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Predicting mortality 
after transcatheter aortic valve 
replacement using preprocedural 
CT
David Brüggemann 1, Nazar Kuzo 2, Shehab Anwer 2, Julia Kebernik 3, Matthias Eberhard 3, 
Hatem Alkadhi 3, Felix C. Tanner 2 & Ender Konukoglu 1*

Transcatheter aortic valve replacement (TAVR) is a widely used intervention for patients with severe 
aortic stenosis. Identifying high-risk patients is crucial due to potential postprocedural complications. 
Currently, this involves manual clinical assessment and time-consuming radiological assessment 
of preprocedural computed tomography (CT) images by an expert radiologist. In this study, we 
introduce a probabilistic model that predicts post-TAVR mortality automatically using unprocessed, 
preprocedural CT and 25 baseline patient characteristics. The model utilizes CT volumes by 
automatically localizing and extracting a region of interest around the aortic root and ascending aorta. 
It then extracts task-specific features with a 3D deep neural network and integrates them with patient 
characteristics to perform outcome prediction. As missing measurements or even missing CT images 
are common in TAVR planning, the proposed model is designed with a probabilistic structure to allow 
for marginalization over such missing information. Our model demonstrates an AUROC of 0.725 for 
predicting all-cause mortality during postprocedure follow-up on a cohort of 1449 TAVR patients. This 
performance is on par with what can be achieved with lengthy radiological assessments performed 
by experts. Thus, these findings underscore the potential of the proposed model in automatically 
analyzing CT volumes and integrating them with patient characteristics for predicting mortality after 
TAVR.

Calcific aortic stenosis is a cardiovascular disease that is characterized by the thickening and calcification of the 
aortic valve, which can lead to inhibited leaflet motion and restriction of blood flow. It is the third-most frequent 
cardiovascular disease in developed countries, after coronary artery disease and systemic arterial hypertension1. 
If left untreated, it can lead to chest pain, loss of consciousness, and even death due to heart failure. Patients with 
severe aortic stenosis have three treatment options: surgical aortic valve replacement, transcatheter aortic valve 
replacement (TAVR), and medical therapy2. TAVR represents an alternative to open-heart surgery for patients 
deemed to be at high or prohibitive surgical risk due to its minimally invasive nature and shorter postprocedural 
hospital stays. However, for certain patients, TAVR has been associated with post-interventional complications, 
such as residual aortic regurgitation and mortality3. Identifying the patients who are likely to suffer from life-
threatening complications remains a crucial clinical challenge.

Before an intervention, patients undergo a comprehensive assessment based on various factors, including their 
health status and medical history. An important component of this assessment is a computed tomography (CT) 
scan of the chest and abdomen. The CT scan is mainly used for valve sizing and access route evaluation. However, 
it also provides valuable information for TAVR risk stratification, such as the severity and distribution of calcifica-
tion around the aortic valve4, coronary arteries5, and ascending aorta. The CT image is analyzed qualitatively or 
quantitatively, with manually extracted measurements that are believed to be linked to the procedural outcome. 
However, the need for a radiologist to extract these measurements makes the preprocedural assessment more 
time-consuming and expensive. Furthermore, it remains an open question how these measurements are best 
integrated into a TAVR risk prediction model. Deep neural networks (DNNs) could potentially help to address 
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these challenges by extracting optimal image features automatically and combining them in optimal ways with 
other patient characteristics based on a set of training examples.

DNNs have demonstrated enormous potential for improving clinical workflows by automating repetitive 
and time-consuming tasks, such as the segmentation of anatomical structures6 and lesions7, and the detection of 
nodules8 and calcifications9. They have also been applied to more complex image-based prediction tasks, such as 
assessing disease risk10, phenotype11, and infarct tissue12. TAVR risk prediction is a particularly challenging task 
because the outcome is related not only to preprocedural CT and patient characteristics but also to the procedure 
itself. Nevertheless, it shares commonalities with other image-based prediction tasks, as there are visible changes 
in the images that are believed to be relevant to the outcome.

In this study, we introduce a probabilistic model to incorporate unprocessed, preprocedural CT images 
along with tabular baseline patient characteristics for TAVR risk prediction. Specifically, we focus on predict-
ing all-cause mortality during the postprocedural follow-up period as a means of quantitative risk assessment. 
Informative features are extracted fully automatically from the CT images via a 3D DNN, requiring no manual 
image measurements by experts. Due to the structure of our model, we can avoid explicit imputation and instead 
use marginalization to deal with missing data, a common challenge in clinical settings. Both for training and 
inference, the required joint probabilities are calculated by marginalizing out the missing variables, i.e., summing 
or integrating over all possible values of the missing variables, to determine the marginal contribution of the 
non-missing data. Since we embed the CT images in a low-dimensional feature space via the DNN, missing CT 
images can be treated in the same manner: If the CT image is missing for a patient, it can be marginalized out 
analytically to calculate the joint probability of the non-missing data. Our main hypothesis is that our DNN-based 
method can extract task-optimized features from the images and yield accurate predictions while requiring no 
manual labor for integrating images in the preprocedural assessment process. To the best of our knowledge, this 
is the first study investigating the usefulness of unprocessed CT images for TAVR outcome prediction.

We evaluate our approach using a database that consists of preprocedural imaging and multiple non-imaging 
variables, as well as mortality information during the postprocedural follow-up, acquired from a set of patients 
who underwent TAVR. In addition to the preprocedural CT images, the database also contains multiple image-
based measurements extracted by radiologists. In our experiments, we compare the prediction performance of 
manually-extracted measurements with DNN-extracted features, in combination with available non-imaging 
variables.

TAVR data set
Data collection was performed in the context of a nationwide prospective TAVR registry (SwissTAVI Registry; 
ClinicalTrials.gov identifier, NCT01368250) and was approved by local and institutional review boards (KEK-
Nr. 2013-0059). Written informed consent was obtained from all participants. For this single-center study, 
we performed a retrospective analysis of 1449 prospectively included participants with severe aortic stenosis 
undergoing nonenhanced and contrast-enhanced CT as part of their routine work-up for TAVR. The considered 
patient attributes can be split into four categories (see Table 1), of which the first three are baseline characteristics.

Tabular baseline patient characteristics
The 25 tabular baseline patient characteristics listed in Table 1 were hand-picked from a larger set by medical 
experts. We purposely refrain from including any information about the interventional approach (e.g., access 
site, valve type), even though such information could arguably benefit the model prediction. Instead, we confine 
the tabular characteristics to clearly quantifiable baseline attributes.

Preprocedural 3D torso CT images
For 741 patients (51%) a preprocedural 3D CT image of the torso is available. The field of view of CT scans var-
ies substantially between patients: some images include the entire torso from the pelvic to the neck area, while 
others only contain the chest. Importantly, all CT scans cover the left ventricle, ascending aorta, and aortic arch.

The CT images show a large variability across different individuals, and not all the variability is necessarily 
relevant for predicting the outcome. Early experiments suggested that a 3D DNN struggles to extract meaning-
ful patterns from such large-scale and heterogeneous input data. We believe this is due to large neural networks 
such as the one used in this study being prone to overfitting13. The network could still learn patterns given 
enough training data, however, we are limited by a small sample size in this study. Therefore, we chose to extract 
a task-relevant volumetric region of interest (ROI) and focus on this area to reduce the irrelevant inter-subject 
variability. It is naturally not feasible to know in advance all the ROIs relevant for a given outcome, thus we resort 
to clinical expertise to define an ROI around the aortic root and ascending aorta and extract it fully automati-
cally as described below.

We use a deep learning-based approach to localize five landmarks on the center-line of the aorta in the CT 
images, starting from the aortic root and going through the ascending aorta as shown in Fig. 1a. These landmarks 
were chosen due to their proximity to the device landing zone, which covers the area around the aortic valve 
relevant for TAVR prosthesis stability and anchoring. For the landmark localization algorithm, we combine a 
reinforcement learning-based approach14 and a regression-based approach15. This two-stage procedure provides 
both the robustness and flexibility of the reinforcement learning-based method and the accuracy of the regres-
sion-based method. For brevity, we do not provide the details of the localization here as it is a re-implementation 
of existing methods14,15. The mean error of the localization is 4.1 mm compared to the manual placements of an 
experienced radiologist. We confirmed that exchanging the automatically and manually placed landmarks leads 
to no significant difference in downstream prediction performance.
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Once the landmarks are localized, the ROI is extracted using four steps, visualized in Fig. 1b: (1) Interpolate 
the five landmarks with a cubic spline to obtain a center line through the aorta. (2) Define 64 intersection points 
evenly spaced along the spline. (3) At each intersection point, extract a 64 × 64 image slice from the image volume 

Table 1.   Available patient characteristics and descriptive statistics within the study population. Parameters 
are the mean and standard deviation for continuous variables and the fraction of True instances for binary 
variables. LVOT: left ventricular outflow tract.

Variable Type

Survivors, 813 (56.1%) Non-survivors, 636 (43.9%)

Parameters Missing Parameters Missing

Tabular baseline patient characteristics

  Age [y] Cont. 79.8 ± 7.6 0.2% 82.2 ± 6.8 0.2%

  Aortic regurgitation [severity score between 0 and 3] Cont. 0.66 ± 0.70 13.0% 0.67 ± 0.70 21.1%

  Aortic valve area [ mm2] Cont. 0.77 ± 0.20 12.2% 0.76 ± 0.21 20.6%

  Body mass index [ kg/m2] Cont. 27.2 ± 4.8 0.4% 26.4 ± 4.8 0.2%

  Cerebrovascular disease Binary 0.18 0.6% 0.19 0.3%

  Chronic obstructive pulmonary disease Binary 0.13 1.0% 0.18 0.8%

  Coronary artery bypass grafting Binary 0.19 2.6% 0.21 0.6%

  Coronary atheromatosis or stenosis Binary 0.69 44.3% 0.78 15.6%

  Creatinine [ µ mol/L] Cont. 99.7 ± 54.0 10.1% 121.6 ± 84.3 5.3%

  Diabetes mellitus Binary 0.23 2.1% 0.27 0.8%

  Dyslipidemia Binary 0.61 1.8% 0.51 1.7%

  Family history of any cardiovascular disease Binary 0.26 8.7% 0.33 2.7%

  Glomerular filtration rate [mL/min/1.73m2] Cont. 59.7 ± 19.6 1.0% 53.5 ± 21.9 1.9%

  Hemoglobin [g/L] Cont. 124.2 ± 18.9 10.7% 118.0 ± 19.0 5.5%

  Hypertension Binary 0.80 1.5% 0.81 0.5%

  Left ventricular ejection fraction [%] Cont. 55.0 ± 12.8 9.2% 53.1 ± 13.9 18.2%

  Male Binary 0.52 0.5% 0.53 0.3%

  Mean transaortic pressure gradient [mmHg] Cont. 42.3 ± 15.7 9.0% 40.7 ± 16.1 17.6%

  Mitral regurgitation [severity score between 0 and 3] Cont. 0.92 ± 0.78 15.7% 1.14 ± 0.84 24.4%

  Pacemaker at baseline Binary 0.95 1.8% 0.89 8.3%

  Peripheral artery disease Binary 0.18 0.9% 0.27 0.3%

  Previous cardiovascular interventions Binary 0.23 3.6% 0.17 0.8%

  Renal replacement or dialysis Binary 0.01 11.4% 0.05 5.2%

  Smoking status Binary 0.29 39.6% 0.33 9.6%

  Valve in valve Binary 0.05 0% 0.02 0.2%

Preprocedural 3D torso CT image

  CT image Cont. – 58.1% – 37.1%

CT image measurements

  Agatston score aortic valve Cont. 2787.0 ± 1821.4 28.9% 2715.0 ± 1675.9 14.9%

  Area-derived diameter of annulus incl. calcification [mm] Cont. 24.2 ± 4.0 6.6% 24.6 ± 2.8 8.0%

  Area of annulus incl. calcification [ mm2] Cont. 460.5 ± 97.5 6.6% 479.7 ± 107.0 8.0%

  Calcification of ascending aorta Cont. 1.9 ± 1.7 41.0% 1.9 ± 0.8 16.0%

  Calcification of sinotubular junction Cont. 1.1 ± 0.8 61.4% 1.1 ± 0.8 37.4%

  Diameter of ascending aorta [mm] Cont. 35.1 ± 4.3 6.0% 34.8 ± 4.2 7.7%

  LVOT area [ mm2] Cont. 433.1 ± 111.6 6.9% 450.2 ± 117.9 7.2%

  LVOT maximal diameter [mm] Cont. 28.2 ± 3.4 5.7% 28.5 ± 3.9 7.2%

  Maximal annulus diameter [mm] Cont. 27.4 ± 3.0 6.4% 27.9 ± 3.1 8.0%

  Maximal diameter of sinotubular junction [mm] Cont. 29.2 ± 3.6 6.8% 29.3 ± 3.7 8.0%

  Perimeter of annulus incl. calcification [mm] Cont. 77.2 ± 8.4 6.5% 79.3 ± 8.7 8.0%

  Sinus portion maximal diameter [mm] Cont. 32.5 ± 4.0 7.0% 33.2 ± 3.9 7.9%

  Volume of sinus valsalva [ mm3] Cont. 23.3 ± 9.7 45.1% 17.7 ± 7.2 36.5%

  Volume score aortic valve Cont. 1180.5 ± 926.8 57.7% 967.6 ± 736.8 37.3%

  Volume score LVOT Cont. 36.6 ± 85.7 13.2% 52.4 ± 108.7 10.1%

Outcome

  Death during follow-up Binary – 0% – 0%
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perpendicular to the spline. (4) Stack the image slices to obtain the final volumetric ROI. This final ROI of size 
64 × 64 × 64 contains a “straightened” volume going from the aortic root through the ascending aorta. To account 
for inaccuracies in the landmark location prediction and increase the robustness of the extraction process, a 
cubic smoothing spline is used in step 1. Defining the orientation of the quadratic image slices as described in 
step 3 still leaves one degree of freedom remaining: a rotation of the slice around the axis of the spline at the 
intersection point. This degree of freedom is fixed by forcing one of the axes of the quadratic slice to be aligned 
with a projection of the sagittal axis on the slice. Fig. 1c shows three orthogonal center slices for an example ROI.

CT image measurements
To facilitate a direct comparison between DNN-extracted image-based predictors and those extracted manually 
by medical experts, a radiologist specializing in cardiac imaging extracted 15 continuous valued measurements 
from the preprocedural CT images. The measurements were extracted either manually or using semi-automatic 
software and follow published guidelines and recommendations16. Not all measurements could be made for all 
the patients.

Outcome
In this study, we define the outcome as all-cause mortality during the postprocedural follow-up period. Among 
survivors, the median follow-up duration is 1093 days, with the 5th and 95th percentiles at 366 days and 2683 
days, respectively. Across all patients, the two output classes are fairly balanced: 44% of patients passed away 
during follow-up (class 1) and 56% survived (class 0).

Probabilistic model
Model definition
We start by defining a graph that captures the assumed conditional dependence structure of our data. Based 
on clinical experience, we presume that the anatomy of the patient and pathological phenotypes captured in 
the CT image ROI, denoted as I, can influence the outcome, denoted as Y. We define a DNN-based feature 
extractor by f (I;ω) – parameterized by ω – which embeds such relevant anatomical features into a compact 
representation. Since the DNN-based feature representation has access to the entire image, we assume in the 
model that the representation f (I;ω) influences the manually extracted image measurements J, as changes in 
the underlying anatomy lead to changes in the image measurements. Finally, the tabular patient characteristics 
A (age, body mass index, smoking status, etc.) can influence both the representation f (I;ω) and the outcome 
Y. We thus arrive at the directed acyclic graph shown in Fig. 2, which outlines the structure of our probabilistic 
model. Importantly, our model leverages available manual image measurements J not as inputs, but as auxiliary 
outputs. J is not required for inference of Y if the DNN-based feature extractor’s outputs f (I;ω) are given, rather, 
is influenced by f (I;ω) . As we will show, setting J as auxiliary output provides two opportunities: (i) when the 
feature extractor cannot be evaluated, e.g., if the unprocessed images are not available, available J’s can be used 
instead for inferring Y, and (ii) during training, J provides an additional signal to better train the DNN-based 
feature extractor as an auxiliary task.

The factorization of the joint probability of all involved variables can be written as

To facilitate closed-form expressions for the joint probability, which allows computational tractability, and to 
allow for data-efficient parameter estimation, we make the following assumptions: We assume that features 

(1)p(A, f (I;ω), J ,Y) = p(Y |A, f (I;ω)) · p(J|f (I;ω)) · p(f (I;ω)|A) · p(A).

Figure 1.   (a) Example image slice with oblique orientation showing the locations of the five aortic landmarks. 
The image slice is defined by the plane containing landmarks 1, 3, and 5. The dots for landmarks 2 and 4 are 
projections on that plane. (b) 3D schematic of the region of interest (ROI) extraction from the CT volume. The 
landmarks (yellow dots) are interpolated with a smoothing spline (black curve), from which orthogonal image 
slices are extracted. For visualization purposes, only seven slices are shown in this figure. The extracted image 
slices are simply stacked to obtain the ROI. (c) Cross-sectional views through the center of the ROI.
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within A and J are conditionally independent given f (I;ω) . We model continuous features in A with Gaussian 
distributions and binary variables in A with Bernoulli distributions. The corresponding hyperparameters of p(A) 
are chosen (and fixed) to maximize the marginal likelihood of A for training observations. The link between the 
CT image and influencing patient factors is modeled with a Gaussian

with standard deviation σI ( II denotes the identity matrix of appropriate dimensions) and model parameters β . 
A full covariance matrix could also be used for modeling, however, estimating the parameters of such a matrix 
would require a large number of training observations and a difficult optimization. Hence, we model the covari-
ance with an isotropic covariance matrix. Similarly, the image measurements J are linearly linked to the image 
features with

Finally, we choose a logistic regression model to predict our binary outcome, where σ(·) denotes the sigmoid 
function.

Feature extraction with deep neural networks
To incorporate the CT volumes into the probabilistic model, we need to extract task-specific features from the 
ROIs via f (I;ω) . Deep neural networks have proven effective in achieving such tasks, most prominently on 
2D, but also on 3D data17. We thus use a 3D neural network as our feature extractor since the input CT images 
are volumetric. While any 3D neural network could be integrated into our probabilistic model, we specifically 
explore two pre-existing architectures in this work: (1) A 3D version of the seminal, convolutional ResNet-5018 
architecture where all 2D convolutions are replaced by their 3D counterparts. (2) Swin UNETR19, a more recent, 
transformer-based architecture for 3D medical image analysis. We refer to the original publications18,19 for 
detailed descriptions of those networks.

3D ResNet-50 and Swin UNETR backbones embed a given input ROI into a feature vector with 2048 and 768 
dimensions respectively. In the proposed approach, such large embedding sizes imply high parameter counts 
in the probabilistic model, i.e., β , φ , αI , creating a risk of overfitting. To avoid this, we first reduce the feature 
dimensions to 16. The simplest way to achieve this would be to insert a fully connected layer, however, this 
would also introduce 2048 × 16 (resp. 768 × 16) additional parameters. Instead, we divide the backbone embed-
ding dimensions, i.e., 2048 for the 3D ResNet-50 and 768 for the Swin UNETR, into 16 chunks, and compress 
each chunk to a single value via a linear transform. The number of additional parameters introduced by this 
transformation layer remains the same as the embedding dimension, i.e., 2048 and 768 for the ResNet and Swin 
UNETR, respectively. Consequently, we end up with an image representation f (I;ω) of size 16, which is further 
processed in the probabilistic model. ω encompasses all the learnable parameters of the 3D neural network and 
our additional compression layer.

It is a well-established fact that deep neural networks require large amounts of training data20. However, pub-
licly available large-scale 3D medical data sets are rare in general, since medical data is much more expensive to 
collect, and 3D annotations are far more laborious. A large-scale data set for TAVR is not available to the best of 

(2)p(f (I;ω)|A) = N

(

f (I;ω);βTA, σ 2
I II

)

,

(3)p(J|f (I;ω)) = N(J;φT f (I;ω), σ 2
J IJ ).

(4)p(Y |A, f (I;ω)) = µ
Y
Y (1− µY )

1−Y
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(
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T
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Figure 2.   Directed acyclic graph expressing the conditional dependence structure of the TAVR data. A are the 
tabular characteristics, f (I;ω) are automatically extracted image features, J are manual image measurements, 
and Y is the outcome. Arrows indicate a dependency, e.g., Y only depends on A and f (I;ω).
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our knowledge. Transfer learning from models pre-trained on natural images has been employed as a potential 
remedy21, however, the large domain gap between natural and medical images limits the effectiveness of this 
approach. More recently, researchers have compiled 3D medical data from several different sources to pre-train 
large-capacity models in a supervised22 or self-supervised19 way. The resulting pre-trained networks are shown 
to be highly data-efficient when fine-tuned to downstream medical image analysis tasks. We thus initialize our 
3D ResNet-50 and Swin UNETR using those pre-trained weights19,22.

Marginalization for missing data
For many patients in this study, one or more variables are missing. Missing data is a common scenario in clinical 
settings, and it can exacerbate the difficulty of predicting outcomes. Unrecorded variables can occur for several 
reasons, such as patient refusal to provide certain information, investigator or mechanical failure, or lack of 
resources or time to conduct certain investigations. Hereafter, we assume that the missing data is either missing 
completely at random or missing at random. Standard techniques to deal with an incomplete data set fulfilling 
this assumption include deletion and imputation. In deletion, observations with missing entries are discarded. 
In our case, this would eliminate 69.6% of all observations in our data set. With imputation, missing entries are 
estimated based on available data and are assumed to be given in the first place during model training. Since 
our model is fully probabilistic, we have the more principled option of marginalizing out variables that are not 
available for a given observation. For continuous variables, i.e., I, and possibly some A dimensions, this procedure 
for an observation n is

where \k represents the set of all dimensions except k. Here, we assume that the image I is either complete or 
fully missing. Missing variables in J can be simply ignored, as they are output variables.

For binary variables, i.e., possibly some dimensions of A, the procedure is very similar, except with 
summations

where A (k) are the sets of possible values for the corresponding dimensions.
Through reasonable assumptions, we can derive analytical expressions for the joint probability in Eq. (1) for 

every possible combination of missing data in A, J, and I. Encountering the convolution of a Gaussian with a 
logistic sigmoid, we approximate the logistic sigmoid function with a scaled inverse probit function, an accurate 
and widely used approximation23. For more details, please refer to the supplementary material.

Manual image measurements as auxiliary outputs
In this section, we highlight the interaction, emerging from the structure of our probabilistic model, between 
the manual image measurements J and the unprocessed image I. As shown in Eq. (3) and Fig. 2, we connect the 
DNN-based feature extractor’s outputs f (I;ω) to the manually determined image measurements J in our model. 
In this way, the image measurements J are leveraged as additional, auxiliary outputs, introducing multi-task 
learning24. The extra outputs can be considered as hints25, which induce a bias towards learning useful feature 
representation in the network f (I;ω) . If applied to related tasks, this has been shown to improve sample efficiency 
and generalization for medical problems26 and beyond.

Importantly, by using them as auxiliary outputs instead of inputs, we remove the need for the measurements J 
for inference if we are given the unprocessed image I. In other words, if unprocessed images are given, the model 
does not need the manually extracted measurements for making a prediction. For a complete observation n, the 
joint probability of our model can be written as (see Eq. (1–5)):

Since the image measurements Jn and outcome Yn are conditionally independent given the image In , the outcome 
prediction µn does not depend on Jn . So for inference with Eq. (10), we only need access to the tabular patient 
factors An and the unprocessed image In . Now consider a scenario in which we are given an observation with 
some image measurements Jn but a missing unprocessed image In . This can happen if the image cannot be shared 
between hospitals or is difficult to retrieve from the archiving system. Interestingly, the dependency structure 
of our model shifts in this case:

(6)p(An, Jn,Yn) =

∫
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Note that µn,\I – the prediction of the binary outcome Yn – now directly depends on Jn (compare Eq. (12) to 
Eq. (10)). By marginalizing out In , which influences both Jn and Yn , a causal link between the dependent vari-
ables is established. This hierarchy is provided through the probabilistic model. Crucially, Eq. (12) suggests 
that during inference, Jn can be used to predict the outcome if (and only if) In is missing. This underscores the 
flexibility of our model.

Parameter learning
Following common practice, we fit our model by maximizing its log-likelihood on training observations. Without 
missing variables, the log-likelihood for a set of N observations is:

In the above expression, constant terms are omitted since they do not affect the gradient. Analogous expressions 
for each missing data case are presented in the supplementary material. Crucially, this setup allows us to train 
the neural network parameters ω jointly with the parameters αA, bY ,αI ,β , σI ,φ, σJ of the probabilistic model. 
Our full model is shown in Fig. 3

Results
To make better use of the available data, we evaluate the proposed models using 10-fold cross-validation. We 
use stratified cross-validation, as it has been shown to produce lower bias and variance in estimation27. For each 
fold, we split the data set into 80% training, 10% validation, and 10% test observations.

As a performance metric, we use the area under the ROC curve (AUROC). AUROC is used extensively 
in medical studies to assess binary classifications in biomedical sciences, such as the clinical classification of 
diseased from healthy patients, and to estimate the risk of adverse outcomes based on patients’ risk profiles28. 
Importantly, the AUROC provides a single-number performance metric for comparing the inherent validity of 
several diagnostic models, while avoiding defining a clinical decision criterion. Throughout the cross-validation 
experiments, we compute separate AUROC values for each fold and report the mean and standard error of the 
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Figure 3.   Overview of a conventional approach (left) and our automatic approach (right) for predicting TAVR 
outcome. In the conventional approach, radiologists manually extract measurements from the CT image, which 
are combined with the tabular characteristics A for risk assessment. Missing variables in A (shown in orange) 
are simply deleted. In our approach, task-specific image features f (I;ω) are automatically extracted from the CT 
volume through landmark localization, ROI extraction, and a 3D neural network. According to the hierarchy of 
our probabilistic model, the tabular patient factors A can also influence those image features f (I;ω) . Missing 
values in A are marginalized. Both A and f (I;ω) are used to predict postprocedural mortality. In addition, our 
model leverages available manual image measurements J as auxiliary outputs to help guide the training of the 
network parameters ω . The dashed arrow indicates that J is not required during inference.
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mean (SEM), in order to provide a measure of uncertainty about the estimate of AUROC. Implementation details 
and hyperparameters for the experiments can be found in the code at https://​github.​com/​brdav/​tavr.

Comparison to alternative approaches
In Table 2 we present a performance comparison of our probabilistic model to six alternative approaches. The 
first two approaches estimate the patient risk based on the EuroSCORE II and the Society of Thoracic Surgeons 
(STS) score, respectively, using univariate logistic regression. The EuroSCORE II and STS score are two of the 
most influential cardiac surgery risk scores and have been widely used to risk-stratify patients for TAVR. The 
third and fourth approaches use the tabular variables in Table 1 for prediction, excluding (row 3) or including 
(row 4) the image measurements J. Missing variables are imputed via the sample mean. The approaches in rows 
5 and 6 instead use marginalization to deal with missing values. Note that the fourth and sixth approaches are 
sophisticated multi-step approaches that involve 1) explicit measuring of relevant image features by medical 
experts, 2) either mean imputation or marginalization of missing variables, and 3) logistic regression. Table 2 
shows that our probabilistic model, which unifies and automates all those steps, outperforms the risk-score-based 
and image-free models and performs on par with the image-based manual approaches. Importantly, our model 
only resorts to manual image measurements J when the unprocessed image I is missing (for 49% of patients in 
our data set). In those cases, it seamlessly marginalizes out the missing high-dimensional image input, which 
would not be possible with conventional data imputation. We present results using both the 3D ResNet-5022 and 
Swin UNETR19 as image feature extractors, whereby both networks perform similarly. Models with a risk within 
one standard error of the best model are boldfaced.

Importance of auxiliary outputs
To highlight the importance of using the image measurements J as auxiliary outputs, we train a version of our 
probabilistic model that ignores J, i.e., by completely removing the component in Eq. (3) from the model during 
training and inference. This model (i) lacks the guidance facilitated by the auxiliary outputs during training, 
and (ii) cannot leverage the manual measurements to better marginalize missing image inputs (as shown in 
Eq. (12)). As a consequence, we observe a noticeable performance drop compared to the full model: Using the 
3D ResNet-50 feature extractor, the performance difference �AUROC is 0.018, whereas it is 0.013 using the 
Swin UNETR.

Model analysis
We analyze the contribution of different (sets of) predictors to the predictive power of our probabilistic model. All 
results in this section are obtained from our full probabilistic model using a 3D ResNet-50 feature extractor. By 
withholding different (sets of) predictors during the evaluation of our model, it marginalizes out those predictors. 
The resulting performance drop indicates how important the withheld predictors are for the model’s performance.

Table 3 compares the value of the tabular patient factors A, the manual image measurements J, and the unpro-
cessed images I. For example, in row 1, all predictors except A are withheld during evaluation. Using purely the 
image I as input is unfortunately not possible on our data set because it is completely missing for 49% of patients. 
As evidenced by comparing rows 1 and 3, using image-based predictors increases mean AUROC substantially. 
For the fair interpretation of the results in Table 3 it is important to note that our model (row 6) only uses the 
manual measurements J as predictors when the unprocessed image I is unavailable (for 49% of patients in our 
data set). However, in the case of rows 2 and 3, the image measurements J are used for all patients because the 
unprocessed image I is completely withheld. Comparing rows 3 and 6 thus shows that the performance of our 
model remains stable whether the automatic feature extraction is used for the 51% patients with an unprocessed 
image (row 6), or the manual measurements are used instead for all patients (row 3). This enables a tremendous 
increase in workflow efficiency for TAVR planning. Finally, the decreased performance in row 4 vs. row 6 shows 
that the image measurements J are indeed important for the effective marginalization of the missing unprocessed 
images. The scores within one standard error of the best result are boldfaced.

Table 2.   AUROC for predicting death during follow-up after TAVR. We report the mean and standard error 
of the mean (SEM) for 10-fold cross-validation.  A tabular patient factors, I unprocessed CT image, J CT 
measurements.

Method Predictors Missing data

AUROC ↑

mean SEM

Logistic regression EuroSCORE II N/A 0.651 0.012

Logistic regression STS score N/A 0.646 0.007

Logistic regression A Mean imputation 0.689 0.011

Logistic regression A and J Mean imputation 0.717 0.011

Logistic regression A Marginalization 0.682 0.011

Logistic regression A and J Marginalization 0.723 0.010

Ours (3D ResNet-5022) A and (I or J) Marginalization 0.722 0.011

Ours (Swin UNETR19) A and (I or J) Marginalization 0.725 0.010

https://github.com/brdav/tavr
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We are also interested in assessing the importance of individual predictors for our probabilistic model. As 
shown in Fig. 4, our model relies predominantly on a fraction of the predictors. Withholding the image input 
(both the unprocessed image I and the measurements J) leads to a substantial mean AUROC drop of around 
0.037.

Discussion
In recent years, several works29–33 have explored the utility of machine learning models for TAVR outcome 
prediction. The approach presented in this paper differs in several aspects: (i) For simplicity, previous works29–33 
exclusively use tabular features as predictors, foregoing the potential benefits of incorporating CT image infor-
mation in the prediction. The model presented here addresses this shortcoming by leveraging unprocessed CT 
images through a powerful 3D DNN, circumventing the need for expensive, manual measurements of anatomi-
cal features, and instead extracting relevant features fully automatically from the CT. (ii) In previous studies, 
patients with missing variables were excluded29,30,33 or their missing variables were estimated based on the sample 
mean32. Our model’s generative probabilistic structure enables the marginalization of missing CT image inputs 
and patient variables, avoiding the need for explicit imputation. (iii) Previous works predict all-cause in-hospital 
mortality30,32,33, 1-year cardiovascular mortality29, and 5-year all-cause mortality31, whereas our approach focuses 
on predicting all-cause mortality during the follow-up. As the predicted clinical outcomes differ, reported per-
formance values cannot be compared directly.

We evaluated our model in a cohort of 1449 TAVR patients. The results in Table 2 confirm that our automatic 
feature extraction can replace manually extracted image measurements without forfeiting prediction accuracy, 
which is an important and surprising point. The manually extracted features are complex measurements that 
integrate clinical experience and medical knowledge. However, extracting such features for every patient can 
create a bottleneck during preprocedural patient assessment: Extracting the measurements manually from a 
single image takes an expert radiologist between 10 and 15 minutes– depending on calcification severity. Our 
model delivers a prediction within 5 to 20 seconds on a consumer CPU– depending on the number of missing 
variables– allowing patient assessment with minimal manual labor. That said, an important part of the manually 
extracted features is their interpretability: Each manually extracted feature has a distinct clinical meaning. Such 
a meaning is conversely not available for the network-extracted features of our model: While post-hoc methods 

Table 3.   AUROC for predicting death during follow-up after TAVR with our probabilistic model, using 
different sets of predictors for inference. We report the mean and standard error of the mean (SEM) of 10-fold 
cross-validation.

Predictors AUROC ↑

A (tabular) J (CT meas.) I (CT image) Mean SEM

1 � 0.686 0.011

2 � 0.671 0.014

3 � � 0.725 0.011

4 � � 0.705 0.011

5 � � 0.665 0.010

6 � � � 0.722 0.011

Figure 4.   Predictors sorted by their importance for our probabilistic model. Withholding the “CT image” input 
(both the unprocessed image I and the measurements J) during evaluation leads to the largest drop in AUROC, 
indicating high importance. The “Age” predictor is second-most important after “CT image”. Bars indicate the 
standard error of the mean estimate.
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might help recover some explainability, those methods are approximative and would not reflect correct model 
behavior, which undermines their trust in clinical settings34.

There are also other clinically relevant limitations of our model. First, we provide the cross-validated gener-
alization performance estimate on a single TAVR registry. All patients in this data set were treated in the same 
facility over around eight years. Furthermore, the data set is naturally biased towards high-risk patients, since only 
those patients were prescribed TAVR. Before using the presented model to guide treatment decisions, its perfor-
mance should thus be evaluated on a separate, independent patient registry. Second, the proposed probabilistic 
model is built on the assumption of predictor independence. As such, the model could operate sub-optimally for 
predictor sets with highly correlated variables. However, this can be easily avoided by filtering (or transforming) 
the predictor set accordingly, as was done in this work. Third, although AUROC represents a good general metric 
for comparing clinical prediction models, it has limitations. Estimating a model’s performance only based on 
AUROC can be misleading. For instance, a model might have a very high true positive rate at clinically unac-
ceptable levels of false positive rate and perform poorly in clinically relevant ranges35. Such a model could still 
score a high AUROC. Before clinical application, an operation range should thus be set by defining a cut-off for 
classifying patients as either high- or low-risk. A cut-off point is difficult to define: it requires the balancing of 
potential benefits and harms, which can be subjective. However, with a fixed cut-off, the model could be evalu-
ated more directly in terms of specificity and sensitivity. Finally, a more comprehensive measure of TAVR success 
should incorporate not only mortality but also the patient’s quality of life and functional level after the procedure. 
This could provide a clinically more useful estimate of TAVR risk36. Additionally, there may be other important 
predictors of TAVR risk that were not collected in the examined TAVR registry, e.g., atrial fibrillation. However, 
our model does not necessitate structural modifications to accommodate additional variables or predict differ-
ent outcomes. If a TAVR registry with this information becomes available, our model could be fit analogously.

Data availability
The data that support the findings of this study are part of the SwissTAVI Registry (ClinicalTrials.gov identifier: 
NCT01368250). Data is available on reasonable request from the corresponding author. Please note that sharing 
data is bound to institutional and national regulations and their process needs to be followed for sharing data.
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