy of the 
selected model among unseen cases (outer cross-validation). A four-class solution was identified as the 
optimal model. Identified subgroups were separable on indicators, predictive of long-term outcomes, 
and related to background characteristics. Results are discussed in relation to previous clustering 
attempts of patients with diverse chronic pain conditions. Our analytical approach, as the first to 
combine mixture modeling with supervised, targeted learning, provides a promising framework 
that can be further extended and optimized for improving accurate prognosis in pain treatment and 
identifying clinically meaningful subgroups among chronic pain patients.
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Subgrouping of patients with chronic pain has been an enduring research topic as it provides information 
for clinical assessment, accurate prognosis, and personalized  healthcare1,2. The negative outcomes of chronic 
pain—pain that has lasted over three months—include disability, poor quality of life, and high health care 
 consumption3,4. Clinical characteristics, presentation, and functioning among patients suggest significant indi-
vidual  heterogeneities2,5–8. Given that multiple biopsychosocial factors are known to contribute to chronic pain, 
interdisciplinary treatment is commonly the treatment of choice for most  patients4,9. Yet, while findings indicate 
that patients with the severest clinical presentation seem to benefit most from such a  treatment10, it is still unclear 
which patient- and treatment-related factors contribute to the treatment  success11.

Data-driven approaches use large-scale datasets and rich information for decision making, providing a unique 
opportunity to identify patterns of information that can be used to improve classification and prediction in 
clinical health  research12. Given the notable heterogeneity in both clinical presentation and treatment response, 
several studies have also been devoted to identifying clinically relevant subgroups using data-driven approaches 
in specific pain  diagnoses13,14.

Although it is increasingly recognized that patients with a certain chronic pain diagnosis are heterogenous 
in clinical  presentation8, less attention has been paid to identifying subgroups among a broader population of 
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chronic pain patients. Yet, a handful of studies have examined subgroups in patients receiving interdisciplinary 
treatment, providing initial evidence for clinically relevant subgroups across diverse pain  conditions10,15–17.

There are two major drawbacks of the current pain classification research. First, psychological and social 
dimensions are not well incorporated into the classification processes, even though a substantial body of evidence 
suggests that psychological and social aspects are important for the development, maintenance and treatment of 
 pain4,18,19. Clustering attempts (i.e., identifying subgroups) have either been focused on specific psychological or 
biomedical aspects of pain, with only few studies having combined psychosocial dimensions and pain charac-
teristics (e.g., pain extent, pain intensity)20. Second, the analytical approach to identifying subgroups has a large 
space to advance. Specifically, early subgroup profiling attempts used a limited number of indicator variables to 
form subgroups or primitive subgrouping methods (e.g., by using arbitrary cut-off points on a single measure 
or by using simple regression models). Thus, better categorization attempts are needed especially to improve the 
prediction of response to treatment and the matching of patients to  treatments21.

In contrast to these early subgroup identifying approaches, advanced data-driven analytical methods aiming 
to uncover subgroups in heterogenous populations may hold more promise. Latent variable mixture modeling 
(LVMM) is an advanced person-centered analytic method, which enables researchers to classify individuals 
into unobserved (latent) subpopulations based on patterns of individual  characteristics22,23 and may offer valu-
able information for individual level empirical classification and  prediction16,24. Although underutilized in pain 
research overall the method has more recently gained increased attention in the  field24.

While LVMM is a promising method, there are also some key analytical challenges when using LVMM, like 
any other data-driven approach, for the purpose of identifying clinically meaningful subgroups in a heterogenous 
population, such as chronic pain patients. In the applied sciences, LVMM is frequently used in an exploratory 
manner, with model selection relying primarily on comparing several models in terms of their quality of fit. 
Overfitting is the primary concern with any exploratory model, and this is also true for LVMM. Furthermore, 
no single criterion can be used to determine optimal fit, so researchers will have to rely on a combination of 
statistical and pragmatic criteria to select a final model. In fact, derived subgroups from LVMM have been dif-
ficult to replicate in independent samples and, given the considerable uncertainty over model selection, a general 
recommendation is not to treat the “best-fitted model” for the sample as the only model for the  population23. 
Furthermore, methodologists have emphasized the necessity of “substantive checking”, such as linking derived 
classes to auxiliary information, in determining whether the best-fitted class-solution is empirically and theoreti-
cally  meaningful25. Yet, while auxiliary variables (e.g., predictors or distal outcomes) can readily be incorporated 
in LVMM to validate the identified subgroups, evaluation and selection of the model is generally not determined 
by any external performance (e.g., prediction accuracy). Hence, subgroups identified through this approach may 
not provide useful prognostic information.

Both aforementioned concerns regarding the use of LVMM could potentially be combated within a machine 
learning framework. First, machine learning researchers have long acknowledged the susceptibility of highly 
flexible algorithms to overfitting the sample data; consequently, numerous approaches to both assessing and 
preventing overfitting (e.g., cross-validation) have been developed. Second, supervised learning methods incor-
porate an external criterion by which the classification model should be evaluated and optimized. In fact, LVMM 
has recently been formally integrated into a supervised learning framework with the main goal of evaluating 
candidate LVMM by linking them to clinically relevant auxiliary  information26. In other words, rather than 
searching for the “true” model based on internal fit criteria, the primary purpose is to select a model based on 
its predictability. Indeed, accurately predicting or classifying individual-level outcomes is critical for enhancing 
the quality of personalized treatment and intervention. Thus, approaching subgrouping and pain classification 
from this prediction perspective may be preferable.

The main aim of the present study was to identify prognostically meaningful subgroups of chronic pain 
patients. Hence, the present study used a supervised machine learning framework (i.e., cross validation) for 
model selection and performance evaluation of LVMM. Specifically, with national real-world clinic data from 
chronic pain patients in Sweden, we identified models that capture individual heterogeneity in phenotypic 
characteristics using LVMM. Patients were grouped based on scores on several measures of pain characteristics, 
psychological aspects, and social functioning and general health status. For both model selection and perfor-
mance evaluation, we used the self-reported pain interference one-year following the interdisciplinary treatment 
as the outcome; thus, by using this external criterion we could evaluate the empirically derived subgroups based 
on a direct measure of success (i.e., the predictability of the future outcome). To evaluate the expected accuracy 
of the selected model (i.e., class solution) on new data (i.e., unseen cases), we implemented a systematic nested 
cross-validation approach.

Methods
Participants and procedure
A sample of patients with complex chronic nonmalignant pain who were referred to specialist care centers from 
the Swedish Quality Registry for Pain Rehabilitation (SQRP) was used in this study. With Swedish national data, 
the SQRP provides important information from patients whose chronic pain is not caused by any other condition 
in need of urgent  treatment15. The treatment received varies across clinical and patients in terms of both length 
and content: however, the treatment is typically delivered in a group format by an interdisciplinary team over 
several weeks to a few months, with a focus on pain education, supervised physical training and psychological 
interventions based on principles from cognitive behavioral therapy. Detailed description of the registry and 
collected data are presented  elsewhere15.

During the data cleaning stage, we kept the cases with valid answers on follow-up pain intensity and inter-
ference, as well as removed 349 cases with duplicated identification numbers (potentially due to repeated 
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registrations), resulting in a final subsample with 11,995 patients (Mage = 43.9 years; 77.6% women; 46% full-
time employed; 82% Swedish born). The patients in this sample undertook their initial visits to a specialist unit 
for their pain issues from 2008 to 2016.

The baseline data were collected at the specialist unit on the patients’ initial visits. The follow-up data were 
subsequently accessed one year after the rehabilitation. All subjects and/or their legal guardian(s) gave their 
written and informed consent during their first visit. This study was approved by the Swedish Ethical Review 
Authority, 2018-036, EPM dnr: 2019-02167, EPM 2020-02038. It was performed in accordance with the Dec-
laration of Helsinki.

Measures
We selected our indicator variables mainly based on mainstream recommendations for pain  treatments2,27,28 as 
well as findings from previous studies using SQRP for classification and prediction. The selected indicator vari-
ables comprise three domains: (1) pain characteristics, (2) psychological aspects, and (3) social functioning and 
general health status. The survey was undertaken in Swedish.

Indicator variables
Pain characteristics. Two widely used pain aspects from the Multidimensional Pain  Inventory29 were used: 
pain intensity (2-item) refers to the magnitude of experienced pain, pain interference (11-item) reflects interfer-
ence of pain in one’s work and social functioning. This inventory has shown good psychometric properties in 
previous Swedish  studies30. The average score of each subscale represents the construct. With a 7-point scale 
(from never [0] to very often [6]), higher scores reflect stronger pain intensity, interference, and more life con-
trol, respectively. In addition, we also used the single-item pain location number (i.e., the number of anatomical 
regions with pain) as it appears to be a key correlate of pain aspects and indicates the pain spreading  extent31. 
To quantify pain location numbers, a list of 36 predefined anatomical areas were presented to participants who 
then indicated their painful  areas31. The number of pain locations ranged from 0 to 36, larger numbers indicate 
greater pain extent.

Psychological aspects. Anxiety and depression were included as previous studies suggest that these two vari-
ables are related to pain conditions as well as analgesic treatment  outcomes2. We assessed these two constructs 
using the 14-item Hospital Anxiety and Depression  Scale32, with a 4-point scale (e.g., from not at all [0] to 
very often [3]). The Swedish  version33 has been found as a reliable instrument. Higher scores suggest stronger 
anxiety and depressive symptoms. The affective distress (3-item) from the Multidimensional Pain  Inventory29 
was also included as an indicator variable as it captures more general distress symptoms. Informed by the fear-
avoidance  model34, we further included fear of movement, which is considered as an anticipatory emotional 
response to a future bodily movement that could lead to painful feeling. Fear of movement was measured using 
the 17-item Tampa Scale for  Kinesiophobia35, where each item is rated on a 4-point scale (from strongly disagree 
[1] to strongly agree [4]). A previous  study36 showed the good reliability of this instrument among Swedish pain 
patients. Item scores were added up to form the total construct score; higher scores reflect more perceived fear 
of physical movements. In addition, mental health (5-item), a subscale from the Short Form Health Survey (SF-
36)37,38 was included to reflect the overall mental health status.

Social functioning and general health status. Health-related quality of life has been suggested as another core 
criterion to assess in pain  treatment28. Based on the Short Form Health Survey (SF-36)37,38, we specifically chose 
the overall physical health (21-item), which includes general health, physical functioning, role limitations due 
to physical problems, and body pain. The subscale vitality (4-item) was also included. While mental wellbeing 
has been suggested as a key assessment  measure28, vitality has not been widely recommended as a key factor for 
analgetic outcome until  recently2. Vitality plays an important role among pain patients as physical and mental 
energy is required to manage  pain39. Items of each subscale were transformed and summed up as per the scale 
 instructions40. Higher scores reflect more perceived vitality and physically healthier status, respectively. In addi-
tion, life control (4-item), which indicates how much control one generally has over their life, was selected from 
the Multidimensional Pain  Inventory29.

Outcome variable
Two variables assessed at the one-year follow-up stage were used as distal outcome variables: (1) pain interference 
(11-item), a subscale from the Multidimensional Pain  Inventory29 and (2) health status, a single-item measure 
from the EQ-5D41. The pain interference scale properties are described above. For the health status measure, 
participants were asked to rate their general health status on a vertical analogue scale from 0 to 100, with 100 
indicating the best possible health level. Pain interference was used in the cross-validation process because pain 
interference reflects overall impact of pain and serves as a primary concern of patients and represents a core 
outcome domain 42,43.

Background variables
To further understand the characteristics of each phenotype, we included sex, age, highest education level, 
employment status (full-time/part-time), visits to a physician about pain in the past year (0-1/2-3/over 4 times), 
pain duration (i.e., years of pain experience), and social support. Demographic and patient disposition factors 
were included as per previous  recommendations27,28. As social support has been found as a key variable for pain 
 recovery18,20, the social support subscale (2-item) from the Multidimensional Pain  Inventory29 was used.
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Statistical analysis
Finite mixture model
The analytical model that was evaluated was a Gaussian finite mixture model. The model uses the information 
from the observed indicator variables to form subgroups where the grouping variable is formalized as a latent 
categorical variable with latent classes from c1 to ck . A mixture distribution is a weighted sum of K component 
distributions as follows,

where yi is a vector of observed indicator variables for individual i , πk is a weight that quantifies the kth compo-
nent’s relative size, and θk is a vector of model parameters for the kth  component44. The component distributions, 
fk , are the multivariate normal distributions, where the parameter vector θk contains the parameters with the 
class-specific means, µk , and covariance matrices, �k . The off-diagonal elements of �k matrices were fixed to zero 
(i.e., local independence assumption), and diagonal elements were constrained to be equal across classes. One can 
think of fk as the conditional probability of obtaining the observed sample data/indicator values for an individual 
from class k . Then, f

(

yi
)

 gives the unconditional probability for yi . We fitted a successively increasing number 
of classes, k = {2, 3, 4, 5, 6} . Models were evaluated with Mplus using maximum likelihood estimation and the 
EM-algorithm45. To avoid potential convergence at local maxima, we used random starting values (250 for the 
initial and 100 for the final stage optimization in Mplus). Posterior probabilities for each individual and class were 
computed based on model parameters (µk ,�k) and the observed individual score of each indicator variable [see 
equations 32 and  3346]. These computed probabilities were then used as predictors (k − 1) of the pain interference 
outcome at one-year follow-up, based on a linear regression model in the nested cross-validation procedure.

Although there are no formal tests for determining the assumption of normally distributed variables within 
each latent class in Gaussian finite mixture models, we visually examined the data distributions of each indicator 
for the whole sample and each class in the final class solution, finding that normality can be generally assumed 
across most distributions, although pain intensity, pain interference, and vitality seemed to have larger skewness.

Combined model for outcome prediction
Posterior class probabilities were computed for each individual in test sets of our cross validation and used for 
outcome prediction based on a linear regression model. The parameters for this regression model are obtained 
in the respective training set. This final prediction step constitutes the supervised part of our machine learning 
algorithm and hence enables constructing latent classes with the perspective of predicting a distal outcome.

Cross-validation for parameter optimization and performance assessment
A cross-validation is performed whenever a model is fitted, to determine a suitable value for the parameters 
of the model, in our case the number k of subgroups (or the number of subgroups, k) , based on prediction 
 accuracy47–49. As detailed in Fig. 1A, a bootstrap approach is employed to repeatedly resample a training set from 
the data (predictors and outcome). Data not chosen during the bootstrap form the test set. Different parameter 
settings are applied to train a model for each round of the cross-validation, and each time the trained model’s 
performance is assessed using the test data. Model performance on these test set data was quantified as root mean 
squared error (RMSE). Finally, from average model performances for different parameter choices, the optimal 
parameter choice can be concluded. A final model is then fit to the entire dataset using this optimal parameter 
choice (i.e., yielding the optimized model).

Using a simple cross-validation, as described here above, a prediction model can be optimized, but its per-
formance cannot be assessed at the same time. Therefore, we employed a nested cross-validation50–52, as shown 
in Fig. 1B: The available data are split into 5 parts, and 5 models are trained and optimized, each one leaving out 
one fifth of the data for measuring the performance. The other four fifths of the data (the outer training set) are 
split up further in the inner cross-validation (as in Fig. 1A). The performance of each optimized model can then 
be assessed using the share of the data that was left out in the training of the model, such that no sample is ever 
used to learn and evaluate the same model. Model performance on these outer test set data was again quantified 
as RMSE. Importantly, as it is not possible to fit any model to all available data, and, at the same time, estimate 
its performance on future new data, the average performance assessed in the five outer test-set predictions of our 
combined LVMM-linear models served as our best estimate for the future performance of such a “final” model. 
To be able to compare the results of this selection process to a conventional procedure for model selection we 
provide commonly used fit statistics used in mixture modeling in supplementary materials (Table S3).

Specifically, we applied a five-fold outer cross-validation in combination with a 25-fold bootstrap for the inner 
cross-validation. The R-package “MplusAutomation” (version 1.1.0)53 was used as an interface from R to Mplus 
(version 8.5)54. Our approach was then implemented as a custom model using the R-package “caret” (version 
6.0.91)55, which provides the functionality for the inner cross-validation.

Subgroup characteristics and associations with auxiliary information
Based on the performance of models, the optimal latent class solution was then estimated using the whole dataset. 
The consequent subgroup profiling and comparisons were based on the optimal model (i.e., optimal k ) selected 
from the cross-validation (as described above). Estimated means harvested from the whole sample-based model 
were plotted to profile the characteristics of each subgroup. To investigate how subgroup memberships related to 
both background variables and distal outcome (one-year follow-up pain interference), the three-step approaches 
were used in order not to allow the auxiliary information to influence the class-solution at this descriptive  stage56. 
Effect sizes (Cohen’s d) for outcomes were computed when applicable.

f
(

yi
)

=
∑K

k=1
πkfk(yi , θk)
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Following the assumption of missing at random, the full information maximum likelihood approach was 
adopted for most analyses; three cases were removed since they had missing values on all indicators. Listwise 
deletion was used when examining the relationships between background covariates and class membership, 
with 9173 cases (76.5%).

Results
Cross-validation for parameter optimization and performance assessment
Model selection
Following the five-fold nested cross-validation, the optimal number of latent classes was chosen based on two- to 
six-class models in the inner cross-validation and their performances measured on the outer test sets. The result-
ing RMSE values of each model with respect to simplicity (of the model) and prediction of the outcome suggested 
the four-class model as the optimal (Fig. 2). Notably, there is one large relevant drop in RMSE values, from the 
three-class to the four-class model (∆RMSE = 0.072). Similar trends were observed in other performance indices 
including  R2 and mean square error; for brevity, these values are tabulated in supplementary materials (Table S1).

Model performance
The performance of the selected model (k = 4) was evaluated in five outer cross-validation rounds as five-fold 
cross-validation, such that each sample belonged to one of the five outer test sets and was predicted once by a 
model which was trained on 80% of the total data. As assessed with a linear regression, the predicted pain inter-
ference outcome value by the latent classes (i.e., posterior probabilities) captured about 26% of the variation in 
the true pain interference values of the dataset. Of note, performance of the combined LVMM-linear model was 
evaluated by (outer) cross-validation, namely, using the fitted model to predict the outcome for unseen data (i.e., 
the five outer test sets comprising 20% of all data each which have not been used for model selection purpose).

Optimized final mixture model fitted to all data
Profile of subgroups
Informed by the previous steps, an LVMM with k = 4 was performed in the whole sample, resulting in four 
qualitatively distinct subgroups. Figure 3 visually illustrates the characteristics of subgroups (for tabulated infor-
mation, see Table S2 in supplementary materials).
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· · ·

Parameter choice

Parameter choice

Trained models

Model performances

Optimized model

25 bootstraps

optimal parameter choice

Outer training sets

Inner training sets

Inner test sets

· · ·

Parameter choice
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Trained models
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Optimized model
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optimal parameter choice

Outer test set

Dataset

Performance for
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(A) Simple cross-validation

(B) Nested cross-validation

Figure 1.  Workflow for two cross-validation schemes.
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Figure 2.  The Root-Mean-Square deviation (RMSE) deflection with four-class solution. Note The boxplots 
of the RMSE values (y-axis) for the five cross validations, for different subgroup numbers (x-axis). For each 
number of subgroups, the boxplots show the minimum, 1st, 2nd (median), 3rd quartiles, and the maximum of 
the RMSE values of the outer cross validations and their medians as horizontal black lines. The red vertical line 
denotes the maximum drop of the RMSE with reflected median difference between subgroup number 3 and 4.
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Figure 3.  Estimated means of the four-class model generated from latent variable mixture modeling. Note 
To visually compare between indicators with various ranges, estimated means ( x ) of each indicator have been 
rescaled based on the theoretical maximum value ( maxx ) of each scale (i.e., x

maxx
 ). A larger rescaled score reflects 

a higher rank of an estimated mean.
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Class 1 comprised 2573 patients (21.5%) who reported relatively low pain intensity, interference, and pain 
location numbers. Although Class 1 members showed the best level of general physical health, their negative 
emotions such as anxiety and depression were notably higher.

With 3575 patients (29.8%), Class 2 demonstrated the worst levels on most indicators. Specifically, members 
of Class 2 reported severest pain intensity, interference, as well as pain extent. Their anxiety, depression, and 
general affective distress were also highest among the subgroups. Moreover, these patients had markedly lower 
mental health and vitality scores.

Class 3 was the largest subgroup (30.3%), with 3638 patients. Patients in Class 3 had the lowest level of physical 
health, although their negative emotions were relatively moderate compared with other subgroups. Even though 
Class 3 patients showed a similarly high level in pain intensity, interference, and pain extent as in Class 2, they 
had a relatively more life control than Class 2 members.

Class 4 (n = 2206; 18.4%) showed the best scores on most indicators. Their pain presentation and negative 
emotions were the lowest, with a better health condition especially mental health and vitality. Based on these 
subgroup features, Class 4 was used as the reference group in the subsequent analyses as it is regarded as the 
heathiest subgroup.

Subgroup associations with follow-up outcomes
With the three-step approach which included distal outcomes, the between-subgroup difference in the follow-up 
pain interference (χ2

(3) = 3545.30, p < 0.001) and health status (χ2
(3) = 1172.73, p < 0.001) both showed an overall 

statistical significance. Figure 4 shows the means for each subgroup and the standardized mean differences 
(Cohen’s d) for all group comparisons.

For pain interference, all between-subgroup differences were statistically significant (ps < 0.001) except for 
the comparison between Classes 1 and 4 (p = 0.130). Large effect sizes (d ≥ 0.80) were found in Class 2 vs. Class 
4 (d = 1.27), Class 1 vs. Class 2 (d =  − 0.98), and Class 3 vs. Class 4 (d = 0.89).

For health status, all between-subgroup differences showed a statistical significance (ps < 0.001; Class 1 vs. 
Class 4, p = 0.001). Large effect size (d ≥ 0.80) was found in Class 2 vs. Class 4 (d =  − 0.89).

Subgroup associations with background characteristics
Table 1 descriptively reports the background variables of the four subgroups based on the most likely class 
membership of each subject (i.e., largest posterior probabilities). When background variables were included as 
auxiliary predictors, all variables showed associations with the class membership (Table 2). Compared with the 
healthiest subgroup (Class 4), other classes were younger. Overall, all subgroups had more women than men 
(i.e., > 70% women); between-subgroup differences were found in sex distributions. Patients in Classes 2 and 3 
had more women and were less educated than Class 4, whereas those in Class 1 were more educated than Class 
4. Furthermore, as opposed to Class 4, members in Classes 2 and 3 were less full-time employed, had more 
visits to a pain clinic in the past year, as well as had longer pain durations. While patients in Class 1 showed 
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less social support than Class 4, Class 3 members had more social support than Class 4 members. In addition, 
Class 3 members perceived more social support than Class 4 members, whereas Class 1 members perceived less.

Discussion
Our study aimed to identify prognostically meaningful subgroups of chronic pain patients using data from a natu-
ralistic and population level setting. In contrast to previous work that used unsupervised clustering approaches, 
a supervised machine learning framework was used for model selection and performance evaluation. Based on 
the optimal solution, four qualitatively distinct subgroups of chronic pain patients were discerned. The four-class 
solution showed a robust explanatory ability  (R2 = 26%) of the long-term follow-up on unseen data in the outer 
cross-validation, providing support for the predictive validity of derived subgroups using a rigorous approach 
for performance evaluation. This means that a significant part of the observed variation in pain outcome can be 
explained by a simple linear model of class-membership posterior probabilities estimated for each subject of the 
test-sets in our cross-validation. This was corroborated by effect size differences of non-trivial magnitude on pain 
interference and general health status at one-year follow-up between specific subgroups when the final model 
was fitted to the whole sample. The subgroups were also distinguishable based on examined background char-
acteristics. Thus, as a novel method to combine an advanced unsupervised person-centered analytical method 
(i.e., LVMM) with a supervised learning approach to classification, our initial findings are encouraging, especially 
given that previous studies have generally failed to identify reliable predictors of long-term outcomes following 
interdisciplinary treatment using simpler regression- and variable-centered analytical  approaches11.

In agreement with both mainstream recommendations and growing body of  evidence27,28, our results show 
that psychological and pain characteristics (e.g., pain intensity) are both important phenotypic characteristics 
that interact at the level of the individual. The four subgroups identified in our study have their distinct charac-
teristics. Class 4 (18.4%), with relatively low scores on pain characteristics, negative emotions, and better health 
status, appeared to be the healthiest subgroup. In contrast, with elevated levels of pain characteristics and negative 
emotions as well as poorer health status, Class 2 (29.8%) was an ill and sizable subgroup. Classes 1 (21.5%) and 

Table 1.  Descriptive statistics of background variables by classes. a Percentages show the proportions in each 
Class (i.e., column percentages). b The theoretical range of social support is between 0 and 6.

Variable-frequency Class 1 Class 2 Class 3 Class 4

Women–% 75.8% 79.6% 81.2% 73.8%

Age–M (years) 42.9 43.1 44.2 45.8

Highest education  levela

 Primary 250 (10.7%) 534 (16.0%) 466 (13.7%) 224 (11.0%)

 Secondary 1248 (53.6%) 1988 (59.4%) 1982 (58.4%) 1140 (55.9%)

 Tertiary 829 (35.6%) 824 (24.6%) 945 (27.9%) 675 (33.1%)

Full-time employment–% 56.4% 39.3% 45.4% 58.8%

Visits to a pain clinic in the past  yeara

 0–1 times 310 (13.2%) 152 (4.5%) 214 (6.3%) 292 (14.0%)

 2–3 times 682 (29.0%) 568 (16.7%) 767 (22.4%) 643 (30.8%)

  ≥ 4 times 1361 (57.8%) 2688 (78.9%) 2443 (71.3%) 1156 (55.3%)

Pain duration (years)–M (SD) 8.1 (9.1) 8.5 (9.2) 8.6 (9.0) 8.6 (9.9)

Social support–M (SD)b 3.74 (1.38) 4.18 (1.42) 4.40 (1.23) 4.14 (1.28)

Table 2.  The logit coefficients of predictors from the three-step approach. Class 4 is the reference group. With 
listwise deletion, 9173 cases (76.5%) with complete data were used for the above regression estimation. Sex: 
1 = man, 2 = woman. Educational level: 1 = primary education, 2 = secondary education, 3 = tertiary education. 
Full-time employment: 1 = yes, 0 = no. Visits to a pain clinic in the past year: 0 = 0-1 time, 1 =2–3 times, 2 = 
over 4 times. Pain duration: years of pain experience. Social support: a subscale from the Multidimensional 
Pain Inventory  [29, with higher scores meaning more perceived social support for their pain problems.  *p < .05. 
**p < .01. ***p < .001.

Variable Class 1 Class 2 Class 3

Sex  − 0.05 0.53*** 0.67***

Age  − 0.03***  − 0.02***  − 0.01***

Higher education level 0.15*  − 0.27***  − 0.18**

Full-time employment  − 0.11  − 0.79***  − 0.60***

Visits to a pain clinic in the past year 0.10 0.93*** 0.60***

Pain duration 0.00 0.01** 0.01**

Social support  − 0.27*** 0.00 0.20***
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3 (30.3%) showed a medium level on all indicators, although nuanced differences are observed between these 
two subgroups: Class 1 had higher anxiety, depression, and affective distress than Class 3, although members of 
this Class had less pain symptoms and better health status than Class 3.

These subgroups identified in our study have certain similarities with previous typologies of pain patients 
discovered in studies using various clustering methods. In a seminal study which also included both pain char-
acteristics and psychological  variables20, three subgroups among chronic pain patients were named as “dysfunc-
tional”, “interpersonally distressed”, and “adaptive copers”. This three-subgroup taxonomy is comparable with 
Class 2, Class 1/3, and Class 4 in our study. Our findings are also in broad agreement with recent studies that 
have aimed to identify subgroups in patients receiving interdisciplinary treatment. Most relevant, a study using 
 LVMM16 also identified four similar subgroups of patients in the degree of pain severity, physical health, and 
emotional distress. While this  study16 relied on a conventional, exploratory approach to determining the number 
of subgroups, findings, taken together, support the four latent classes among chronic pain patients across samples.

A noteworthy finding, with potential clinical implications, is that two of the classes (Classes 1 and 2) had 
patients with marked emotional distress (anxiety and depression). As  noted7 after reviewing pain patient pheno-
type studies, research tends to discern a subgroup with greater pain intensity and negative emotions, highlighting 
the central phenotypic role of mental health status. Consistent with a substantial body of evidence supporting 
bi-directional links between general negative affect and severity of  pain2, as well as with findings from previous 
studies on patient  types6,57, increased negative emotions and pain presentations appear to cooccur. Specifically, 
the increased anxiety and depression observed in Class 2 (with the worse conditions across most indicators) 
highlight the key role of negative emotions among those individuals with worse clinical presentation at intake 
as well as increased risk of unfavorable long-term outcomes. In this context, the interrelationships between fear 
of movement, anxiety, and depression are also worth noting. A previous clustering  study6 found two clusters 
with similar levels of fear of movement, but one of these patient clusters showed distressed mood, as well as 
higher pain intensity.

The additive effect of emotional distress on both pain and fear may necessitate targeted interventions. Indeed, 
more recently, the importance of interventions targeting emotional processing and regulation have been high-
lighted for specific subgroups of chronic pain patients with high emotional  distress58,59—treatment approaches 
that may be particularly valuable for Classes 1 and 2. In comparison to Class 1, Class 2 members showed 
elevated symptoms on all indicators, suggesting the need for a more comprehensive interdisciplinary treatment 
in targeted interventions. As previously  recommended6, Class 2 members may also benefit specifically from 
exposure-based treatment given their high fear of movement. While specific treatment recommendations are 
in need of confirmatory tests, our findings call into question the one-size-fits-all approach to pain treatment 
and highlight the importance of identifying subgroups for improved treatment matching, which has long been 
recognized in the  field5.

The associations between covariates and subgroup membership provide further information about the latent 
classes. A previous  study16 has identified a subgroup, which had lower scores on pain characteristics, but slightly 
more negative emotions; this subgroup members were remarkably older than others (10–15 years). Similar to 
this subgroup, Class 4 in our study, with less pain and negative emotions, was also older than other subgroups. 
It is important to note that Class 4 members also received more education and had less pain duration than those 
in Classes 2 and 3. An interesting contrast among groups was observed in social support. Compared to Class 4, 
the healthiest subgroup, Class 1 patients perceived less social support whereas Class 3 members perceived more. 
In previous subgroup studies, lack of social support has been found to be associated with being in subgroups 
which showed longer pain  duration17 or severer pain  burden16. It may partially explain why Class 3 members 
in our study showed relatively lower levels of negative emotions, even though their pain intensity was similar 
to Class 2. In contrast, with lower social support, Class 1 members had more emotional distress than Classes 3 
and 4, although its pain intensity was similar to Class 4. Our findings indicate that it is useful to consider the 
relationship between pain and emotional distress with the consideration of social support.

By combining the strengths of unsupervised and supervised learning approaches, our study also offers a 
novel methodological perspective on subgrouping in pain research. The framework expands on a recent meth-
odological approach in which the selection of mixture model is governed by its prediction  accuracy26. Using a 
nested cross-validation procedure, we were able to use an analgesic outcome in the selection of model as well as 
independently estimating the effects of the selected model for unseen cases. Replicability of clusters has always 
been a key focus because it indicates how reliable the cluster profiling is across  samples20,60–62. However, failure to 
replicate different class solutions has been a source of concern, as has the ability to use subgroups for prognostic 
and treatment matching purposes. To date, simpler cross-validation procedures in which the sample data is 
split in to an exploratory and confirmatory part have been utilized to combat overfitting and replication issues 
in mixture  modeling23. By combining a highly flexible unsupervised method with nested cross-validation and 
an optimization based on a supervised prediction of a one-year follow-up outcome, our study has continued 
this rigorous lineage.

While our statistical learning approach is promising for identifying prognostically meaningful subgroups, 
there are multiple ways to modify the analytical framework and widen its application. First, both the selection of 
indicators and the weights of chosen indicators could also have been optimized for outcome prediction using an 
appropriate supervised method prior to formation of latent classes in mixture modeling. Second, a single outcome 
variable was used as the target and a simple linear regression model was used to predict outcome from posterior 
class-membership probabilities; by using several outcomes and examining non-linear relations with outcomes 
could provide a more comprehensive evaluation of the models. Third, there are ways in which the finite mixture 
models could have been optimized further, including, for example, exploring additional individual heterogenei-
ties within each class by combining mixture modeling with factor analysis (factor mixture model)—a method that 
has shown promise in identifying subgroups in specific pain  conditions24. Finally, Gaussian mixture modeling 
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assumes normally distributed variables within each latent class and when this assumption is violated can create 
spurious class solutions. However, recent methodological developments have extended mixture model to handle 
non-normal data reducing the risk of extracting classes that are merely due to non-normality63. Nonetheless, a key 
strength of LVMM is that the framework enables empirical comparisons of a diverse set of models (e.g., growth 
mixture models, factor mixture models)–all done within one coherent analytical framework. Future research 
may build on this combined framework of unsupervised and supervised learning to incorporate information 
from additional sources (e.g., variables collected during treatment), examine individual change trajectories, and 
treatment response patterns in randomized experiments to identify clinically meaningful subgroups. Regardless 
of mixture model and applied context, the framework enables the identification of prognostically meaningful 
subgroups based on their ability to predict outcomes.

Our study has several limitations. The rehabilitation treatment varied across clinics and patients were not 
randomized to different treatments; therefore, the causes for outcome variations at follow-up remain unknown. 
Only patients with follow-up pain outcomes were included in this study; the reasons for non-adherence are 
not known, potentially biasing estimates due to non-ignorable causes of missing data. While guidelines about 
phenotyping pain patients are available, researchers have employed various strategies to select indicators. In 
our study, we focused on a restricted number of indicators and biological information such as genetic data and 
specific diagnosis were not included in the phenotypic characteristics. Moreover, social domains in our study are 
not fully represented. A considerable number of previous studies investigate subgroups among a specific type of 
pain patients (e.g., fibromyalgia, low back pain). Our study assumed that psychological aspects, self-perceived 
pain, and health status were independent of physical pathology across various types of pain  conditions18. How-
ever, the assumption was not tested and nor did our study measure patients’ beliefs about etiology, which have 
been related to recovery  process64.

Notwithstanding, our study utilized a large, national sample follow-up assessments among chronic pain 
patients, mitigating limitations identified in previous pain patient classification studies. Using a rigors approach 
for identifying and evaluating our analytical model, our findings add to growing body of studies aiming to iden-
tify clinical meaningful subgroups across diverse chronic pain patients. From an applied methods standpoint, our 
study provides a novel person-centered supervised machine learning analytical framework that can be further 
expanded upon to ultimately provide an empirically derived taxonomy for treatment matching and prediction.

 Data availability
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