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Exploringhigh-qualitymicrobial genomesby
assembling short-reads with long-range
connectivity

Zhenmiao Zhang 1,8, Jin Xiao1,8, Hongbo Wang1, Chao Yang1, Yufen Huang2,
Zhen Yue 3, Yang Chen4, Lijuan Han5, Kejing Yin1,6, Aiping Lyu 7,
Xiaodong Fang2,3,5 & Lu Zhang 1,6

Although long-read sequencing enables the generation of complete genomes
for unculturable microbes, its high cost limits the widespread adoption of
long-read sequencing in large-scale metagenomic studies. An alternative
method is to assemble short-reads with long-range connectivity, which can be
a cost-effective way to generate high-quality microbial genomes. Here, we
develop Pangaea, a bioinformatic approachdesigned to enhancemetagenome
assembly using short-reads with long-range connectivity. Pangaea leverages
connectivity derived from physical barcodes of linked-reads or virtual bar-
codes by aligning short-reads to long-reads. Pangaea utilizes a deep learning-
based read binning algorithm to assemble co-barcoded reads exhibiting
similar sequence contexts and abundances, thereby improving the assembly
of high- andmedium-abundancemicrobial genomes. Pangaea also leverages a
multi-thresholding algorithm strategy to refine assembly for low-abundance
microbes.Webenchmark Pangaea on linked-reads and a combination of short-
and long-reads from simulation data, mock communities and human gut
metagenomes. Pangaea achieves significantly higher contig continuity as well
as more near-complete metagenome-assembled genomes (NCMAGs) than the
existing assemblers. Pangaea also generates three complete and circular
NCMAGs on the human gut microbiomes.

Metagenome assembly is one of the main steps to reconstruct
microbial genomes from culture-free metagenomic sequencing data1.
Cost-effective short-read sequencing technologies have been widely
applied to generate high-quality microbial reference genomes from
large cohorts of human gut microbiomes2–4. However, the short-read
length (100–300bps) may not allow us to resolve intra-species repe-
titive regions and inter-species conserved regions5 or to achieve
complete microbial genomes. The emerging long-read sequencing

technologies such as PacBio continuous long-read sequencing (PacBio
CLR)6, Oxford Nanopore sequencing (ONT)7 and PacBio HiFi
sequencing8, have shown their superiority to short-read sequencing in
generating metagenome-assembled genomes (MAGs) with high con-
tinuity or producing complete and circular MAGs using long-range
connectivity they provided9–11. Despite potential benefits, the high cost
of long-read sequencing makes deep sequencing impracticable and
continues to hinder its application in population-scale or clinical
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studies12. In our previous study13, we observed that long-reads gener-
ated fewer high-quality MAGs than short-reads due to insufficient
sequencingdepth. As analternativeway todeep long-read sequencing,
some studies13–16 suggested utilizing cost-effective short-reads with
long-range connectivity for metagenome assembly. The long-range
connectivity could be derived from physical barcodes (e.g., linked-
reads) or virtual links by long-fragment sequencing technologies (e.g.,
long-reads).

Linked-read sequencing attaches identical barcodes (physical
barcodes) to the short-reads if they are derived from the same long
DNA fragment. Before the discontinuation, 10x Chromium was the
most widely used linked-read sequencing technology, generating
contigs with high continuity and producing more near-complete
metagenome-assembled genomes (NCMAGs; Methods) than short-
read sequencing13,14. However, co-barcoded short-reads of 10x Geno-
mics have a high chance of being derived from multiple DNA frag-
ments (the average number of fragments per barcode [NF/B] is 16.61;
Methods and Supplementary Note 1), which may complicate the
deconvolution of complex microbial communities. Recently, MGI and
Universal Sequencing Technology released their linked-read sequen-
cing technologies, namely single-tube Long Fragment Read (stLFR)17

and Transposase Enzyme-Linked Long-read Sequencing (TELL-Seq)18.
The barcoding reactions of these technologies occur on billions of
microbeads, leading tomuch higher barcode specificity (NF/B = 1.54 for
stLFR; NF/B = 4.26 for TELL-Seq; Supplementary Note 1). The co-
barcoded short-reads of these technologies are more likely to come
from the same genomic regions.

Several tools have been developed for linked-read assembly: (i)
Athena14 fills the gaps between contigs by recruiting the 10x Genomics
co-barcoded reads for local assembly; (ii) cloudSPAdes19 reconstructs
the long DNA fragments in the assembly graph for solving the shortest
superstring problem to improve contig continuity; (iii) Supernova20

was developed for human genome diploid assembly by allowing two
paths in megabubble structures based on a series of modification of
assembly graph using 10x co-barcoded reads; (iv) MetaTrass21 groups
stLFR co-barcoded reads by reference-based taxonomic annotation
and applies Supernova to assemble the genome of each identified
species.With the exception ofMetaTrass, all the other three tools were
developed for 10x Genomics linked-reads with low barcode specificity.
We excluded MetaTrass for comparison because it relies on the
available microbial reference genomes and thus has a limited cap-
ability to discover novel species. There is a lack of an efficient tool that
could fully exploit the long-range connectivity of short-reads from
barcodes with high specificity to improve de novo metagenome
assembly.

Long-range connectivity could alsobeprovidedby the other long-
fragment sequencing technologies (e.g., long-reads), which can be
used in conjunction with short-reads for hybrid assembly. The hybrid
assembly is typically performed by combining deep short-read
sequencing with shallow long-read sequencing. It takes advantage of
the high base quality of short-reads for contig assembly and the long-
range connectivity from long-reads for contig extension. Several
hybrid assemblers were developed for metagenome assembly, for
example (i) hybridSPAdes16 maps long-reads to the assembly graph
from short-reads and utilizes the long-range connectivity to resolve
uneven path depth and repetitive sequences in the graph; (ii) OPERA-
MS15 aligns long-reads to the contigs assembled from short-reads to
construct a scaffold graph and groups contigs based on microbial
reference genomes followed by gap filling in each cluster; and (iii)
MetaPlatanus22 extends contigs from the short-read assembly using
long-range connectivity from long-reads, species-specific sequence
compositions, and read depth.

Previous studies showed that read subsampling was an effective
strategy for assembling large complex metagenomic datasets23. It
could improve the assembly of high-abundance microbes24, but result

in poor quality in assembling low-abundance microbes25 due to
insufficient reads. The read binning strategy has been proven advan-
tageous inmetagenome assembly26–28. It couldbe amore sophisticated
read subsampling strategy to improve the assemblies of high- and
medium-abundance microbes. However, the existing tools are
impractical when it comes to handling millions of short-reads within
acceptable time and memory limitations26.

We introduce Pangaea to improve metagenome assembly using
short-reads with long-range connectivity based on three modules. (i)
Firstly, Pangaea performs co-barcoded short-read clustering to reduce
the complexity of metagenomic sequencing data. Pangaea groups co-
barcoded short-reads rather than grouping independent short-reads,
as the co-barcoded reads are highly likely to be from the same long
fragments (Supplementary Note 1). Short-reads from each cluster are
assembled individually, which is believed to result in high-quality
assemblies for high- andmedium-abundancemicrobes. This is because
the short-reads within the same cluster exhibit lower complexity
compared to the original dataset. (ii) Secondly, Pangaea adopts a
multi-thresholding reassembly step to refine the assembly of low-
abundance microbes using different abundance thresholds to handle
the uneven abundances of microbes (Methods). The data from high-
abundancemicrobes are gradually removed from the assembly graph,
thus the sequences from various levels of low-abundancemicrobes are
preserved. (iii) Thirdly, Pangaea integrates the assemblies from the
above two modules, original short-read assembly and local assembly
(by Athena) to improve contig continuity (Methods).

We benchmarked Pangaea using short-reads with physical bar-
codes from linked-read simulation ofmockmetagenomes, and linked-
read sequencing of the mock and human gut metagenomes. We
evaluated its generalizability using short-reads with virtual barcodes
generated from their alignments to long-reads (Methods). For linked-
reads, we compared Pangaea with two short-read assemblers
(metaSPAdes29 and MEGAHIT30) and three linked-read assemblers
(cloudSPAdes, Supernova and Athena). We found Pangaea achieved
substantially better contig continuity and more NCMAGs than the
other tools on all datasets. It also generated three complete and cir-
cular microbial genomes for the three real complex microbial com-
munities. For short-reads with virtual barcodes, Pangaea could
substantially improve contig continuity and generate better assem-
blies for both high- and low-abundance microbes than the short-read
and hybrid assemblers.

Results
Workflow of Pangaea
Pangaea is a de novometagenome assembler designed for short-reads
with long-range connectivity represented by their attached barcodes
(Fig. 1a). The barcodes can be generated physically (from linked-read
sequencing) or virtually (from long-reads; Methods). The core algo-
rithms of Pangaea are designed to reduce the complexity of metage-
nomic sequencing data (for high- and medium-abundance microbes)
and deal with the uneven abundances of involved microbes (for low-
abundance microbes) based on the barcodes with high specificity.
Pangaea contains three main modules: (i) Co-barcoded read binning.
This module is intended to reduce the complexity of metagenomic
sequencing data and ismainly used to improve the assemblies of high-
andmedium-abundancemicrobes. Pangaea extracts k-mer histograms
and tetra-nucleotide frequencies (TNFs; Methods) of co-barcoded
reads and represents them in low-dimensional latent space by Varia-
tional Autoencoder (VAE; Methods; Supplementary Note 2). Pangaea
adopts a weighted sampling strategy on training VAE to balance the
number of co-barcoded short-reads from microbes with different
abundances (Methods). Pangaea utilizes RPH-kmeans (k-means based
on random projection hashing)31 to group co-barcoded short-reads in
the latent space31, which is beneficial for bins with uneven sizes
(Methods). Short-reads from the same bin have a high chance of
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originating from the same microbe. These short-reads are then inde-
pendently assembled. (ii)Multi-thresholding reassembly. Readbinning
may divide co-barcoded short-reads from the same low-abundance
microbe into different bins. It could lead to poor assembly perfor-
mance for these microbes due to insufficient data. Pangaea improves
the assemblies of low-abundance microbes by collecting and reas-
sembling the linked-reads that cannotbe aligned to high-depth contigs
obtained from read binning. The high-depth contigs are defined based
on different depth thresholds (Fig. 1b; Methods). (iii) Ensemble
assembly. This module is to eliminate the impact of mis-binning on
final assembly results. Pangaea merged the assemblies from the pre-
vious twomodules, the local assembly ofAthena and theoriginal short-
read assembly using OLC assembly strategy (Methods). For short-
reads with virtual barcodes, Pangaea would additionally integrate the
contigs from the selected hybrid assembler using quickmerge
(Methods).

Benchmarking datasets
We adopted metagenomic sequencing datasets from three mock
microbial communities and three fecal samples to benchmarkPangaea
with the existing assemblers. The three mock communities are with
known compositions and all reference genomes of the involved
microbes are available: (i) ATCC-MSA-1003, containing 20 strains with
different abundances varying from 0.02% to 18% (Supplementary
Table 1); (ii) CAMI-high, CAMI high-complexity microbial community
including 596 microbial genomes and 478 circular elements32; and (iii)
ZYMO (ZymoBIOMICSTM Microbial Community Standard II (Log Dis-
tribution)), with extremely imbalanced abundance for 10 strains from

0.000089% to 89.1%33. ATCC-MSA-1003 was sequenced using stLFR
(132.95 Gb), TELL-Seq (173.28Gb) and 10x Genomics linked-reads
(100.38Gb); stLFR linked-reads were simulated for CAMI-high and
ZYMO (Methods); the three fecal samples (S1: 136.60Gb, S2: 131.59Gb,
and S3: 50.74Gb) were sequenced using stLFR linked-reads (Supple-
mentary Table 2; Supplementary Fig. 1; Methods).

Co-barcoded read binning improves assemblies for microbes
with high and medium abundances
Co-barcoded read binning is a core step of Pangaea and it could sig-
nificantly improve the assembly for high- and medium-abundance
microbes, particularly for the real complex microbial communities.

We compared the metagenome assemblies of Pangaea with
(ASMB) and without (ASM¬B) read binning to investigate the impact of
co-barcoded read binning on final assembly results. For ATCC-MSA-
1003, ASMB had a higher overall NA50 (649.67 kb) than ASM¬B

(601.67 kb; Supplementary Data 1). Considering only medium and
high-abundance strains, ASMB achieved higher NGA50s for 7 out of the
10 strains with abundances > 1% (Supplementary Data 1). Although
there were no genomes with an abundance> 1% in CAMI-high, ASMB

still had a higher overall NA50 (212.49 kb) than ASM¬B (208.31 kb;
Supplementary Data 1). We observed ASMB and ASM¬B generated
comparable N50s on the three human gut microbiomes (Supplemen-
tary Data 1).

We further evaluated the assemblieswith respect toMAGqualities
(completeness, contamination, and RNA annotations) after contig
binning on CAMI-high and the three human gut microbiomes (Meth-
ods). For ATCC-MSA-1003, the reference genomes are available, and

Fig. 1 | Workflow of Pangaea. a Pangaea could assemble reads with physical bar-
codes from linked-read sequencing, or virtual barcodes from aligning short-reads
to long-reads. Linked-reads of stLFRandTELL-Seq arewith highbarcode specificity.
b Pangaea extracts features including k-mer histograms and TNFs from co-
barcoded reads. The features are concatenated and used to represent reads in low-

dimensional latent space using a variational autoencoder. The embeddings of co-
barcoded reads are clustered by RPH-kmeans. Pangaea assembles the reads from
each bin independently and adopts a multi-thresholding reassembly strategy to
improve the assemblies for low-abundance microbes. Ensemble assembly inte-
grates the contigs from different strategies using OLC algorithm.
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the community design is simple (only 20 strains); therefore, contig
binning is unnecessary. We observed ASMB generated one more
NCMAG than ASM¬B for CAMI-high (ASMB = 14, ASM¬B = 13; Supple-
mentary Data 2). For the human gut microbiomes, ASMB obtained
more NCMAGs than ASM¬B on all the three samples (S1: ASMB = 24,
ASM¬B = 20; S2: ASMB = 17, ASM¬B = 11; S3: ASMB= 9, ASM¬B = 8; Sup-
plementary Data 2). These NCMAGs from ASMB were commonly
observed fromhigh-abundancemicrobes (average depths of NCMAGs:
S1 = 526.6X; S2 = 211.19X; S3 = 256.52X).

Our results showed that the number of read bins (k) could influ-
ence both the precision and recall of read binning (a large k resulted in
high binning precision and low recall; Supplementary Fig. 2). The k is a
trade-off between generating read bins with low complexities (large k)
or keeping more reads from the same microbes in the same bin (small
k). k for read binning was set linear to the biodiversity of a metage-
nomic sample (k = a*Shannon_Diversity; Supplementary Table 2;
Methods). To determine the coefficient a, we chose the k (k = 30) that
worked well on all three real metagenomic datasets and calculated the
coefficient a as 8 by linear regression. This setting of k is applicable to
both low- (ATCC-MSA-1003) and high-complexity (CAMI-high) data-
sets, and the assembly results seemed robust if k was not shifted too
much from the value calculated from the formula (15 for ATCC-MSA-
1003, Supplementary Fig. 3; 37 for CAMI-high, Supplementary Data 3).

Multi-thresholding reassembly improves assemblies for
microbes with low abundance
Pangaea improves assemblies of low-abundancemicrobes bygradually
removing the reads fromhigh-abundancemicrobes from the assembly
graph with multiple abundance thresholds (represented by T). As this
module aims to improve low-abundance microbial assembly, we only
consider reads from contigs with average depths lower than 10x (ultra-
low) and 30x (low). The two thresholds have been validated by ATCC-
MSA-1003 (Supplementary Note 3).

To demonstrate the performance of multi-thresholding reas-
sembly, we compared the assemblies with and without multi-
thresholding reassembly on both the TELL-Seq dataset of ATCC-
MSA-1003 (low-complexity), and the stLFR dataset of CAMI-high (high-
complexity). In the evaluation, we only consider the strains with
abundances <1% as low-abundance microbes. Specifically, we identi-
fied 10 such strains in the ATCC-MSA-1003 dataset and 596 strains in
the CAMI-high dataset. On ATCC-MSA-1003, we found this module
could increase the NGA50s of 5 low-abundance microbes (out of
6 strains with non-zero NGA50s; Supplementary Data 4). It could
generate more sequences from the long contigs (>10 kb) of 6 low-
abundance microbes (out of 7 strains with contigs longer than 10 kb;
Supplementary Data 4). The assembly with multi-thresholding reas-
sembly generated significantly higher genome fractions for the 596
low-abundance microbes than the assembly without this module
(Wilcoxon paired rank-sum test p = 3.97e-05, 95 percent confidence
interval = [0.03, 0.12], effect size statistic = 0.168; Supplemen-
tary Data 5).

Barcode specificity is critical for linked-read assembly
We applied Pangaea to linked-reads from 10x Genomics, TELL-Seq,
and stLFR of ATCC-MSA-1003 to investigate the impact of barcode
specificity on the performance of Pangaea (Supplementary Table 2;
Methods). The linked-reads from stLFR and TELL-Seq yielded much
lower NF/B (stLFR: 1.54, TELL-Seq: 4.26) compared to those obtained
from 10x Genomics (10x Genomics: 16.61; Supplementary Note 1).
The contigs from Pangaea on stLFR and TELL-Seq datasets had sub-
stantially higher N50s (1.44 times on average; Supplementary
Table 3) and higher overall NA50s (1.43 times on average; Supple-
mentary Table 3) than the assembly on 10x Genomics linked-reads.
For those 15 strains with abundance > 0.1% (Supplementary Data 6),
the assembly on stLFR linked-reads achieved significantly higher

strain NA50s (p = 0.0353; 95 percent confidence interval = [4055.0,
671843.5]; effect size statistic = 0.543; Methods) and NGA50s
(p = 0.0479; 95 percent confidence interval = [27.5, 588585.5]; effect
size statistic = 0.511; Methods) than those on 10x Genomics dataset.
The same trend was also observed between the assemblies on TELL-
Seq and 10x Genomics datasets (Supplementary Data 6). For the
remaining 5 strains with abundances of 0.02%, all datasets cannot be
assembled with high genome fractions, making it infeasible to
compare their NGA50s (Supplementary Data 7). These results sug-
gest that linked-reads with high barcode specificity could produce
better metagenome assemblies using Pangaea.

Pangaea generated high-quality metagenome assemblies on
mock and simulated linked-read datasets
We benchmarked Pangaea with Athena, Supernova, cloudSPAdes,
MEGAHIT, and metaSPAdes on MSA-ATCC-1003 and CAMI-high data-
sets with available reference genomes. For the two short-read assem-
blers MEGAHIT and metaSPAdes, the input were barcode-removed
short-reads from linked-reads. For the other assemblers, linked-reads
were used. For TELL-Seq of ATCC-MSA-1003 (Table 1; Fig. 2b), Pangaea
achieved the highest N50 (1.36Mb) and overall NA50 (649.47 kb) when
compared with the statistics achieved by Athena (N50: 466.50 kb;
NA50: 361.57 kb), Supernova (N50: 102.76 kb; NA50: 97.31 kb), cloud-
SPAdes (N50: 127.42 kb; NA50: 118.16 kb), MEGAHIT (N50: 128.07 kb;
NA50: 112.51 kb) and metaSPAdes (N50: 112.34 kb; NA50: 105.63 kb)
(Fig. 2a, c). When considering those 15 strains with abundances >0.1%
(Supplementary Data 6), Pangaea still generated significantly higher
strain NA50s (Fig. 2e) and NGA50s (Fig. 2h) than Athena (NA50:
p = 8.36e-3, 95 percent confidence interval = [2316, 384961], effect size
statistic = 0.681; NGA50: p = 8.36e-3, 95 percent confidence interval =
[3625, 415993], effect size statistic = 0.681), Supernova (NA50:
p = 3.05e-4, 95 percent confidence interval = [237299, 1957688], effect
size statistic = 0.932; NGA50: p = 3.05e-4, 95 percent confidence
interval = [252335, 1986144], effect size statistic = 0.932), cloudSPAdes
(NA50: p = 6.10e-5, 95 percent confidence interval = [278575, 1917580],
effect size statistic = 1.035; NGA50: p = 6.10e-5, 95 percent confidence
interval = [255292, 1910689], effect size statistic = 1.035), MEGAHIT
(NA50: p = 6.10e-5, 95 percent confidence interval = [321189, 1890966],
effect size statistic = 1.035; NGA50: p = 6.10e-5, 95 percent confidence
interval = [277135, 1890966], effect size statistic = 1.035) and metaS-
PAdes (NA50: p = 6.10e-5, 95 percent confidence interval = [308107,
1862172], effect size statistic = 1.035; NGA50: p = 6.10e-5, 95 percent
confidence interval = [271810.5, 1839500.0], effect size statistic =
1.035). A comparable trend was observed on the assemblies of 10x
Genomics and stLFR linked-reads (Table 1; Fig. 2d, g, f, i). For the
5 strains with the lowest abundance (0.02%) of ATCC-MSA-1003, the
assemblies of Pangaea had much higher genome fractions than those
of Athena (9.40 times on average) and Supernova (47.87 times on
average) on all three technologies (Supplementary Data 7), suggesting
more genomic sequences could be assembled by Pangaea for low-
abundance microbes.

For simulated linked-reads from CAMI-high, Pangaea gener-
ated the highest total assembly length, genome fraction, N50
(1.87 times on average), overall NA50 (1.61 times on average),
NA50 per strain (1.44 times on average), and NGA50 per strain
(1.58 times on average) than the other assemblers (Table 1).
Although Pangaea and Athena got comparable overall NA50s
(Pangaea produced more sequences), the NGA50 per strain of
Pangaea was much higher than that of Athena (Pangaea = 54.41 kb,
Athena = 49.90 kb; Table 1). Pangaea generated the largest num-
ber of genomes for which the assemblies covered at least 50%
(non-zero NGA50s; Pangaea = 195, Athena = 180, Supernova = 175,
cloudSPAdes = 177, metaSPAdes = 177, MEGAHIT = 180; Table 1).
These results indicate Pangaea performed well on both the high-
complexity dataset and the low-abundance microbes.
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Table 1 | Assembly statistics for different assemblers using the barcode-removed short-reads or linked-reads on mock
communities

Pangaea Athena Supernova cloudSPAdes MEGAHIT metaSPAdes

ATCC-MSA-1003 (stLFR)

Total assembly length 59,484,233 52,159,846 35,226,545 - 55,506,708 57,225,487

Genome fraction (%) 84.43 77.12 52.21 - 81.99 83.99

Longest alignment 2,853,278 2,281,647 1,105,108 - 883,580 883,552

Overall N50 1,619,916 875,747 243,194 - 127,879 132,556

Overall N70 614,609 615,896 132,825 - 63,957 63,879

Overall N90 5,248 110,802 50,969 - 5,222 3,688

Overall NA50 731,990 677,911 215,052 - 116,995 125,586

NA50 per strain 628,059 576,621 145,646 - 140,463 134,477

NGA50 per strain 677,353 575,371 137,023 - 133,877 133,978

ATCC-MSA-1003 (TELL-Seq)

Total assembly length 61,990,266 60,847,375 56,748,937 62,316,993 60,291,592 60,648,311

Genome fraction (%) 82.63 81.99 76.46 82.44 82.10 82.46

Longest alignment 4,968,123 4,968,084 1,096,372 884,364 867,473 776,102

Overall N50 1,360,322 466,498 102,757 127,419 128,069 112,342

Overall N70 465,633 184,646 41,121 56,614 54,222 49,466

Overall N90 8,045 9,929 8,084 6,051 5,893 5,429

Overall NA50 649,672 361,569 97,312 118,159 112,513 105,630

NA50 per strain 838,457 483,734 123,277 129,001 122,932 119,253

NGA50 per strain 887,107 485,196 121,657 129,531 121,938 118,391

ATCC-MSA-1003 (10x)

Total assembly length 58,860,253 52,292,807 89,828,047 - 56,558,134 -

Genome fraction (%) 83.23 77.19 75.08 - 82.74 -

Largest alignment 2,277,835 2,278,264 974,529 - 883,602 -

Overall N50 1,033,793 601,544 32,128 - 151,002 -

Overall N70 564,696 356,490 12,725 - 73,366 -

Overall N90 13,052 73,456 4,075 - 6,715 -

Overall NA50 483,416 453,155 30,194 - 132,728 -

NA50 per strain 421,157 328,424 93,097 - 141,574 -

NGA50 per strain 441,029 334,491 89,993 - 143,179 -

CAMI-high

Total assembly length 799,834,811 773,344,531 757,315,614 752,648,273 772,095,404 759,108,499

Genome fraction (%) 27.71 27.33 26.69 26.66 27.46 27.01

Longest alignment 3,402,679 3,402,661 2,700,464 2,525,441 2,378,494 2,518,442

Overall N50 254,141 211,169 135,915 117,495 114,277 133,877

Overall N70 124,320 108,630 61,513 54,187 52,909 62,467

Overall N90 38,713 38,425 15,770 10,227 10,946 12,521

Overall NA50 212,494 201,566 132,676 113,425 110,658 132,603

NA50 per strain 66,310 66,060 46,464 40,507 39,340 45,216

NGA50 per strain 54,412 49,896 34,201 31,266 28,301 34,547

Non-zero NGA50 195 180 175 177 180 177

ZYMO

Total assembly length 36,094,665 35,254,802 25,103,660 35,843,842 35,358,538 35,511,020

Genome fraction (%) 49.24 48.14 34.27 47.99 48.38 48.46

Longest alignment 2,839,942 2,717,703 768,486 1,012,282 1,079,942 847,644

Overall N50 1,094,665 761,749 288,912 210,427 124,248 191,688

Overall N70 638,009 445,656 139,701 136,651 70,860 106,796

Overall N90 180,146 157,620 45,025 60,073 25,980 44,425

Overall NA50 1,072,622 760,284 226,947 208,894 116,738 191,688

NA50 per strain 1,066,276 927,278 136,210 245,562 179,245 183,935

NGA50 per strain 1,083,616 938,270 132,015 246,262 177,318 179,371

The missing values for cloudSPAdes and metaSPAdes were because they required over 2TB memory on the relevant datasets that exceeded our server limit.
The highest values are in bold.
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Pangaea outperforms the other assembly tools on the microbes
with extremely low abundance
We employed ZYMO (Supplementary Table 4) to investigate the
minimum abundance threshold necessary for identifying low-
abundance microbes using Pangaea. Pangaea and Athena always gen-
erated better assemblies than the other tools on strains with different
abundances (Supplementary Data 8). For the two strains (Escherichia
coli and Salmonella enterica) with abundances between 0.01% and
0.1%, Pangaea achieved consistently higher NA50 (1.68 times on aver-
age) and NGA50 (1.68 times on average) than Athena (Supplementary
Data 8). Although all assemblers could not generate contigs covering
half of the genome of Lactobacillus fermentum (abundance 0.0089%),
Pangaea still obtained the highest genome fraction (43.64%), which

was substantially higher than the values of the other linked-read
assemblers (Supplementary Data 8). The strainswith abundance below
0.001% were unable to be assembled by all assemblers (Supplemen-
tary Data 8).

Pangaea generated high-quality assemblies on the human gut
microbiomes
The assemblies generated by Pangaea achieved the highest total
assembly lengths for all three samples (Table 2). Moreover, Pangaea
achieved substantially higher N50s than all the other assemblers for
both S1 (1.44 times of Athena, 1.06 times of Supernova, 3.65 times of
cloudSPAdes, 4.71 times of MEGAHIT, 4.50 times of metaSPAdes;
Table 2) and S2 (1.57 times of Athena, 2.58 times of Supernova, 6.33
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Fig. 2 | Contig continuity of assemblies using barcode-removed short-reads
(MEGAHIT, metaSPAdes) or linked-reads (cloudSPAdes, Supernova, Athena,
Pangaea) from different linked-read sequencing technologies on ATCC-MSA-
1003.Nx,with x ranging from0 to 100, assembled from 10xGenomics linked-reads
(a), TELL-Seq linked-reads (b), and stLFR linked-reads (c) from ATCC-MSA-1003.
NA50 for the 15 strains with abundances higher than 0.1% assembled from 10x
Genomics linked-reads (d), TELL-Seq linked-reads (e), and stLFR linked-reads (f) on
ATCC-MSA-1003. NGA50 for the 15 strains with abundances higher than 0.1%

assembled from 10x Genomics linked-reads (g), TELL-Seq linked-reads (h), and
stLFR linked-reads (i) on ATCC-MSA-1003. cloudSPAdes was unavailable for 10x
Genomics linked-reads and stLFR linked-reads, as it requires extremely large
memory (>2TB) on these datasets. The samples are biological replicates for (d–i),
n = 15, each stands for a strain with abundance >0.1%. Box plots show the median
(center line), 25th percentile (lower bound of box), 75th percentile (upper bound of
box), and the minimum and maximum values within 1.5 × IQR (whiskers) as well as
outliers (individual points). Source data are provided as a Source Data file.
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times of cloudSPAdes, 8.00 times of MEGAHIT, 7.99 times of metaS-
PAdes; Table 2). For S3, Pangaea generatedmuchmore sequences than
the other assemblers (contig length > 1 kb; Methods), making it unfair
to compare their N50 values directly. We transformed their assembly
length to be comparable by removing contigs shorter than 5 kb. This
led to a significant improvement in the contig N50 of Pangaea, which
became the best one (Pangaea: 275.65 kb, Athena: 157.81 kb, Super-
nova: 105.54 kb, cloudSPAdes: 44.59 kb, MEGAHIT: 33.26 kb, metaS-
PAdes: 36.34 kb; Table 2).

We grouped the contigs into MAGs and used NCMAGs (Methods)
to evaluate the performance of metagenome assembly. Pangaea gen-
erated NCMAGs (Fig. 3a, e, i) of 24, 17, and 9 for S1, S2, and S3, which
were much more than those generated by Athena, Supernova, cloud-
SPAdes, MEGAHIT and metaSPAdes. By calculating the number of
NCMAGs at different minimum N50 thresholds, we found Pangaea
obtained more NCMAGs than the other assemblers at almost all
thresholds (Fig. 3b, f, j). Pangaea also outperformed the other assem-
blers with respect to the number of NCMAGs at different maximum
read depth thresholds (Fig. 3c, g, k). Especially for the NCMAGs with
N50s > 1Mb, Pangaea achieved substantially more NCMAGs (S1: 8, S2:
4, S3: 5; Fig. 3d, h, l) than the other assemblers at all read depth
thresholds, while Athena (the secondbest assembler) onlyproduced 3,
1 and 2 NCMAGs on S1, S2 and S3, respectively (Fig. 3d, h, l).

Pangaea generated high-quality assemblies for annotated
microbes
Weannotatedmicrobes ofMAGs using Kraken234 with theNTdatabase
of NCBI (Methods). Total 61 microbes (S1: 26, S2: 19, S3: 16; shown in
Fig. 4) were annotated fromPangaea’sMAGs; 56 of them (S1: 24, S2: 16,
S3: 16; Fig. 4) achieved the highest N50 and 33 microbes (S1: 16, S2: 8,
S3: 9) had two-fold higher N50s comparing to the second best

assemblers (Fig. 4). Out of the 5 microbes for which Pangaea did not
record the highest N50 values (as shown in Fig. 4), it produced N50s
that were comparable to the best-performing assembler for Alistipes
indistinctus and Ruminococcus bicirculans in S1, and for Bacilli bacter-
ium in S2. Although Pangaea’s N50 for Roseburia hominis was slightly
lower, it achieved significantly greater genome completeness com-
pared to Supernova (Pangaea: 96.54% completeness and 0.48% con-
tamination; Supernova: 64.91% completeness and 0.00%
contamination; Supplementary Data 9). Similarly, for uncultured Clos-
tridia in S2, Pangaea’s completeness was higher at 98.25% (con-
tamination: 7.02%), surpassing Athena’s completeness of 76.78%
(contamination: 1.34%) (Supplementary Data 9).

Moreover, Pangaea generated more NCMAGs for the annotated
microbes. There were 13 microbes (S1: 7, S2: 2, S3: 4; Fig. 4) that could
be uniquely assembled as NCMAGs by Pangaea, whereas all the other
assemblers either produced at lower quality or failed to assemble
corresponding MAGs. Pangaea outperformed other assemblers in
analyzing three human gut microbiomes by identifying 17 annotated
microbes from NCMAGs with N50 values exceeding 1Mb. In contrast,
Athena identified 6, Supernova found 1, and cloudSPAdes, MEGAHIT,
and metaSPAdes did not produce any microbes meeting this bench-
mark (Fig. 4). In addition, Pangaea recognized 6 unique microbes
(Bacteriophage sp. and Dialister from S1, and uncultured bacterium,
Muribaculum gordoncarteri, Parabacteroides and Prevotella copri from
S2) that were not found by any other assemblers, and Dialister from S1
was represented by a NCMAG (Fig. 4).

Strong collinearities between NCMAGs and their closest refer-
ence genomes
We compared the NCMAGs that can be annotated as species with their
closest reference genomes to evaluate their collinearities (Methods).

Table 2 | Assembly statistics for different assemblers using the barcode-removed linked-reads or linked-reads on human gut
microbiomes

Pangaea Athena Supernova cloudSPAdes MEGAHIT metaSPAdes

Human gut microbiome (S1)

Total assembly length 488,785,611 469,284,964 311,971,769 460,229,381 459,128,709 452,598,342

Longest contig 2,394,379 2,394,379 2,400,768 629,338 721,029 697,064

Overall N50 64,394 44,759 60,619 17,651 13,670 14,325

Overall N70 10537 10285 19660 5373 4856 5040

Overall N90 2061 2050 2681 1717 1691 1725

Human gut microbiome (S2)

Total assembly length 408,819,148 393,685,495 290,599,879 378,182,799 381,215,035 374,166,135

Longest contig 2,877,256 1,903,088 1,152,844 538,650 480,921 443,089

Overall N50 188,161 119,620 72,947 29,729 23,524 23,546

Overall N70 40,808 36871 30,008 9,991 8,310 8,703

Overall N90 2,858 2,933 3,976 2,078 2,034 2,099

Human gut microbiome (S3, contig > 1,000bps)

Total assembly length 323,679,273 270,721,423 222,438,535 284,200,415 301,723,162 298,374,739

Longest contig 4,769,781 4,570,813 1,384,668 526,768 526,790 592,456

Overall N50 105,969 114,886 79,377 19,102 15,376 15,081

Overall N70 10,283 28,002 25,965 4,674 4,841 4,545

Overall N90 1,938 3,894 3,352 1,571 1,629 1,619

Human gut microbiome (S3, contig > 5,000bps)

Total assembly length 249,885,090 237,573,809 192,606,058 196,090,881 209,538,475 203,743,361

Longest contig 4,769,781 4,570,813 1,384,668 526,768 526,790 592,456

Overall N50 275,648 157,810 105,541 44,589 33,264 36,343

Overall N70 66,897 52,573 45,511 21,400 16,482 17,038

Overall N90 10,958 12,471 13,132 8,165 7,527 7,545

The highest values are in bold.
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The NCMAGs generated by different assemblers and their closest
reference genomes had comparable average alignment identities
(Pangaea: 98.16%, Athena: 98.12%, Supernova: 98.31%, cloudSPAdes:
98.77%, MEGAHIT: 98.7%, metaSPAdes: 98.8%) and average alignment
fractions (Pangaea: 87.9%, Athena: 88.6%, Supernova: 88.4%, cloud-
SPAdes: 88.5%, MEGAHIT: 88%, metaSPAdes: 90%; Supplementary
Data 10), while Pangaea produced significantly more species-level
NCMAGs than the other assemblers (Pangaea: 29, Athena: 21, Super-
nova: 14, cloudSPAdes: 2, MEGAHIT: 1, metaSPAdes: 1; Supplementary
Data 10).

The NCMAGs assembled by Pangaea with species-level annota-
tions had high collinearities with their closest reference genomes
(Fig. 5; Supplementary Fig. 4). Some of these NCMAGs showed inver-
sions and rearrangements in comparison to the reference sequences,
including Alistipes communis (S1; Supplementary Fig. 4), Desulfovibrio
desulfuricans (S1; Supplementary Fig. 4) and Siphoviridae sp. (S2;
Fig. 5g). Pangaea assembledNCMAGs for Siphoviridae sp. fromboth S2
and S3 (Fig. 5g, h). The two NCMAGs had comparable total sequence
lengths (S2: 2.20Mb and S3: 2.39Mb; Supplementary Data 9) and
better N50was achieved in S3 (N50: 1.16Mb for S2 and 2.39Mb for S3;
Supplementary Data 9). Note that the NCMAG of Siphoviridae sp. from

S3 is a single-contig NCMAG, but it’s not a circular contig which might
be because it does not include all single-copy genes (completeness:
91.28%; Supplementary Data 9).

Pangaea could generate NCMAGs that count be annotated as
specieswith better quality and largerN50values than theMAGs for the
same species generated from other assemblers, such as Alistipes sp.
from S1 and Collinsella aerofaciens from S2 (Fig. 5d, e; Supplementary
Data 9). The evaluation of the read depths and GC-skew of the MAGs
revealed that Pangaea recovered the regions with extremely low read
depths and high GC-skew, such as the region at ~480 kb of Faecali-
bacterium prausnitzii from S3 (Supplementary Fig. 4). This indicates
Pangaea has the potential to reconstruct hard-to-assemble genomic
regions.

Pangaea generated complete and circular MAGs using
linked-reads
We examined if there existed complete and circular genomes in
NCMAGs based on the circularizationmodule in Lathe11 (Methods).We
found thatonly Pangaea generated three circular NCMAGs,whichwere
annotated as Bifidobacterium adolescentis (S1),Myoviridae sp. (S1) and
Wujia chipingensis (S3). For each of the three microbes, Pangaea
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Fig. 3 | The number of NCMAGs from the three human gut microbiomes under
different N50s and read depths. The number of NCMAGs for S1 (a), the
number of NCMAGs by thresholding minimum N50 for S1 (b), the number of
NCMAGs by thresholding maximum read depth for S1 (c), and the number of
NCMAGs with N50 > 1Mb by thresholding maximum read depth for S1 (d).
The number of NCMAGs for S2 (e), the number of NCMAGs by thresholding
minimum N50 for S2 (f), the number of NCMAGs by thresholding maximum

read depth for S2 (g), and the number of NCMAGs with N50 > 1Mb by
thresholding maximum read depth for S2 (h). The number of NCMAGs for S3
(i), the number of NCMAGs by thresholding minimum N50 for S3 (j), the
number of NCMAGs by thresholding maximum read depth for S3 (k), and the
number of NCMAGs with N50 > 1Mb by thresholding maximum read depth
for S3 (l). Source data are provided as a Source Data file.
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produced a gapless contig with perfect collinearity with the closest
reference genomes (Fig. 5a, b, i).

Athena generated three and two contigs for B. adolescentis (from
S1) and Myoviridae sp. (from S1), with substantially lower contig N50
values than the contigs obtained by Pangaea for these two species (B.
adolescentis: Pangaea = 2.17Mb, Athena = 744.54 kb; Myoviridae sp.:
Pangaea = 2.14Mb, Athena = 1709.63 kb; Supplementary Data 9).
cloudSPAdes obtained a high-quality MAG for B. adolescentis, but this
MAGcould not be annotatedwith any rRNAs, and the contig continuity
was much lower than the corresponding MAG from Pangaea (Pan-
gaea = 2.17Mb, cloudSPAdes = 329.67 kb). Supernova, MEGAHIT, and
metaSPAdes could only generate incomplete MAGs or could not
assemble these two species, and the completeness of their candidate
MAGs was significantly lower than that of MAGs generated by Pangaea
(Supplementary Data 9). ForW. chipingensis from S3, Pangaea was the
only assembler that obtained NCMAG and got a significantly higher
contig N50 than the other assemblers (Pangaea: 2.85Mb, Athena:
639.65 kb, Supernova: 254.31 kb, cloudSPAdes: 135.56 kb, MEGAHIT:
134.14 kb, metaSPAdes: 146.44 kb; Supplementary Data 9).

Investigate the impact of sequencing depth on assembly results
We assessed Pangaea’s effectiveness on datasets with varying
sequencing depths by generating subsets of linked-reads at 5 Gb,
10Gb, 20Gb, 50Gb, and 100Gb from ATCC-MSA-1003 (TELL-Seq),
CAMI-high (stLFR), and S1 (stLFR) (Methods). We then compared
Pangaea’s assembly performance on these subsampled read sets
against other assembly algorithms. Increasing the sequencing depth
improved the assembly quality of metagenomes across all three
microbial community datasets for all involved assemblers (Supple-
mentary Data 11).

Pangaea demonstrated superior performance compared to the
other assemblers across all subsampling datasets. Pangaea obtained
better overall NA50 and NGA50 per strain than the second-best
assembler on all subsampled datasets from ATCC-MSA-1003 (Supple-
mentary Data 11). Pangaea achieved better NA50 values than the other
tools except for Athena on CAMI-high. On datasets under 50Gb from
CAMI-high, Athena achieved better overall NA50s; however, this
higher continuity came at the cost of significantly shorter total
assembly lengths (Supplementary Data 11). On the dataset of 100Gb
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Fig. 4 | The annotated microbes for the MAGs generated by different assem-
blers from the three human gut microbiomes. a The annotated microbes pro-
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Fig. 5 | Genome collinearity between the species-level NCMAGs produced by
Pangaea and their closest reference genomes (dot plots), and comparison of
different MAGs of the same species (circos plots). a–d The selected NCMAGs of
Pangaea for S1. e–g The selected NCMAGs of Pangaea for S2. h–j The selected
NCMAGs of Pangaea for S3. Pangaea obtained complete and circular NCMAGs for
(a, b, i). Concentric rings in the circos plots from outermost to innermost display

Pangaea (dark green), Athena (orange), Supernova (blue), cloudSPAdes (purple),
MEGAHIT (light green), metaSPAdes (pink), GC-skew, and read depth of Pangaea
MAGs, respectively. Long tick marks on the outer black circle indicate 100kb
intervals. For species with multiple MAGs from the same assembler, only the MAG
with the highest N50 is shown. The remaining species-level NCMAGs of Pangaea are
shown in Supplementary Fig. 4. Source data are provided as a Source Data file.
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from CAMI-high, Pangaea achieved the highest overall NA50, NGA50
per strain, and the number of non-zero NGA50s (Supplementary
Data 11).

Pangaea consistently generated a higher N50 than Athena on all
the subsampled datasets on S1. On the 5Gb and 10Gb datasets of S1,
Supernova achieved the highest N50 values, but this was accompanied
by the shortest assembled sequence lengths relative to the other
assemblers (Supplementary Data 11). Pangaea significantly out-
performed Athena on the 100Gb dataset of S1 with respect to the
number of NCMAGs (Pangaea = 18, Athena = 10), while they showed
similar performance on the other subsampled datasets. These findings
indicate that for human gutmicrobiomes, increased sequencing depth
improves Pangaea’s performance in producing NCMAGs. Never-
theless, it should be emphasized that there is a positive relationship
between data volume and the performance of all assemblers in gen-
eratingNCMAGs. Thismaybebecause of the high PCRduplication rate
of linked-read sequencing technologies17, where 61.73% of stLFR
linked-reads in S1 were marked as duplication (Methods). Therefore,
the sequencing amount of linked-reads used for metagenome assem-
bly is commonly higher compared to short-reads to ensure sufficient
informative reads are given.

Pangaea generated high-quality assemblies on short-reads with
virtual barcodes from long-reads
As long-read sequencing has been limited in the applications in large-
scale cohorts due to its high cost12, the hybrid assembly combining
short-reads (high depth) and long-reads (typically with shallow depth)
in assembly was proposed as a cost-effective way to produce high-
quality assemblies15. We evaluated the generalizability of Pangaea on
hybrid assembly by attaching virtual barcodes to short-reads using
shallow depth long-reads (Methods). We removed the barcodes of
TELL-Seq (ATCC-MSA-1003), stLFR (ZYMO), and stLFR (CAMI-high)
linked-reads, and added virtual barcodes to the short-reads from
alignments against long-reads of PacBio or Oxford Nanopore (Sup-
plementary Table 2; Methods). We adjusted the workflow of Pangaea
to integrate with the existing hybrid assemblers using both short- and
long-reads, including MetaPlatanus (Pangaea-MetaPlatanus), hybrid-
SPAdes (Pangaea-Hybridspades), and OPERA-MS (Pangaea-Operams)
(Methods).

We compared Pangaea-MetaPlatanus, Pangaea-Hybridspades and
Pangaea-Operams with their original hybrid assemblers as well as
Athena (for linked-reads) and metaSPAdes (for short-reads), and
observed that virtual barcodes couldprominently increase contig N50,
overall NA50 and average NGA50 per strain on ATCC-MSA-1003 and
CAMI-high (Table 3; Fig. 6). All assemblers could not assemble with
high genome fractions (>50%) for most of the 5 strains with the lowest
abundance (0.02%) in ATCC-MSA-1003. However, Pangaea could
generate more sequences for the informative long contigs (>10 kb)
than the corresponding hybrid assembly tools (Supplementary
Data 12).

We evaluated the capability of Pangaea to detect the extremely
low-abundance microbes in ZYMO. For the two strains with abun-
dances >1%, Pangaea-Hybridspades generated much higher NGA50
than Hybridspades (2.23 times); the performance of Pangaea-
MetaPlatanus and Pangaea-Operams was comparable with their origi-
nal tools; this is acceptable as ZYMO is a simple metagenome where
the existing hybrid assemblers can already assembly well for those
high-abundancemicrobes in this dataset (Supplementary Data 12). For
the two strains with abundance between 0.1% and 1%, Pangaea-
Hybridspades and hybridSPAdes had comparable NGA50s, while
Pangaea-MetaPlatanus (1.18 times) and Pangaea-Operams (1.45 times)
produced better average NGA50 than MetaPlatanus and OPERA-MS,
respectively (Supplementary Data 12). For the other two strains with
abundance <0.1%, Pangaea-Operams still obtained substantially higher
average NGA50 thanOperams (2.37 times), and all of the threemodels

from Pangaea generated more sequences for long contigs (>10 kb)
than their original tools, respectively (Supplementary Data 12). All
assemblers produced low-quality assemblies for the strain with an
abundance <0.01% (Supplementary Data 12).

Evaluation of running time and maximum memory usage
We compared the computational performance (CPU time, Real time,
and Maximum Resident Set Size [RSS]) of the benchmarked assem-
blers on ZYMO (Fig. 7; Methods). Both Athena and Pangaea required
the assemblies from the other tools, so we only considered their
additional processing time and memory. MEGAHIT was the fastest
assembler with the lowest maximum RSS (Fig. 7). metaSPAdes and
cloudSPAdes consumed substantially higher CPU times than the other
assemblers (Fig. 7a). The real time (wall clock time) used by metaS-
PAdes, cloudSPAdes, Supernova, Athena, hybridSPAdes, and Meta-
Platanus were comparable and significantly higher than those
consumed by MEGAHIT, Pangaea, OPERA-MS, Pangaea-Operams and
Pangaea-Hybridspades (Fig. 7b).MetaPlatanus andSupernovaused the
highest maximumRSS on ZYMO (Fig. 7c). ThemaximumRSSs used by
metaSPAdes, cloudSPAdes, and hybridSPAdes were close to each
other, and much higher than those needed by the other assemblers
except for MetaPlatanus and Supernova (Fig. 7c). These results
revealed Pangaea could improve the assembly quality of the existing
assemblers in a reasonable time and using a relatively low max-
imum RSS.

Discussion
Short-read sequencing has proven to be an important approach for
analyzing human gut microbiota from large sequencing cohorts.
However, its lack of long-range DNA connectivity makes assembling
conserved sequences, intra- and inter-species repeats, and ribosomal
RNAs (rRNAs) difficult5. It has limitations in producing complete
microbial genomes and long-read sequencing is relatively expensive to
be applied to large cohorts. Cost-effective linked-read sequencing
technologies, which attach barcodes to short-reads to provide long-
range DNA connectivity, have achieved great success in improving
contig continuity in metagenome assembly14,19. Unlike 10x Genomics
linked-reads, stLFR17 and TELL-Seq linked-reads18 have high barcode
specificity, but a dedicated assembler that could make full use of this
characteristic to improve metagenome assembly is lacking. Besides
linked-reads, the long-range connectivity of short-reads could also be
provided by virtual barcodes from other independent sequencing
technologies (e.g., long-reads).

In this study, we developed Pangaea to improve metagenome
assembly by leveraging long-range connectivity from linked-reads and
long-reads. It considers the co-barcoded reads as long DNA fragments
and extracts their k-mer histograms and TNFs for co-barcoded read
binning. This strategy significantly reduces the complexity of metage-
nomic sequencing data and makes the assembly more efficient.
Because sequence clustering is sensitive to data sparsity and noise,
Pangaea represents the input features in a low-dimensional latent space
using VAE. We also designed a weighted sampling strategy to generate
a balanced training set for microbes with different abundances. This
module primarily advantages microbes with high- and medium-abun-
dance, because they are more robust to mis-binning and usually have
sufficient data for assembly in the corresponding bins. Pangaea adopts
a multi-thresholding reassembly strategy to rescue the reads from low-
abundance microbes. It eliminates short-reads from high-abundance
microbes in the assembly graph gradually to differentiate the assembly
graph structures from low-abundancemicrobes and sequencing errors.
In the third module, we merged the assemblies from different strate-
gies due to their complementary nature of each other.

A previous study35 showed that co-assembly with multiple sam-
ples could improve completeness and decrease the contamination of
MAGs. However, the co-assembly of metagenomes derived from large
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samples poses a practical challenge due to time and computational
limitations. Because the sequencing data from all the individual sam-
ples need to be merged before co-assembly. Read binning is a
sophisticated strategy that enables co-assembly on large datasets by
producing smaller and simpler subsets of reads, thereby facilitating
the assembly process. Several studies have attempted to apply read
binning to short-read metagenomic sequencing26–28, but it is exceed-
ingly difficult in practice. The fragments of short-reads are too short to
allow the extraction of stable sequence abundance and composition
features from the individual reads. Existing read binning tools have to
identify the overlap between each pair of reads for binning. However,
millions or even billions of short-reads make the overlap-based read
binning algorithm extremely slow and highly memory intensive.
Overlap Graph-based Read clustEring (OGRE)26 was developed to
improve the computational performance of read binning, but it still
consumed 2263 CPU hours even for the low-complexity dataset of
CAMI26. We evaluated OGRE on stLFR linked-reads of ATCC-MSA-1003
(664.77M read pairs) and observed that OGRE crashed due to insuf-
ficient memory if 100 threads were applied. If fewer threads were
applied, the binning time would become extremely long (more than
2 weeks). Pangaea with 100 threads only took 64.06 h in real time,
514.63 h in CPU time, and consumed 281.99GB of maximum RSS to
group and assemble this linked-reads dataset.

We evaluated the number of misassemblies, the number of intra-
species translocations (chimeric assemblies), and sequence identities

((Total_Aligned_Length-Mismatches)/Total_Aligned_Length) from the
MetaQUAST reports of the three mock communities (ATCC-MSA-1003,
ZYMO, and CAMI-high; Supplementary Data 13). As an ensemble
assembler, the assemblies of Pangaea were observed to have more
misassemblies than those of Athena. This is because Pangaea integrated
contigs from both co-barcoded read binning and multi-thresholding
reassembly to improve the assembly continuity and induced some
misassemblies during the merging process. However, Pangaea still
achieved much higher NA50 and NGA50 per strain by breaking contigs
at misassemblies (Tables 1, 2, 3) on most of the datasets. Moreover,
despite the misassemblies, Pangaea was still able to achieve the highest
number of NCMAGs and even complete and circular genomes in real
complex microbiomes. In this study, we used three metagenomic
sequencing datasets from female fecal samples to evaluate ourmethod.
However, given the thorough testing on mock communities, including
ATCC-MSA-1003, ZYMO, and CAMI-high, we are confident that our
approach can be applied to metagenomic data from different sources.

Long-read sequencing has received increasing attention due to its
ability to generate complete microbial genomes from complex com-
munities. However, it is limited by a relatively high cost for large-
cohort studies. In contrast, linked-read and hybrid sequencing (deep
short-read and shallow long-read sequencing) techniques are cost-
effective. Linked-read sequencing only requires a tiny amount of input
DNA, and can thus be a complementary solution to long-read
sequencing. In our experiments, we found that long-read assemblies

Table 3 | Assembly statistics for different assemblers using short-reads, short-reads with virtual barcodes, or short- and long-
reads on mock communities

Total assembly
length

Genome
fraction (%)

Largest
alignment

Overall N50 Overall N70 Overall
N90

Overall
NA50

NA50 per
strain

NGA50 per
strain

Non-
zero
NGA50

ATCC-MSA-1003

Pangaea-MP 61,826,844 77.21 4,613,760 419,529 123,550 6,828 227,880 551,174 599,918 16

MetaPlatanus 50,420,118 65.78 4,143,574 232,150 64,539 2,484 207,981 342,514 338,045 12

Pangaea-HS 61,432,598 82.69 2,824,147 475,582 150,196 6,824 338,892 410,176 412,875 16

hybridSPAdes 60,794,505 82.93 1,518,615 255,665 88,668 6,333 236,258 229,866 229,492 16

Pangaea-OP 53,145,042 63.25 3,027,146 345,524 108,841 4,801 236,263 219,172 311,080 16

OPERA-MS 44,017,454 57.87 885,414 55,544 19,419 2,919 49,863 104,942 105,557 11

Athena 60,077,880 81.57 1,175,563 176,953 81,610 7,766 173,018 158,550 157,166 16

metaSPAdes 60,648,311 82.46 776,102 112,342 49,466 5,429 105,630 119,253 118,391 16

CAMI-high

Pangaea-MP 790,047,911 27.83 3,200,312 193,286 92,221 22,625 179,405 66,510 47,460 187

MetaPlatanus 759,582,683 28.28 2,525,754 146,524 66,065 11,900 143,981 55,924 39,696 187

Pangaea-HS 765,341,275 26.99 2,552,627 185,706 86,908 22,576 172,580 57,562 43,844 180

hybridSPAdes 759,703,702 27.04 3,195,687 148,522 68,335 14,950 140,963 50,524 39,710 179

Pangaea-OP 790,451,622 27.40 3,370,333 172,800 78,129 16,150 160,739 60,235 45,323 181

OPERA-MS 797,297,690 27.01 1,860,977 95,314 41,765 8,017 94,811 34,746 21,890 174

Athena 738,341,840 26.27 2,520,898 151,113 72,087 17,299 149,290 49,612 36,428 173

metaSPAdes 759,108,499 27.01 2,520,915 133,877 62,467 12,521 132,603 45,261 34,551 177

ZYMO

Pangaea-MP 36,160,031 48.66 2,719,840 444,651 181,141 73,012 345,995 391,840 392,681 6

MetaPlatanus 35,906,273 48.91 2,423,776 250,282 137,973 50,299 242,683 429,587 428,086 6

Pangaea-HS 35,806,901 48.47 2,350,555 444,276 203,542 76,164 342,859 697,544 704,255 6

Hybrid-
SPAdes

35,517,607 48.63 1,799,936 289,924 154,423 69,345 287,773 387,101 383,552 6

Pangaea-OP 35,917,521 48.62 3,579,300 347,153 156,102 59,828 301,599 756,021 757,488 6

OPERA-MS 35,334,818 48.28 3,579,284 131,207 70,061 21,837 124,358 683,735 681,358 6

Athena 34,567,225 47.34 1,282,835 237,784 126,002 59,781 232,219 214,809 210,268 6

metaSPAdes 35,511,020 48.46 847,644 191,688 106,796 44,425 191,688 183,935 179,371 6

Pangaea-MP stands for Pangaea-MetaPlatanus, Pangaea-HS stands for Pangaea-hybridSPAdes and Pangaea-OP stands for Pangaea-Operams.
The highest values are in bold.
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had 60.98% fewer NCMAGs than linked-read assemblies from Pangaea
(Supplementary Note 4) after contig binning by MetaBat2, indicating
that some microbes might be lost due to insufficient long-read
sequencing depth. Even the state-of-the-art tool VAMB36 was used for
contig binning, the number of NCMAGs from long-read (NCMAG:
S1 = 6, S2 = 6; assembled by metaFlye) and short-read assemblies
(NCMAG: S1 = 0, S2 = 0, assembled by metaSPAdes; S1 = 1, S2 = 0,
assembled by MEGAHIT) remained substantially lower than linked-
read assembly (NCMAG: S1 = 21, S2 = 21; assembled by Pangaea).
Similar observations have been reported in a previous study11.
Although stLFR and TELL-Seq linked-reads had high barcode specifi-
city in ATCC-MSA-1003, we observed that a considerable fraction of

barcodes still contained more than one fragment (stLFR = 37.02%,
TELL-Seq = 72.95%), which could complicate the deconvolution of
barcodes for the existing linked-read assemblers. We believe that fur-
ther protocol improvement for these technologies (e.g., increasing the
number of beads) may further improve their metagenome assembly
performance.

Methods
The study complies with all relevant ethical regulations and was
approved by the Ethics Committee of BGI (BGI-IRB 20145). We have
received written informed consent from the human participants in
this study.
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Fig. 6 | Contig continuity of different assemblies using short-reads, short-reads
with virtual barcodes, or short- and long-reads onATCC-MSA-1003. aNx,with x
ranging from 0 to 100 of different assemblies using short-reads (metaSPAdes),
short-reads with virtual barcodes (Athena, Pangaea-Operams, Pangaea-Hybrid-
spades, and Pangaea-MetaPlatanus), and using short- and long-reads (OPERA-MS,
hybridSPAdes, andMetaPlatanus) onATCC-MSA-1003.bNA50of the 15 strainswith
abundance >0.1% assembled from short-reads (metaSPAdes), short-reads with vir-
tual barcodes (Athena, Pangaea-Operams, Pangaea-Hybridspades, and Pangaea-
MetaPlatanus), and from short- and long-reads (OPERA-MS, hybridSPAdes, and

MetaPlatanus) onATCC-MSA-1003. cNGA50of the 15 strainswith abundance >0.1%
assembled from short-reads (metaSPAdes), short-reads with virtual barcodes
(Athena, Pangaea-Operams, Pangaea-Hybridspades, and Pangaea-MetaPlatanus),
and from short- and long-reads (OPERA-MS, hybridSPAdes, and MetaPlatanus) on
ATCC-MSA-1003. The samples are biological replicates for (b–c),n = 15, each stands
for a strain with abundance >0.1%. Box plots show the median (center line), 25th
percentile (lower bound of box), 75th percentile (upper bound of box), and the
minimum and maximum values within 1.5 × IQR (whiskers) as well as outliers
(individual points). Source data are provided as a Source Data file.
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Fig. 7 | TheCPU time, real timeandmaximumresident set size (RSS)ofdifferent
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DNA preparation and sequencing for linked-read sequencing
On ATCC-MSA-1003, the microbial DNAs were extracted directly from
the 20 Strain Staggered Mix Genomic Material (ATCC MSA-1003)
without size selection using a QIAamp DNA stool mini kit (Qiagen,
Valencia, CA, USA). For the human gut microbiomes, microbial DNAs
from stool samples of three individuals (S1, S2, and S3) were extracted
using theQIAampDNA stoolmini kit (Qiagen) and size-selectedusing a
BluePippin instrument targeting the size range of 10–50 Kb according
to the manufacturer’s protocol. The three individuals were female,
with ages 36, 32, and 30, respectively. Sex or gender of participants
was determined based on self-report. No sex- and gender-based ana-
lyseswas performed, this was because the relation between human gut
microbiomes and the gender was beyond the scope of this study.
Participant compensation was not applied. The stLFR libraries were
prepared using the stLFR library prep kit (16 RXN), followed by 2 × 100
paired-end short-read sequencing using BGISEQ-500. The TELL-Seq
library for ATCC-MSA-1003was prepared using the TELL-SeqTM Library
Prep Kit, followed by 2 × 146 paired-end sequencing on an Illumina
sequencing system. The Shannon diversities of all datasets were cal-
culated using MetaPhlAn (v4.0.6)37 with default parameters. PCR
duplication rates of linked-reads were reported by fastp (v0.21.0)38

with default parameters. Subsampling for linked-reads was performed
by sampling the depth of long fragments, i.e., reads with the same
barcode are either all kept or all discarded in the subsampled dataset.

Simulate stLFR linked-reads for ZYMO and CAMI-high
We downloaded the reference genomes of the 10 strains included in
ZymoBIOMICSTM Microbial Community Standard II (Log Distribution)33

(ZYMO) and used LRTK (v1.7)39 to simulate stLFR linked-reads with the
same strain composition as the ZYMOmock community. For CAMI-high,
we used the microbial composition from the first sample of the five
time-series samples provided by CAMI Challenge Dataset CAMI_high32

and simulated stLFR linked-reads using LRTK (v1.7)39. The Nanopore
long-reads of CAMI-high was simulated using CAMISIM (v1.2-beta)40.

Generate virtual barcodes of short-reads from long-reads
We attached the same long-read indexes as virtual barcodes to short-
reads if theywerealigned to the same long-read.Wemapped the short-
reads to long-reads using BWA-MEM (v0.7.17)41 and removed the
spurious alignments if the minimum aligned nucleotides were below
60bps. If a short-readwas aligned tomultiple long-reads, we randomly
chose one of the long-read indexes as its barcode.

Extract k-mer histogram and TNFs from co-barcoded reads
We extracted k-mer histograms and TNFs from the co-barcoded reads if
their total lengths were longer than 2 kb to ensure feature stability. A k-
mer histogram was calculated based on global k-mer occurrences and
could reflect the abundance features of the microbial genome42. We
adopted k= 15 as used in the previous studies42,43, and calculated the
global 15-mer frequencies using the whole dataset. We removed 15-mers
with frequencies higher than 4000 (to avoid repetitive sequences) and
divided the global frequency distribution into 400 bins with equal sizes
(the ithbin denoted frequencies between 10*i− 10 and 10*i).We collected
the co-barcoded reads for each barcode and divided these reads into 15-
mers, which were assigned to the 400 bins based on their global fre-
quencies.We calculated thenumber of 15-mers allocated to eachbin and
generated a count vector with 400 dimensions as the k-mer histogram
of the specific barcode. A TNF vector was constructed by calculating the
frequencies of all 136 non-redundant 4-mers from co-barcoded reads.
The k-mer histogram and TNF vector were normalized to eliminate the
bias introduced by the different lengths of co-barcoded reads.

Binning co-barcoded reads with a VAE
The normalized k-mer histogram (XA) and TNF vector (XT) were con-
catenated into a vector with 536 dimensions as the input to a VAE

(Fig. 1b; Supplementary Note 2; the use of VAE was inspired by ref. 36).
The encoder of VAE consisted of two fully connected layers with 512
hidden neurons, and each layer was followed by batch normalization44

and a dropout layer (P =0.2)45. The output of the last layer was fed to
twoparallel latent layerswith 32 hiddenneurons for each to generateμ
andσ for aGaussiandistributionN ðμ,σ2Þ, fromwhich the embeddingZ
was sampled. The decoder also contained two fully connected hidden
layers of the same size as the encoder layers to reconstruct the input
vectors (X̂A and X̂T ) from the latent embedding Z. We applied the
softmax activation function on X̂A and X̂T to achieve the normalized
output vectors, because the input features XA and XT were both nor-
malized. The loss function (Loss) was defined as the weighted sum of
three components: the reconstruction loss of k-mer histogram(LA), the
reconstruction loss of TNF vectors (LT), and the Kullback-Leibler
divergence loss (LKL) between the latent and the prior standard
Gaussian distributions. We adopted cross-entropy loss for LA and LT to
deal with probability distributions and formularized the loss terms as
follows:

LA =
X

lnðX̂A + 10
�9ÞXA ð1Þ

LT =
X

lnðX̂T + 10
�9ÞXT ð2Þ

LKL = �
X 1

2
ð1 + ln σ � μ2 � σÞ ð3Þ

Loss =wALA +wTLT +wKLLKL ð4Þ

where the weights of the three loss components were
wA =α= lnðdimðXAÞÞ, wT = ð1� αÞ= lnðdimðXTÞÞ, and wKL = β/dim(Z). We
adopted 0.1 and 0.015 for α and β, respectively (Supplementary
Note 3). The VAEwas trainedwith early stopping to reduce the training
time and avoid overfitting. We used the RPH-kmeans31 algorithm with
randomprojection hashing to group the co-barcoded reads using their
latent embeddings obtained from μ.

Weighted sampling for VAE training
We designed weighted sampling to balance the training set from
microbes with different abundances. The k-mer histogram (XA) is the
combination of two Poisson distributions; one represents the erroneous
k-mers (always with a low frequency)46, and the other represents the
true k-mer abundances42. If the co-barcoded reads of a specific barcode
are from a low-abundance microbe, the Poisson distribution of the true
k-mer abundance would also have its peak value obtained at low fre-
quency. Therefore, the peak of the two Poisson distributions will be
stacked together and result in a larger max(XA) (validated in Supple-
mentary Fig. 5). Considering that the highest value of XA is negatively
related to the abundance of the co-barcoded reads, we used a heuristic
function maxðXAÞ2 as the sampling weight for the barcode of the co-
barcoded reads. The square was to make the low-abundance microbes
have a much higher sampling weight. The calculated sampling weights
were automatically used by the WeightedRandomSampler of PyTorch
to construct a balanced training dataset.

Multi-thresholding reassembly for low-abundance microbes
For co-barcoded read binning, we assembled reads in each cluster
independently using MEGAHIT (v1.2.9)30. We designed a multi-
thresholding reassembly strategy (Fig. 1b) to improve the assembly
qualities of low-abundance microbes by recollecting the reads from
the low-abundancemicrobes thatweremisclustered intodifferent bins
using read depth thresholds. To calculate the read depth of the contigs
assembled from each read cluster (denoted as contigsbin), we aligned
the input reads to contigsbin using BWA-MEM (v0.7.17)41 and calculated
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the read depth for each contig using the “jgi_summar-
ize_bam_contig_depths” program inMetaBat2 (v2.12.1)47. To collect the
reads of low-abundance microbes, we extracted the reads that could
not be mapped to the high-depth contigs (with read depth > ti) in
contigsbin and assembled them using the standard short-read assem-
bler, metaSPAdes (v3.15.3)29. This step can be substituted byMEGAHIT
to reduce the running time, and can also integrate available contigs to
guide the path resolution inmetaSPAdes tomake the assembly of low-
abundance microbes more efficient (e.g., using the contigs assembled
by metaSPAdes from the whole read dataset as the input to
“--untrusted-contigs” ofmetaSPAdes, which is used in our experiments
and optional for Pangaea).We repeated this procedure with a range of
thresholds (T = {ti∣i = 1, 2,...}) producing contigslow. We chose
T = {10, 30} for all the experiments, whichworkedwell for both the low-
and the high-complexity microbial communities.

Ensemble assembly
We use ensemble assembly to avoid incomplete metagenome assem-
bly caused by the mis-binning of previous modules. For linked-read
assembly, the ensemble strategy includes two steps: (i) we use
contigsbin (contigs assembled from each read bin), contigslow (contigs
from multi-thresholding reassembly), contigslocal (contigs from the
local assembly of Athena) and contigsori (contigs assembled from
short-reads by metaSPAdes [v3.15.3]) using an OLC-based assembler,
metaFlye (v2.8) with the “--subassemblies” parameter; (ii) quickmerge
(v0.3)48 was used to merge the contigs from step (i) and Athena con-
tigs. For the assembly of short-reads with virtual barcodes, we sub-
stituted the metaSPAdes in step (i) and Athena in step (ii) with the
corresponding hybrid assemblies (contigs generated from hybrid-
SPAdes [v3.15.3]16 or OPERA-MS [v0.8.3]15). Step (ii) is optional for
linked-read assembly since Athena is already integrated in the Step (i).

Detecting circular contigs
We adopted the circularization module of Lathe11 to detect circular
contigs in all the assemblies. The module needs long-reads as input
which is not available for linked-read assembly, so we modified the
alignment and assembly parameters in the circularization module to
accept contigs as input, and merged the contigsori, contigsbin,
contigslow, and contigslocal as “pseudo long-reads” for running it.

Reconstructing physical long fragments based on reference
genomes
We reconstructed the physical long fragments from linked-reads of
ATCC-MSA-1003 to calculate NF/B. The linked-reads were mapped to the
reference genomes using BWA-MEM (v0.7.17)41 with option “-C” to retain
the barcode information in the alignment file, followed by sorting based
on read alignment coordinates using SAMtools (v1.9)49. We connected
the co-barcoded reads into long fragments if their coordinates were
within 10 kb on the reference genome. Each fragment was required to
include at least two read pairs and to be no shorter than 1 kb.

Metagenome assembly of the other assemblers on different
datasets
The 10x, stLFR, and TELL-Seq sequencing datasets were demultiplexed
to generate raw linked-reads using Long Ranger (v2.2.0)50,
stLFR_read_demux (Git version 3ecaa6b)17 and LRTK (Git version
28012df)39, respectively. The linked-reads were assembled using
metaSPAdes (v3.15.3)29, MEGAHIT (v1.2.9)30, cloudSPAdes (v3.12.0-
dev)29, Athena (v1.3)14 and Supernova (v2.1.1)20. Supernova does not
accept raw stLFR linked-reads as input because its barcode processing
was hard-coded for 10x Genomics, so we applied stlfr2supernova_pi-
peline (https://github.com/BGI-Qingdao/stlfr2supernova_pipeline; Git
version95f0848) to convert thebarcode format of stLFR. The scaffolds
produced by Supernova were broken into contigs at successive “N”s
longer than 10 before evaluation. The datasets with both short- and

long-reads were assembled using MetaPlatanus (v1.3.1)22, OPERA-MS
(v0.8.3)15, hybridSPAdes (v3.15.3)16, metaSPAdes (v3.15.3, only short-
reads) and Athena (v1.3, short-reads with virtual barcodes). The PacBio
CLR long-reads from S1 and S2 were assembled using metaFlye (v2.8)51

with the “--pacbio-raw” parameter. All the assemblers were run with
default parameters. Formeasuring computational performance,we set
the threads of all the assemblers to 100 (if the assembler had this
option), andused the command “/usr/bin/time -v” to report the system
time, user time, and maximum RSS consumed by the programs.

Benchmarking on the mock microbial communities
The reference genomes of ATCC-MSA-1003 and ZYMO were down-
loaded from the NCBI reference databases (Supplementary Table 1)
and theprevious studyonZYMO33, respectively. Reference genomesof
CAMI-high were from the CAMI challenge website (https://data.cami-
challenge.org/participate). The contigs assembled from the three
mock communities were assessed using MetaQUAST (v5.0.2)52, with
the option “-m 1000 --fragmented --min-alignment 500 --unique-
mapping” to enable the alignment of fragmented reference genomes
and discard ambiguous alignments. The p-values of differences in the
NA50, NGA50, and genome fractions of different assemblers were
obtained using the Wilcoxon signed-rank test performed by the wil-
cox.test function under package stats (v4.4.0) of R. This function was
run with “paired = TRUE”, “exact = TRUE”, “conf.int = TRUE” to pair the
two groups tested, and get the p-value and confidence interval. The
effective size statisticwas calculatedbyZ=

ffiffiffiffi
N

p
, where Zwas theZ-score

obtained from the Wilcoxon Rank Sum test, and N was the total
number of observations across both groups. NGA5053 is a balanced
evaluation metric considering the assembly length for the strain, the
misassemblies, and the contig continuity of the assembly on the strain.

Contig binning and MAG quality evaluation
We aligned the linked-reads (or short-reads) to the contigs using BWA-
MEM (v0.7.17)41 and calculated the read depths using “jgi_summar-
ize_bam_contig_depths” in MetaBat2 (v2.12.1)47. The contigs with read
depths were binned into MAGs using MetaBat2 (v2.12.1) with default
parameters. VAMB binning was performed by VAMB (v3.0.3)36 with
default parameters. CheckM (v1.1.2)54 was used to report the com-
pleteness and contamination of the MAGs. ARAGORN (v1.2.38)55 and
barrnap (v0.9)56 were used to annotate the transfer RNAs (tRNAs) and
rRNAs (5S, 16S, and 23S rRNAs), respectively. According to standard
criteria of the minimum information about MAGs57, we classified the
MAGs into near-complete (completeness > 90%, contamination < 5%,
and could be detected 5S, 16S, and 23S rRNAs, and at least 18 tRNAs),
high-quality (completeness > 90%, and contamination < 5%), medium-
quality (completeness≥ 50%, and contamination < 10%), and low-
quality (the other MAGs).

Annotation of the MAGs and the closest reference genomes
The contigs were annotated using Kraken2 (v2.1.2) with the custom
database built from the NT database of NCBI (Aug 20, 2022). We used
the “--fast-build” option of kraken2-build to reduce the database con-
struction time. Subsequently, the “assign_species.py” script from the
https://github.com/elimoss/metagenomics_workflows11,14 was used to
annotate MAGs as species (if the fraction of contigs belonging to the
species was more than 60%) or genus (otherwise) based on contig
annotations. The closest reference genomes of the NCMAGs that can
be annotated at species-level were identified using GTDB-Tk (v2.1.0;
database version r207)58, which also reported the alignment identities
and alignment fractions between them.

Statistics and reproducibility
No statistical method was used to predetermine sample size. The
sample size for human participants (three human participants, refer-
red to as S1, S2, and S3) was chosen considering the previous study14,
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where two human participants were enrolled. No data were excluded
from the analyses. The three participants were randomly chosen from
the staffs in KangmeihuadaGeneTechCo., Ltd. Nodifferent treatments
were given to different participants during experiments and outcome
assessment. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 10x Genomics linked-reads of the ATCC-MSA-1003 mock com-
munity used in this study are available in the NCBI SRAdatabase under
accession code SRR12283286. The stLFR and TELL-Seq sequencing
data of ATCC-MSA-1003 generated in this study have been deposited
in the NCBI SRA database under accession code SRR21422848 and
SRR21422847, respectively. The stLFR sequencing data of the three
human gut microbiomes (S1, S2, and S3) generated in this study have
been deposited in the NCBI SRA database under accession code
SRR28959570, SRR28959569, and SRR28959571, respectively. The
MAGs generatedby Pangaea fromS1, S2, and S3 in this study havebeen
deposited in the European Nucleotide Archive (ENA) project under
accession code PRJEB65432. The PacBio CLR long-reads of ATCC-MSA-
1003, S1, and S2 used in this study are available in the NCBI SRA
database under accession code SRR12371719, SRR19505636, and
SRR19505632, respectively. The ONT long-reads of ZYMO used in this
study are available in the NCBI SRA database under accession code
ERR3152366. Source data are provided with this paper.

Code availability
Codes of Pangaea are available at https://github.com/ericcombiolab/
Pangaea59.
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