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A theory of evolutionary dynamics on any
complex population structure reveals stem
cell niche architecture as a spatial suppressor
of selection

Yang Ping Kuo1,2, César Nombela-Arrieta 3 & Oana Carja 1

How the spatial arrangement of a population shapes its evolutionary dynamics
has been of long-standing interest in population genetics. Most previous stu-
dies assume a small number of demes or symmetrical structures that, most
often, act as well-mixed populations. Other studies use network theory to
study more heterogeneous spatial structures, however they usually assume
small, regular networks, or strong constraints on the strength of selection
considered. Here we build network generation algorithms, conduct evolu-
tionary simulations and derive general analytic approximations for prob-
abilities of fixation in populations with complex spatial structure. We build a
unifying evolutionary theory across network families and derive the relevant
selective parameter, which is a combination of network statistics, predictive of
evolutionary dynamics. We also illustrate how to link this theory with novel
datasets of spatial organization and use recent imaging data to build the cel-
lular spatial networks of the stemcell niches of the bonemarrow. Across awide
variety of parameters, we find these networks to be strong suppressors of
selection, delaying mutation accumulation in this tissue. We also find that
decreases in stem cell population size also decrease the suppression strength
of the tissue spatial structure.

Novel microfluidics and organoid technologies1,2 allow us to start
building biological scaffolds that control the spatial topology of a
molecular or cellular population. In order to make full use of these
innovations, we need a rigorous theory of how the structure of a
population shapes its future evolutionary dynamics. This will allow us
to design structures that either amplify the selective benefit and
spread of beneficial mutations, or structures that suppress the spread
of deleterious variants.

There is a large body of literature in population genetics
theory studying the role of population structure in shaping evo-
lutionary outcome, starting from the classic 1975 paper of Slatkin

and Maruyama3. However, most previous modeling approaches
that incorporate spatial patterns of variation usually only assume
a few demes (patches) and symmetrical structures4–6, simple
topologies that can be embedded into two-dimensional con-
tinuous Euclidean space. In most cases, these simple topologies
do not change fixation probabilities and rates of evolution com-
pared to well-mixed populations7,8. These symmetrical structures
fundamentally fail to capture the complex pattern of interaction
and the variance in local selection pressure present in natural
populations, as well as in emerging spatial cellular and molecular
atlases9–11.
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Studyingmorecomplex topologies, ones forwhich there exists no
homeomorphism to the well-behaved two-dimensional Euclidian
space, becomes a much harder mathematical problem. These topol-
ogies can be represented using networks and we can use the mathe-
matical formalism of the Moran birth-death process on graphs12,13 to
explore how spatially-structured patterns of interaction and replace-
ment drive the composition of populations and shape the outcome of
the evolutionary process. Under these models, a population of indi-
viduals is located on nodes of a graph and the links of a node indicate
the neighboring nodes that can be replaced by its offspring12. Graph
theory has been successfully used to study patterns of spatial variation
and interaction across a wide range of scientific fields, from the social
sciences to brain science14–17.

Initial studies on very small graphs observe large differences
between networks in the fixation probability of new mutants, com-
pared to well-mixed populations12,18, a marked departure from pre-
vious deme-based models. Some graphs are suppressors of selection,
graphs that reduce thefixationprobability of advantageousmutations,
while increasing it for deleterious mutants12,18,19. Other graphs can be
classified as amplifiers, increasing rates of evolution. One of the first
general results, the isothermal theorem, states that in graphs where
the propensity for change in each node is exactly the same, the fixation
probabilities of new mutations are the same as in well-mixed popula-
tions. The assumptions of the isothermal theorem, however, sit on a
knife edge; make small perturbations to the network structure and the
assumptions no longer hold12. While these initial studies hint at the
promise of graph theoretical approaches, analytic results with pre-
dictive power have been very difficult to derive. Most prior results
either rely on very small networks (where build and solve time scale
exponentially with population size, making them unsuitable for the
study of networks of more than 30 nodes19) or invadingmutants in the
limit of neutrality, results that do not scale to generality20.What are the
probabilities of fixation for a newmutation as a function of where and
when it appears in much larger, and more biologically-realistic spatial
networks?

Here, we develop an analytic approach that gives us the ability to
systematically study probabilities of fixation on larger, heterogeneous
spatial structures and identify graph properties that control suppres-
sion or amplification of selection, either leading evolution to a stand-
still or accelerating the evolutionary process. Linking network topol-
ogy to evolutionary dynamics is complicated by the fact that networks
differ in many structural properties. We build graph generation com-
putational methods that allow the ability to systematically tune net-
work statistics and study their role on probabilities and times to
fixation for newmutations in the population,mathematical proxies for
evolutionary outcome. Our algorithms combine simulated annealing
procedures and degree preserving edge swapping21 to continuously
tune network properties one at a time, while keeping other properties
constant. This allowsus to fully understand the role of specific network
parameters, aswell as translate themeaningof the relevant parameters
for any given network, across different graph-families.

Using our simulations and analytical approximations, we find that
knowing the degree distribution alone is not enough to determine the
fixation probabilities and times to fixation, since graphs with the same
degree distribution, but different mixing pattern can exhibit very dif-
ferent evolutionary outcome. Importantly, we analytically derive the
relevant selective parameter for a given network, without making
restrictive assumptions onnetwork type, size or selective advantage of
the new invading variant.

In addition to the purely theoretical interest of the questions
presented above, we also showcase how our theoretical results can be
used to analyze rates of evolution in the stem cell populations of the
bone marrow22,23. We use recent imaging data sets24,25 to build the
spatial stem networks of the bone marrow and we find that these
networks are strong suppressors of selection, across a wide range of

parameter choices and regardless of the type of the assumed birth-
death process. Moreover, we find decreasing suppression with
decreasing population size, hinting at a potential decrease in the
suppressive properties of the spatial structure as individuals age.

Results
Model
We use a Moran-type model to describe changes in allele frequencies
in a finite population of constant size N. Each individual’s genotype is
defined by a single biallelic locus A/a, which controls the individual’s
reproductive fitness. An individual with the A allele is assumed to have
fitness one, while an individual with allele a has assigned fitness (1 + s).

We use the structure of a graph to represent the structure of
reproduction and replacement of the population. Every individual
occupies a node in the graph, while the edges between nodes repre-
sent the local pattern of replacement. At every generation, we update
the allele frequencies using two different update scenarios (Fig. 1A). In
thefirst update scenario, we assume reproduction occurs beforedeath
(the Birth-death Bd scenario). At every time step, we first select one
individual for reproduction, with probability proportional to fitness,
from the entire population. We then randomly select one of its
neighbors for death and vacate the node for the new offspring. In the
second update scenario, denoted as the death-Birth dB update, we first
select a node at random from the population to be vacated and then
choose one of its neighbors for reproduction, with probability pro-
portional to fitness. Note that selection happens only when choosing
the individual to reproduce. This means that, in the Birth-death
update, the individuals compete globally, at the population level, while
in the death-Birth update, the selection step is local, the competing
individuals are only the neighbors of the node randomly chosen for
death. Due to these differences in global versus local competition, the
two update rules have been shown to lead to drastically different
evolutionary dynamics12,18.

The graph structure therefore becomes a mathematical proxy for
the spatial topology or the population structure of replacement:
individuals reproduce locally, and their offspring spread to neighbor-
ing nodes connected by an edge. The graphs we consider here are
unweighted and undirected. Initially, we assume the population fixed
on the wild-type A allele. We introduce one mutant a individual at a
random node at time t = 0 and we ignore subsequent mutation. Under
this model, the population will eventually reach a monomorphic state
where individuals of the same A/a allele occupy all nodes in the graph.
We study the probability of fixation of the invading allele a as a func-
tion of the population size N, the selective coefficient of the new
mutant s and importantly, the topological features of the network
spatial structure. Our goal is to systematically study the role of the
network structure in shaping rates of evolution by directly comparing
these probabilities of fixation with the equivalent probabilities in a
well-mixed population.

Linking network topology to evolutionary dynamics is compli-
cated by the fact that networks differ in many structural properties
and tuning parameters independent of others is not a trivial problem.
To identify the relevant graph properties that either speed up or
suppress adaptation through shaping probabilities and times to
fixation of new mutants in the population, we characterize graphs
through the lens of their main two components: the nodes and the
edges. We can therefore think of graph properties as either node- or
edge-centric. The main property of a node is the node degree (the
number of neighbors the node is linked to) and the node degree
distribution becomes an important global network property26. Graph
edges, on the other hand, can be categorized based on the type of
nodes they connect and how often they connect nodes of different
degrees. The mixing pattern of a graph (also called graph assorta-
tivity) is a global edge-centric graph descriptor that informs on the
frequencies of each edge type27.
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Fig. 1 | Illustration of the population birth death process update rules and
graph rewiringmethods. A illustrates both the dB (death-Birth) and the Bd (Birth-
death) update rules. In (B), we use principle component analysis on 6 graph char-
acteristics (mean, variance, third moment, modularity, average clustering, and
assortativity) to highlight the network families studied, as well as the trajectories
between them. Each graph family shows clustering using the first three principle
components (that explain 89% of the variance in PC space). The black line repre-
sents the trajectory in PC space as we rewire graphs starting from preferential
attachment (PA) graphs, through power law cluster networks (PLC) and uniform

randomgeometric graphs, to normal randomgeometric graphs (RGG).C illustrates
the edge swap operation used to tune graph characteristics. At first, there are no
edges connecting nodes of degree 3 to nodes of degree 4. Two edges are randomly
selected to be disconnected and nodes that were “parallel”with respect to the two
disconnected edges are then connected, thus preserving the number of edges.
After the rewiring step, there are two edges connecting nodes of degree 3 to nodes
of degree 4, and there is no longer a 4-clique. The degrees of the nodes, however,
are preserved.
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To begin with, we use random graph generators and construct
graphs that span the known graph families28–34. This ensures that our
results are generalizable across graph families and graph properties
(Fig. 1B). Existing graph generating methods, however, do not
allow for the separate tuning of the degree distribution and the
node degree mixing pattern. For example, in preferential attachment
(PA) graphs, one can smoothly change the shape of the degree dis-
tribution by changing the power of preferential attachment β.
However, if we change this preference of connection to high degree
nodes, we inevitably also change the graph’s mixing pattern and
cannot independently study its role in amplifying or suppressing
selection.

To allow for tuning ofmixing patterns, independent of the degree
distribution, we implement a sampling network generation algorithm
based on simulated annealing (Fig. 1C). See the “Methods” section for
more information on the algorithm and the graph families generated
and used in this study.

Once the network structure is set, we use ensembles of at least
10,000 Monte Carlo simulations, as well as analytic approaches as
described in the next section, to compute the probabilities of fixation
of the newallelea.We study theprobability offixationof a new invader
mutation a with fitness (1 + s) that appears in a random initial node of
the network and compare it with the equivalent probabilities of fixa-
tion in well-mixed populations. We start by obtaining analytic
approximations for the dB (death-Birth) update model and then dis-
cuss the important differences specific for the Bd (Birth-death) update
rule. Intuitively, thedBdynamics applieswhen the evolutionary update
are driven by available space being freed up, followed by local com-
petition among the neighbors, whereas the Bd dynamics applies in
cases where competition happens globally, but replacement is driven
by the local pattern of interaction.

Analytic description
We begin by presenting the main ideas of our analytic approximation
for the probability of fixation of the a allele. For the complete
mathematical treatment, please see Supplementary Notes 1 and 2.
Previous analytic approaches have either made use of the adjacency
matrix of the network (which uniquely identifies the graph) and its
associated transition probabilities19 or assumed that the evolutionary
dynamics are in the limit of neutrality and a vanishing selection
coefficient s (if weak selection is assumed, the probability of fixation
can be approximated by treating it as the linear perturbation to the
continuous coalescence, the dual of the Moran process under
neutrality)20,35. The former approach can provide closed form solu-
tions for the fixation probability of a, but becomes intractable for
large networks since it tracks a Moran process with 2N states and the
algorithm build and solve time both grow exponentially with popu-
lation size (even for N = 23 nodes, the approach becomes
unfeasible19). The latter approach reduces the problem from expo-
nential to polynomial complexity in population size N20,35, however it
performs poorly as we move away from the neutrality limit for the a
allele (Supplementary Figs. S1 and S2).

The approachwe take here is to use the node degree distribution,
and only keep track of the mutant frequencies xi at all Ni nodes of the
same degree di. LetD = {d1, d2,…, di,…} represent the set of all possible
node degrees. While the degree distribution might not uniquely
represent the network and some of the graph information is lost, this
approach nonetheless greatly reduces the number of possible states in
theMoranmodel17,36. We denote the frequency of nodes of degree di in
the population by pi. To model node degree mixing, we use pij to
denote the probability that a node of degree di is connected to a node
of degreedj. The probability of fixation of allelea is then approximated
using the diffusion approximation37,38.

At every time point, xi, the frequency of the mutant at nodes of
degree di, increases by 1/Ni with probability T +

i and decreases by 1/Ni

with probability T�
i . We can write:

T +
i =

1 + s
W

X
j2Dpjpjixjð1� xiÞ

T�
i =

1
W

X
j2Dpjpjið1� xjÞxi,

ð1Þ

whereW is the mean fitness of the individuals in the population.
We use these transition probabilities to find the mean and cov-

ariance of the change in xi per unit time and use the backward Kol-
mogorov equation38 to find the probability of fixationof the a allele for
any initial mutant frequency Pð x!Þ:

X
i

T +
i � T�

i

pi

∂P
∂xi

+
1
2
T +
i +T�

i

Np2
i

∂2P
∂x2i

 !

� 1
2

X
i,k

T +
i � T�

i

� �
T +
k � T�

k

� �
Npipk

∂2P
∂xi∂xk

=0:

ð2Þ

Here, the coefficient for the linear differential operator is quad-
ratic in xi and the coefficient for the quadratic differential operator is
quartic in xi.

By using singular perturbation to linearize the coefficients of
the differential equation39, the solution to the partial differential
equation in (2) for the Birth-death update model can be approxi-
mated using:

X
i,j2Dpipij

1
2p2

i

ðð1 + sÞxj + xiÞ
∂2P
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+
1
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=0: ð3Þ

The death-Birth process shares a similar equation, given by:

X
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Theonly differencebetween the twoequations is the change from
pipij to pjpji. The solution for the Bd process can then be written as:

Pð x!Þ= 1� exp �N
P

i2DpiABd,ixi
� �

1� exp �N
P

i2DpiABd,i

� � : ð5Þ

We can compute ABd by solving the following system of quadratic
equations:

X
j2D 1 + sð ÞA2

Bd,jpipij +A
2
Bd,ipjpji � 2ð1 + sÞABd,jpipij + 2ABd,ipjpji

h i
=0, 8i

ð6Þ
while for dB update processes we need to solve:

X
j2D ð1 + sÞA2

dB,jpjpji +A
2
dB,ipipij � 2ð1 + sÞAdB,jpjpji +2AdB,ipipij

h i
=0, 8i:

ð7Þ
In the death-Birth process, the contribution to the fixation

probability due to the degree distribution is on the order of the
selection coefficient s, while the contribution due to degree mixing
is on the order of s2. Therefore, knowing the degree distribution of
the graph gives a good approximation to the probability of fixation,
for weak s. Assuming s∼ 1

N, the probability of fixation can be
approximated as:

PdB =
1� e�αdBs=ð1 + s=2Þ

1� e�αdBNs=ð1 + s=2Þ
, whereαdB =

hdi2

hd2i
: ð8Þ

Here, 〈d〉 = ∑pidi and hd2i= Ppid
2
i are the first and second

moment of the degree distribution. This selection suppression or
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amplification factor αdB can be used to measure how much the
probability of fixation differs from that of well-mixed popula-
tions. If α = 1, the probability of fixation is identical to well-mixed
populations. Graphs with α > 1 are amplifiers and α < 1 are
suppressors. In the limit of weak selection, Eq. (8) becomes
1�e�s

1�e�Ns for the well-mixed population40,41.
Our approximation shows that, for sufficiently weak selection,

αdB, the suppression parameter for dB processes, is a function of the
first and second moments of the degree distribution alone.

Solving Eqs. (6) and (7), we show the accuracy of the analytic
approximation in Fig. 2 using preferential attachment PA graphs. As
the mean of the degree distribution increases, probability and time of
fixation increase for the death-Birth process (and decrease for the
Birth-death process) toward the well-mixed population limit. This
makes intuitive sense: as the mean degree increases, the graph struc-
ture approaches that of a well-mixed population. In contrast, as the
variance of the degree distribution increases, while keeping the mean
constant, probabilities and times to fixation decrease monotonically

Fig. 2 | Role of the first moments of the degree distribution on evolutionary
dynamics. The dots represent ensemble averages across 106 replicate Monte Carlo
simulations, while the lines represent our analytical approximations. A, B We plot
the probabilities and times to fixation as a function of the mean of the degree
distribution. We use preferential attachment PA graphs, graph size N = 1000 and

Ns= 10. C, D We plot the probabilities and times to fixation as a function of the
variance of the degree distribution, while keeping mean degree constant, as in the
legend. Here, graphs are PA graphs, N = 100 and Ns = 5. Probability and time to
fixation for well-mixed model are calculated using methods outlined in ref. 40
(see the “Analytic description” subsection).
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for the dB process, and increase for the Bd process. The variance
measures how heterogeneous the nodes are. At variance zero, all the
nodes in the graph have the same number of neighbors, which means
the graph is isothermal and the fixation probability is the same as that
of well-mixed populations.

Using the approximation in (8) for the death-Birth dB process, we
show the probability of fixation of a new mutation a across multiple
graph families in Fig. 3A. As the effective selection parameter α
increases, the fixation probability increases, reaching and crossing the
well-mixed line when α equals to one. Intuitively, α quantifies the
interplay between the mean and variance of the degree distribution,
between how well-connected the nodes are and the network node
heterogeneity.

The evolutionary role of graph mixing pattern
For the Birth-death process, unlike the case of the death-Birth process
where the effects of mixing pattern can be ignored under weak
selection, network degree distribution and mixing pattern both con-
tribute to the newmutation’s fixation probability. Similar to the death-
Birth process, the contribution to the fixation probability due to
degree distribution is again on the order of the selection coefficient of
the new mutation s. However, in contrast to the death-Birth process,
the graph mixing pattern has the same order of magnitude contribu-
tion as the graph degree distribution. Under selection s∼ 1

N, the
probability of fixation can be approximated as:

PBd =
1� e�αBds=ð1 + s=2Þ

1� e�αBdNs=ð1 + s=2Þ
, whereαBd = hd�1i

X
i,j2Dpjpjid

�1
i

� � X
i,j2Dpjpjid

�2
i

� ��1
:

ð9Þ

Here, hd�1i= Ppid
�1
i is the first inverse moment of the degree

distribution.
For the Birth-death process, theαBd selection factor canbewritten

as a function of parameters of the network wiring pattern and prop-
erties of its degree distribution. This approximation is shown in Fig. 3B,
alongside the results of Monte Carlo simulations. The fixation prob-
ability increases as the selection parameter α increases, with lower
values for random geometric graphs and higher selection amplifica-
tion for the preferential attachment graph family.

To understand the underlying network properties controlling
evolutionary dynamics of new mutations, we need an intuitive
understanding of the amplification factor in Eq. (9). The inverse
moment 〈d−1〉 quantifies the shape of the degree distribution, while the
rest of the parameters in Eq. (9) can be thought of as parameters that
measure the graph’s assortativity ormixing pattern (ref. 27). A graph is
assortative when a node of degree di preferentially attaches to other
nodes of a degree similar to di. A graph is called disassortative when
the number of edges that connects nodes of degree di and nodes of
dissimilar degree is higher than the expected number in randomly
mixing graphs. Consider an edge swapping operation on a graph that
breaks two edges: one between two nodes of degree di and one
between two nodes of degree dj. Two edges that connect node of
degree di and degree dj are formed from the stubs. If di and dj are
dissimilar, such a rewiring step reduces the graph’s assortativity.
Assuming the population size is large, the change in the αBd amplifi-
cation factor can be written as:

ΔαBd ∼
1
di

� 1
dj

 !2
1
di

+
1
dj

� μ2

μ1

 !
,whereμ1 =

X
i,j2Dpjpjid

�1
i andμ2 =

X
i,j2Dpjpjid

�2
i :

ð10Þ

More details on this derivation are given in Supplementary Note 3. The
magnitude of the change depends on the difference between the
reciprocals of the degrees. If new edges are created between nodes of
very dissimilar degrees, the change in the fixation probability can be
significant. Since the change depends on the reciprocal, nodes of low
degree have a disproportional effect on the change in amplification.
The upper bound of μ2/μ1 is 1/dmin, where dmin is the smallest degree of
the graph. Thismeans that if either diordj is close to the lowestdegree,
αBd is guaranteed to increase. In otherwords, theprobability offixation
increases when there aremore edges connecting nodes of lowdegrees
to nodes of high degrees (disassortative graphs). An example of this is
the star network, one of the strongest known amplifiers for undirected
graphs42–44. A star graph consists of a few nodes forming the center,
while the rest of the nodes connect to the center nodes and form the
vertices of the star. As a consequence, the nodes at the center have
high degrees, while the rest tend to have significantly smaller degree,
and the only edge type in the graph is between nodes of very different

Fig. 3 | Probabilities of fixation across graph families. The fixation probability is
shown on the y-axis as we vary the evolutionary quantity α on the x-axis. The dots
represent ensemble averages across 106 replicate Monte Carlo simulations, while
the lines represent our analytical approximations. Here, graph size N = 1000 and

Ns= 10. Each dot represents simulations on a distinct graph. The various colors
represent graphs generated using different generation algorithms.A shows results
for the death-Birth process. B shows results for the Birth-death process.
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degrees. This type of graphs have the highest disassortativity, and
strongest amplification of selection.

We can use this intuition to also explain the relative location of
graph families in Fig. 3B. Preferential attachment networks tend to be
graphs with low assortativity (high disassortativity), with many hub-
and-spoke structures (lower degree nodes connected to high degree
nodes) and thus strong amplifiers. In contrast, normal geometric
graphswith non-uniform spatial density tend to have high assortativity
and thus tend to suppress the force of selection. This is due to the fact
that nodes in high-density areas tend to be closer to each other and,
assuming the density function is relatively smooth, neighbors tend to
have similar degrees. Similarly, nodes in low spatial density areas tend
to have few neighbors (low degrees), and so do their neighbors.
Therefore, in spatial graphswith nonuniformspatial density, nodes are
connected with neighbors of similar degree. This explains the sup-
pression effect of this network family.

Since knowing the degree distribution alone is not enough to
determine the fixation probability and amplification parameter for the
Birth-death process, to illustrate the effects of assortativity andmixing
pattern on fixation probabilities without the influence of degree dis-
tribution and graph generating method, we use edge swap operations
to sample graphs with different mixing patterns, while keeping the
degree distribution the same. We use graphs generated fromdifferent
generating methods as input graphs to ensure generalization across
graph families. For the same degree distribution, the spread of values
for the fixation probability due to the effect of degree mixing can be
substantial (Fig. 4A). Here, all dots of the same color represent graphs
from the same starting graph family and are altered by the edge swap
sampling method with different end mixing patterns. We use the var-
iance of the degree distribution as a measure for the shape of the
distribution. Although themean degree is not shown, dots of the same
color share the same mean.

We use degree Pearson correlation r as a measure of the mixing
pattern in the graph. We maximize and minimize the degree correla-
tion toobtain anensembleofgraphswith the samedegreedistribution

but different mixing pattern. When r = 1, the network has perfect
assortative mixing patterns, while r = −1 corresponds to the case of a
disassortative network. The contribution of the mixing pattern in the
amplification constant in Eq. (9) is also a measure of assortativity
(Fig. 4B). r and αBd have a negative correlation, as expected. For graphs
with the same degree distribution, the graphs that have low assorta-
tivity (high αBd) have a higher probability of fixation (Fig. 4C). The
difference between Figs. 4C and 3B is that in 4C we keep the degree
distribution constant. Therefore, both node types and edge types in a
graph both contribute to evolutionary dynamics on the graph
structure.

Increased suppression of selection in large populations
While it has been previously claimed that under the Birth-death pro-
cess most graphs are amplifiers of selection18, our results above show
that a large fraction of Birth-death graphs are suppressors of selection.
The discrepancy in the results is due to the different population sizes
considered. Due to computational and analytic limitations, previous
studies consider very small population sizes of under N = 30 indivi-
duals. In this section,we study the effects ofpopulation size onfixation
probabilities using two types of graphs: star graphs, known to be one
of the strongest undirected amplifiers, and detour graphs, strong
suppresors43,44.

A detour graph consists of a completely connected central cluster
and a cycle part (see Fig. 5). These graphs have a low probability of
fixation due to their high assortativity, since the graphs only have two
edges connecting nodes of different degrees. We show that the fixa-
tion probability depends on the size of the central cluster, i.e., the
length of the detour. To find the cluster size that minimizes the
probability of fixation, we use the solution to the diffusion Eq. (47)
from Supplementary Note 2, derived using regular perturbation
(ref. 45):

PBd≈
1
N

+ s
X

ij
pipjAij , ð11Þ

Fig. 4 | Effects of the mixing pattern on the Bd probability of fixation. The dots
represent ensemble averages across 5 × 106 replicate Monte Carlo simulations,
while the lines represent our analytical approximations. Here the degree distribu-
tion is held constant aswevary themixing pattern of the graphs,N = 100and s =0.1.
Colors indicate the graph family (with the same degree distribution) as in the
legend. Mixing pattern of the graph is tuned using edge swapping operations. To

highlight thatmean and variance in degree is not enough to predict probabilities of
fixation,A shows that the probability of fixation can span awide range of values, for
the same mean and standard deviation in degree. B shows the dependence of the
amplification parameter on the mixing pattern, or correlation in degree r. C shows
that the selection amplification factor from Eq. (9) explains the effect of graph
mixing pattern on the probability of fixation.
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where Aij satisfy the following system of linear equations (see more
detail on the derivation in Supplementary Note 4):

pjpji � 1
hd�1idi

+2 Aii
N

� �
� 2
P

kpipjpjkAki +2
P

kpjpkpkiAij

+pipij � 1
hd�1idj

+2
Ajj

N

� 	
� 2
P

kpjpipikAkj +2
P

kpipkpkjAij =0:
ð12Þ

The size of this system of equations is ∣D∣(∣D∣ + 1)/2, where ∣D∣ is
the number of unique degrees in the graph. Since a detour graph has
only two types of degrees, we only need to solve a system of 3
equations for A11, A12, and A22. The only variable that influences the
probability of fixation in the detour graphs is the length of the
detour. We plot the difference in probabilities of fixation for detour
graphs of different sizes and the well-mixed population against the
length of the detour in Fig. 5A. When detour length equals zero, we
have the complete graph where the difference in the probability of
fixation is zero. Since detour length is maximized in a ring graph, the
probability of fixation initially decreases as the length of the detour is
increased, reaching a minimum, before increasing toward the well-
mixed control. It can also be observed that the minimum decreases
with population size. The regular perturbation approximation is used
instead of Eq. (9) since, while the approximation predicts the mag-
nitude of suppression on detour graphs, the minima are shifted
slightly to the left toward well-mixed. Mathematically, this is due to
the fact that singular perturbation deviates from the solution of the
diffusion equation when the exchange of individuals between two
sub-populations is weak46.

The star graphs and the detour graphs constitute limiting struc-
tures for the range of probabilities of fixation for undirected graphs
under sufficiently weak selection (Fig. 5B). The difference in prob-
ability of fixation between the detour graph and a well-mixed popu-
lation is close to zero when graph size is small, however it decreases
sharply as population size increases. This explains why strong sup-
pressors are prevalent in large populations, but rarely observed in
small populations. Although we did not rigorously prove that detour
graphs serve as the lower bound for the probability of fixation under
the Birth-death update, this is empirically observed in graphs of small
size (ref. 43). It is reasonable to assume the existence of large graphs
that have stronger suppression, but this only reinforces our point that

suppressors are more prevalent in larger populations. The result is
particularly biologically interesting. Imagine populations with indivi-
duals fixed in space, such as species in an ecosystem or cells in bio-
logical tissues. These spatial populations can be reasonably
approximated by random geometric or Waxman graphs. As shown in
the previous section, these types of populations are likely to be sup-
pressors under the Birth-death update. If the size of the population
were to decrease (for example, environmental catastrophes or injury
and aging of tissues), not only will the force of drift increase in the
population, but also the suppressive capability of the population
against the invasion of beneficial mutation will be compromised. This
could lead to increased likelihood of beneficialmutations propagating
in the population (and potential rescue the population from extinc-
tion), or increased rate of accumulation of deleterious driver muta-
tions that initiate neoplasms.

Application to mutation accumulation in hematopoietic stem
cell populations
We show how the theory developed above can be linked to novel
datasets of spatial localization and specifically, be used for the study of
rates of mutation accumulation in the hematopoietic stem cell (HSC)
population of the bone marrow. Hematopoietic stem cells reside in
specialized micro-environments, or niches, where distinct mesenchy-
mal cells, the vasculature, and differentiated hematopoietic cells
interact to regulate stem cell maintenance and differentiation
(refs. 47,48). These niches are fixed in location and number, with
heterogeneous spatial structure, and stem cells are in constant com-
petition for niche occupancy (refs. 49,50).

New innovations in imaging techniques and our ability to process
these images at scale offer unprecedented opportunities to study how
the spatial heterogeneity of stem cell niches shape tissue evolutionary
dynamics. Just as demographic surveys can reveal the rates at which a
contagious disease can spread through a spatially heterogenous
population, these imaging datasets allow us to quantify cellular and
molecular patterns of spatial variation and study how these topologies
shape evolutionary dynamics. We use published datasets that provide
the spatial location of hematopoietic stem and progenitor cells in four
samples of mouse tibia24 and the spatial locations of 8 bone marrow
samples of CXCL12-abundant reticular cells (which critically modulate
hematopoiesis at various levels, including hematopoietic stem cell
maintenance), each with two images of two anatomically distinct
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Fig. 5 | Detour and star graphs are graph families that minimize and maximize
of probability of fixation under the Bd process. The dots represent ensemble
averages across 106 replicateMonteCarlo simulations, while the lines represent our
analytical approximations. Detour graphs are the strongest suppressors under
weak selection. Detour graph consists of a completely connected central cluster
and a cycle part. In (A), we plot the probability of fixation on detour graphs with

varying lengths of the detour cycle. Here s = 0.002. In (B), we plot the probability of
fixation across graph types, with respect to population size, to illustrate how the
star and detour graphs represent extreme values of the fixation probability. Here
s =0.005. The two graphs illustrated are detour graphs with different detour
lengths.
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regions (the diaphysis and the metaphysis), in total 16 cellular
populations25.

Adult hematopoietic stem cells are known to divide symme-
trically, whereby a mother stem cell either divides into two differ-
entiated daughter cells or two undifferentiated stem cells51,52. The two
modes of symmetric division are analogous to birth and death in a
population described by the Moran process. We build the networks of
stem cell niche architecture and use the inferred spatial topologies to
infer the accumulation rate of driver mutations, the main cause of
cancer in cycling tissues22 (see “Methods” section). One resulting net-
work is shown in Fig. 6A. For illustration purposes, for the network
shown, the cutoff distance is set to 300μm (4.78 × the distance
between shortest pairs).

The difference in probabilities of fixation, compared to those in
well-mixed populations, is plotted against the population size in
Fig. 6B (Birth-death update) and 6C (death-Birth update). The color
dots are the results using a cut-off distanceof 15,which is the closest to
our estimatedbiological interaction range (see the “Methods” section).
We also show results for networks generated using cut-off radii ran-
ging from2 to 20 times the average distancebetween shortest pairs, as
comparison. The fixation probabilities are either close to or lower than
that of the well-mixed, except networks generated using two times the
distance between the shortest pair as the cut-off radius (cut-off dis-
tance equal to 2).

We show that geometric graphs constructed from a non-uniform
spatial distribution of individuals are likely to result in an assortative
mixing pattern, hence we find suppression of selection in the hema-
topoietic stem cell populations, invariant to the underlying update
process (compare panels 6B, C). We also construct networks with a
probabilistic connection function31 and observe no qualitative
difference.

Our results also show that the strengthof suppression increases as
the stem cell population size increases and the fixation probability
shows a negative correlation with population size (Pearson correlation
of −0.687 and p value of 0.001). A similar conclusion is reached with
most other cut-off distances (see examples of cut-off distances 10 and
20 in Supplementary Fig. S6), as well as other mutant selection coef-
ficients (see examples of 5% and 10% fitness increases in Supplemen-
tary Fig. S7). A previous study by Dingli and Pacheco53 predicts that the

total number of active stem cells in mammals scales with body mass
with exponent 3/4. Assuming similar bone marrow tissue architecture
in systems with more stem cells, suppression of selection is predicted
to be amplified in larger mammals. This observation could partially
explain the observed reduction in cancer incidence in large organisms
as stated by Peto’s paradox54. This also implies that processes such as
injury or aging, that lead to reduced stem cell and niche count, could
lead to the increased likelihood of beneficial mutations propagating in
the population and an increased risk of developing cumulative dis-
eases of aging, such as cancer.

Discussion
Graphs represent a powerful tool to mathematically represent a
population’s structure of spread or interaction and to ask how prop-
erties of this structure shape the balance of evolutionary forces.
However, obtaining closed form solutions for evolutionary dynamics
on graphs has been particularly difficult. Here we introduce new the-
oretical and computational methods to rigorously study the role of
graph topology on shaping evolutionary dynamics. We focus on
parameters of the degree distribution and the graph mixing pattern
because these distributions inform on graph-wide properties of the
fundamental building blocks of a network: the nodes and the edges.

We show that the probability of fixation of a new mutation
appearing on a random node can be approximated by solving a system
of quadratic equations with number of variables depending on the
number of degrees in the graph, which in most practical cases is effi-
cient, even in large populations. By tuning the first moments of the
degree distribution independently of each other, we analyze how the
mean and variance in degree change probabilities and times to fixation.
For example, we show that the probability of fixation under the Birth-
death update increases monotonically as a function of the variance of
the degree distribution. This is because the parameter that controls
degree heterogeneity also controls the mixing pattern of the graph, by
changing the connection bias toward nodes of higher degree.

Moreover, we write the relevant selective parameter of suppres-
sion or amplification (αdB and αBd), predictive of whether the network
is an amplifier or suppressor of selection. While for the death-Birth
process, this constant depends on properties of the degree distribu-
tion, for the Birth-death process, this constant is composed of

Fig. 6 | The spatial networks of the hematopoietic stem cell (HSC) populations.
We use a public dataset of spatial locations in the bone marrow consisting of HSC
locations (source data24) and proxy niche component locations (source data25). In
(A), color dots represent an example of the spatial locations of stem cells in the cell
population, while the colors corresponds to the density of cells. We show an
example of the spatial distribution of hematopoietic stem cells in the mouse tibia:
the xy cross-section of the tibia with cells counted in a 260μm×350μm area and
the yz cross-section of the tibia with cells counted in a 350μm× 11.5μmarea. Using
these data, we build the resulting geometric random graphs (the cut-off radius of
the illustration is set to 300μm for illustration purposes). In (B, C), we use these

networks to study evolutionary dynamics on these stem cell niche spatial networks
as a function of their population size. The color dots use a cut-off distance of 15.
Gray dots are results from other cut-off distances, ranging from 2 to 20, for com-
parison. The diaphysis is the shaft or central part of the tibia and the metaphysis is
the neck portion of the bone (source data25). Here, s =0.01 and Ns varies with
population size. B shows results using the Birth-death process and C shows the
death-Birth process. Dots are averaged over at least 1 million simulations. The p
values are obtained from a Wald test with a null hypothesis that the slope is equal
to zero.
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parameters of both the mixing pattern and the degree distribution of
the graph. If degree distribution is held constant, increasing the
amplification parameter corresponds to increasing the disassortativity
of the graph. Or reversely, increasing the disassortativity of a network
increases the probabilities of fixation monotonically across multiple
random graph families. For the death-Birth process, increasing dis-
assortativity also increases the fixation probability, but only when
selection is larger than order of 1/N.

The limitation of this approach is that it ignores higher-order
organizations of the network, such as community structures and net-
work motifs and assumes that nodes of the same degree are topolo-
gically similar. Furthermore, our approach averages the assortativity of
individual nodes over the entire graph and an example where this
approach would not work is for a graph consisting of two parts con-
nected by a few edges, one highly assortative, and one highly dis-
assortative. The graph would be treated as neutrally assortative and
this would lead to incorrect prediction of the fixation probability.

We also show that, contrary to prior empirical observations on
small graphs18, the Birth-death process can also be a strong suppressor
of selection and not just an amplifier. For example, detour graphs are a
class of graphs that show strong suppression under the Birth-death
process. These graphs are extremely assortative and the magnitude of
the suppression is shown to depend on the detour size. We analytically
find the optimal suppression sizes of the detour graphs for any given
population size, and empirically show that the magnitude of maximum
suppression decreases with population size. Since the lower bound of
fixation probability decreases as population size increases, there are
hints at the possible existence of an arbitrarily strong suppressor that
neglects selective advantages in a large population. In biological set-
tings, such as spatially complex ecosystems or cells in biological tissues,
large populations are therefore more likely to be suppressors under the
Birth-death update. If an event were to decrease the size of the popu-
lation (for example, environmental catastrophes that lead to the
destruction of forests or injury and aging of tissues), not only will the
force of drift increase in the population, but also the suppressive cap-
ability of the population against the invasion of beneficial mutation will
be compromised. One caveat is that this magnitude of suppression also
depends on the strength of selection, and these topologies can transi-
tion from suppressor to amplifier given large enough selection pressure.

In rapidly cycling tissues, tissue maintenance and repair are
coordinated by stem cells, which are routinely stochastically lost and
replaced in the population22 and thus instrumental for studying rates
of evolution andmutation accumulation23. Previous theoretical studies
on the population dynamics of stem cells either ignore the structure of
the tissue, consider the topology of small populations of stem cells55,56,
or assume cells are arranged in lattices where every node has the same
degree57. By analyzing recent imaging data on the spatial organization
of hematopoietic stem cells in the bone marrow, we show that stem
cell populations are organized to minimize fixation probabilities of
new mutants spreading through the population.

While our focus here is to understand the evolutionary properties
of the architecture of the stem cell niches, our approach makes many
more questions ripe for exploration. For example, in a recent study,
Watson et al.58 use a well-mixed model to estimate mutation accumu-
lation and selection coefficients in clonal hematopoiesis. Similarly,
Heyde et al.59 inferred division time andmutationalfitness effects from
variant allele frequency (VAF) data using a well-mixed Moran model,
and found that increased stem cell proliferation expedites somatic
evolution. Our results highlight that spatial heterogeneity can reduce
the rate at which driver mutations spread through the population and
suggest that using a well-mixed model to fit data produced by a
spatially-structured population can potentially underestimate the
strength of selection on somatic variants. Furthermore, in growing
tumors, discrepancies can arise when sampling does not capture a
uniform representation of the population, since over- or under-

representation of mutations in the VAF distributions due to spatial
effects can be mistaken as signatures of selection60. The theory we
present here can also be extended to study the evolutionary dynamics
of spatially heterogeneous tumor populations61–65.

Further work on how network properties shape evolutionary
dynamics will also help us understand how to construct spatial struc-
tures in the limit of either suppression or amplification across various
biological systems, natural or artificial. This would allow controlled
suppression against the spread of unwanted variants and delay of
population collapse. Reversely, we could also use population structure
as a screening tool for faster amplification of newly discovered bene-
ficial mutations or optimized protein complexes for medical or
industrial applications.

Methods
List of network families used in the study
Linking network topology to evolutionary dynamics and under-
standing which network properties shape rates of evolution is com-
plicated by the fact that these properties are often correlated, hard to
tune independently and differ across many network families. In this
study, we explore both well-known network families using built-in
generators from NetworkX66 and also design graphs that allow us to
tune properties independently, as detailed below.

Erdős Rényi random networks. The Erdős Rényi model starts with a
set of N isolated nodes, and connects each pair of two nodes with
probability p, independently. We generate Erdős Rényi random net-
works using built-in generators from NetworkX66.

Preferential attachment graphs. In preferential attachment (PA)
graphs, each network starts with a single node and nodes are added
sequentially until the population reaches size N. Each new node is
added to the network and connected to other individuals with a
probability proportional to the individual’s current degree to the
power of a given parameter β. By adjusting the number of edges added
each step (m) and the power of preferential attachment (β), this family
of graphs allows for straightforward independent tuning of the
moments of the degree distribution. Parameter m is the only para-
meter of the model that controls the first moment of the degree dis-
tribution. Parameter β controls the shape of the distribution, with the
distributionbeing exponentialwhenβ =0, stretchedexponentialwhen
0 < β < 1, and power law when β = 1 (ref. 67). When the power of pre-
ferential attachment β = 1, PA graphs exhibit the scale-free property28

and that iswhy PAgraphs areoftenused as amodel to study the spread
of information or cultural norms68.

Random geometric graphs. In contrast, for generalized random
geometric graphs31,32, nodes have spatial positions randomly drawn
from a probability distribution to model spatially homogeneous
populations (using the uniform distribution) or populations with het-
erogeneous spatial density (using the normal distribution). Once the
spatial locations of the nodes are determined, the generating algo-
rithm iterates through all pairs of nodes. An edge is created between
two nodes using a probability distribution based on pair-wise distance.
Here we use an exponential distribution (the resulting graphs are
known as Waxman graphs) and a heavy-side function where we con-
nect two nodes if the distance is below a predefined threshold
(denoted as random geometric graphs).

Smallworld networks. We generate small world networks using built-
in generators from NetworkX66 and the Watts-Strogatz model.

Detour graphs. A detour graph is formed by starting with a complete
graph of size n1 and replacing one of the edges with a path of length
n2 + 1 ≥ 243.
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Star graphs. The star graph consists of one center node connected to
N − 1 outer nodes. We generate star graphs using built-in generators
from NetworkX66.

Power-law cluster graphs. We use the Holme and Kim algorithm for
growing graphs with power-law degree distribution and approximate
average clustering implemented in NetworkX66.

The graph rewiring algorithm
We implement a sampling network generation algorithm based on
simulated annealing (Fig. 1C) as follows: the algorithm relies on a
degree swapping operation on graphs (ref. 21) and runs for a preset
number of time steps. At every time step, two random edges are
selected. Let us denote them by A–B and C–D. The two edges are
broken and rewired to form A–C and B–D. The degree distribution of
the graph is preserved, while other properties such as the mixing
pattern of nodes are changed. Thus, we can use the edge swapping
operation to find graphs with extreme graph properties from all pos-
sible graphs of fixed degree distribution. The algorithm can take any
graph as input. We use degree Pearson correlation r to measure the
mixing pattern in the graph27. Parameter r ranges from −1 to 1, with
positive r for networks where nodes with similar degrees are pre-
ferentially connected, and negative degree correlation for networks
where high degree nodes preferentially form edges with low
degree nodes.

If the goal is to find the graph that maximizes the degree corre-
lation, we accept an edge swap according to the criterion:

Uniform ½0,1�< min 1,exp�γ rafter�rbeforeð Þ� �
ð13Þ

and reject the step otherwise. Here, 1/γ is the annealing temperature
that controls how stringent the criterion must be and is decreased as
the simulation proceeds. Intermediate graphs are periodically saved
and we use the heuristic outlined in Gkantsidis et al.69 to periodically
check that the graph is fully connected. This algorithm yields a set of
graphs spanning a range of possible degree correlations, thus allowing
us to study the effects of mixing pattern on evolutionary dynamics,
without changes to the graph degree distribution.

We use combinations of parameters in five graph families and
study sixmain graph characteristics (mean degree, variance in degree,
third moment of degree distribution, network modularity, average
clustering, and network assortativity), predictive of evolutionary
dynamics. We use PCA to reduce the dimensionality of the data
(Supplementary Fig. S3). We are able to capture 89% of the variation in
network statistics using only the first three principle components. We
observe that the graph families are clustered in this lower dimensional
embedding space, with gaps in space existing between the network
families. Therefore, our method allows us to sample graphs not
accessible by traditional network generation algorithms specific to
particular graph families. The black line in Supplementary Fig. S3
shows a continuous path through intermediate graphs, previously
inaccessible using other methods, generated by the graph rewiring.

Building the cellular networksof the stemcell niche architecture
Every HSC niche constitutes a node in the graph and an edge is added
between two nodes if the distance between them is less than a cut-off
radius, similar to the generation of a random geometric graph. The
samples vary in dimensions, number of cells, and segmentation tech-
niques. We normalize the data by expressing the distance in units of the
average distance between shortest pairs of cells (62.72μm for HSC).

We use networks generated using cut-off distance of 15, which is
the closest to our estimated biological interaction range. We interpret
the cut-off distance as the maximum distance a HSC could travel in its
entire lifespan. Live-animal tracking of individual hematopoietic stem
cells in their niche showed MFG cells, a largely quiescent population

with long-term self-renewal capability, displacing an average distance
of 8.69μm in a 2.5 h period70. HSCs have median replication time (the
time when 50% of HSCs have divided) of 1.7 weeks71. During home-
ostasis, the rate of replication should balance the rate of depletion.
This leads to the estimated interaction range of 1028μm which cor-
responds to 16.4 × the distance between the shortest pairs.

In Fig. 6, we also show results for cut-off distances between 2 and
20, as gray dots, for comparison.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data required to reproduce analyses are available at https://github.
com/yangpingkuo/Suppressor-of-selection-in-the-stem-cell-niches-of-
the-bone-marrow. To build the networks of the stem cell niches of the
bone marrow we use previously published open source datasets that
provide the spatial location of hematopoietic stem and progenitor
cells in four samples of mouse tibia24 and the spatial locations of 8
bone marrow samples of CXCL12-abundant reticular cells, each with
two images of two anatomically distinct regions, in total 16 cellular
populations25. As stated in the studies referenced, all raw data are
available upon request to the corresponding authors. Processed data
derived from this study are available at https://github.com/
yangpingkuo/Suppressor-of-selection-in-the-stem-cell-niches-of-the-
bone-marrow.

Code availability
Custom scripts were used for simulation studies and data analyses.
Source code that allows for the reproduction of the simulations and
results presented here can be found on Github at the following link:
https://github.com/yangpingkuo/Suppressor-of-selection-in-the-
stem-cell-niches-of-the-bone-marrow.
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