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Representation of genomic intratumor
heterogeneity in multi-region non-small
cell lung cancer patient-derived
xenograft models

Robert E. Hynds 1,2,3,108 , Ariana Huebner 1,2,4,108, David R. Pearce 1,2,108,
Mark S. Hill 2, Ayse U. Akarca 5, David A. Moore 1,2,5, SophiaWard 1,2,6,
KateH. C. Gowers7, Takahiro Karasaki 1,2,8, Maise Al Bakir 1,2, Gareth A.Wilson2,
Oriol Pich 1,2, CarlosMartínez-Ruiz 1,4, A. S. MdMukarramHossain 9,10,
Simon P. Pearce 9,10, Monica Sivakumar1,5, Assma Ben Aissa11, Eva Grönroos 2,
DeepakChandrasekharan 7,KrishnaK.Kolluri7,RebeccaTowns12,KaiwenWang13,
Daniel E. Cook 2, Leticia Bosshard-Carter1,7, Cristina Naceur-Lombardelli 1,
AndrewJ.Rowan2,SelvarajuVeeriah1,KevinLitchfield 1,14, PhilipA. J.Crosbie10,15,
Caroline Dive 9,10, Sergio A. Quezada 1,11, SamM. Janes 7,
Mariam Jamal-Hanjani 1,8,16, TeresaMarafioti5, TRACERx consortium*,
NicholasMcGranahan 1,4 & Charles Swanton 1,2,16

Patient-derived xenograft (PDX) models are widely used in cancer research. To
investigate the genomic fidelity of non-small cell lung cancer PDX models, we
established 48 PDX models from 22 patients enrolled in the TRACERx study.
Multi-region tumor sampling increased successful PDX engraftment and most
models were histologically similar to their parent tumor. Whole-exome sequen-
cing enabled comparison of tumors and PDXmodels and we provide an adapted
mouse reference genome for improved removal of NOD scid gamma (NSG)
mouse-derived reads from sequencing data. PDX model establishment caused a
genomic bottleneck, with models often representing a single tumor subclone.
While distinct tumor subclones were represented in independent models from
the same tumor, individual PDX models did not fully recapitulate intratumor
heterogeneity. On-going genomic evolution inmice contributedmodestly to the
genomic distance between tumors and PDX models. Our study highlights the
importance of considering primary tumor heterogeneitywhenusing PDXmodels
and emphasizes the benefit of comprehensive tumor sampling.

In patient-derived xenograft (PDX) models, human tumors are pro-
pagated by transplantation into immunodeficient mice1. PDX models
have become important models in cancer biology: they are thought to
mimic tumor biology more closely than traditional cell lines as a

consequence of their in vivo cell-cell and/or cell-matrix interactions,
3D architecture and relatively recent derivation2. Many reports have
suggested that the drug responses of PDX models are concordant
with those observed in either individual patients or in patient cohorts.
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This has led to the use of PDX models in pre-clinical drug trials
prior to patient investigations3, and to enthusiasm for the use of PDX
models in personalized medicine approaches in which they are used
as ‘avatars’ for individual patient responses to therapy in ‘co-clinical’
trials4,5.

For pre-clinical oncology applications, the fidelity of PDX models
is of major importance. Across cancer types, including non-small cell
lung cancer (NSCLC)6, PDX models bear histological similarity to the
tumors from which they were derived. However, recent high-
resolution analyses of breast cancer PDX models suggest that PDX
models, like patient tumors, can comprisemultiple genetically defined
subclones7 and that these undergo dynamic changes in their relative
abundance during PDX engraftment and expansion8. Analysis of PDX
model copy number profiles has cast doubt upon their representation
of tumormolecular heterogeneity, specifically with regard to genomic
evolutionwithin themouse9,10. While someof thesedifferencesmaybe
attributable to technical issues surrounding the estimation of copy
number profiles from RNA sequencing data, disagreement about the
extent and importance of PDX copy number divergence remains when
considering DNA sequencing data10,11. While some studies have inclu-
ded examples of matched patient-PDX pairs or the derivation of mul-
tiple PDXmodels from the same tumor, the genomic evolution during
PDX model establishment and propagation has not been system-
atically assessed. Furthermore, the role of spatial sampling has not
been explored and studies to date have not been performed in the
context of multi-region patient sequencing data to formally establish
how well PDX models represent the complex subclonal nature of pri-
mary tumors and their metastases.

Lung TRACERx is a prospective cohort study that aims to char-
acterize the evolutionary dynamics of NSCLC through a multi-region
whole-exome sequencing (WES) approach12. Here, we derive PDX
models from multiple regions of primary NSCLC from patients enrol-
led in the TRACERx study to determine the histological and genetic
fidelity of the PDX approach. By comparing WES data from initial
passage zero (P0; i.e. the first xenograft tumor) PDX models, estab-
lished passage three (P3) PDX models and multiply-sampled matched
primary tumors, we investigate key unresolved issues in the useof PDX
models. These include the extent of genomic bottlenecking upon
engraftment, the reproducibility of PDX derivation across spatially
distinct replicate samples and the emergence of de novo genetic
alterations in PDX models during their propagation in mice. Further,
we highlight the utility of a host-matched NSG-adapted reference
genome to deconvolve human andmouse sequencing reads from PDX
models.

Results
Establishment of PDX models from multiply-sampled
NSCLC tumors
Primarynon-small cell lung cancers (NSCLCs) frompatients enrolled in
the lung TRACERx study undergo multi-region whole-exome sequen-
cing (WES) using a defined sampling protocol12. To characterize tumor
evolution during patient-derived xenograft (PDX) model engraftment
and propagation, we obtained tumor region-matched tissue and cre-
ated PDX models from a representative patient subset (Fig. 1A; Sup-
plementary Fig. 1). 145 specimens from 44 patients undergoing
surgical resection of their primary NSCLC were injected sub-
cutaneously in NOD scid gamma (NSG)mice, generating 64 xenografts
from a cohort with diagnoses of lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC) and other NSCLC histological sub-
types (including adenosquamous carcinoma, a collision tumor con-
taining both LUSC and LUAD, combined LUAD and small cell
carcinoma, pleomorphic carcinoma, carcinosarcoma, and large cell
neuroendocrine carcinoma; Fig. 1B). Either fresh or cryopreserved
tumormaterialwas used to initiate xenografts, with noobserved effect

of prior cryopreservation on engraftment efficiency (p =0.69, Chi-
square test; Supplementary Fig. 2A). Quality control for the presence
of human lymphocytic tumors13,14 revealed that 16 xenografts were
human CD45 (hCD45)-expressing lymphoproliferations rather than
keratin-expressing NSCLCs (described in detail in a previous
manuscript15; Fig. 1B; Supplementary Fig. 3A). In all subsequent ana-
lyses, lymphoproliferations were considered as unsuccessful engraft-
ments. One case (CRUK0885 Region 3; R3) lacked expression of either
keratin or hCD45 but was deemed to be a NSCLC PDX model as the
immunophenotype and tumor morphology was consistent with the
diagnosed primary tumor subtype of carcinosarcoma (Supplementary
Fig. 3A). hCD45-expressing cells were absent from first generation
NSCLC PDX models in all cases except CRUK0816 R2, where CD45+
cells were present in the initial xenograft and declined over passages.
Immunohistochemical analyses showed that these cells were CD3+ T
lymphocytes (Supplementary Fig. 3B). Thus, our cohort consisted of
48 NSCLC PDXmodels from 22 patients with a successful engraftment
rate of 50.0% at the patient level and 33.1% at the region level (Fig. 1B).
Downsampling to one engraftment attempt per patient suggested that
single region tumor sampling would have resulted in the generation of
PDX models for a median of 14 patients (Fig. 1C) and that multi-region
sampling increased the engraftment rate across all histological sub-
types (Supplementary Fig. 4). Multiple, spatially distinct NSCLC PDX
models were established for nine patients (median = 4 regional PDX
models per patient with multiple PDX models; Fig. 1B). Mice with no
apparent xenograft were terminated after amedian of 306 days (range
37–402 days; Supplementary Fig. 2B). Each region-specific PDXmodel
was propagated by transfer of xenograft fragments to naïve hosts,
maintaining the models independently, exclusively in vivo and gen-
erating a large biobank of cryopreserved PDX tissue. PDX models
could be re-established following cryopreservation (Supplementary
Fig. 2C). Initial passage zero (P0) PDX models took a median of
85.0 days before tumor harvest (range 37–440 days; Fig. 1D) and
variability of engraftment time between tumor regions from the same
primary tumors was evident (Supplementary Fig. 2D). In subsequent
passages, PDXgrowthwasmore rapid,with amedian time toharvest of
51.0 days across passages P1-P3 (median values for P1, P2 and P3 were
49.5, 55.0 and 50.0, respectively; Fig. 1D).

In a review of PDX model histopathology, we observed high
consistency between initial P0 and established P3 PDX models (Sup-
plementary Fig. 5, Supplementary Data 1). When comparing PDX
models to region-specific hematoxylin and eosin (H&E) stained sec-
tions available from patient tumors, we observed concordance for the
majority of models, consistent with prior PDX models that have been
shown to broadly resemble the histologies of the tumors from which
they were derived6,16–24. However, in a minority of cases, we noted
histological variation. Somemodels showed evidence of divergence at
P0; for example, CRUK0949 R1 and R3 showedmore widespread clear
cell differentiation than was present in the corresponding patient
samples for those regions, and CRUK0816 R2 and R5 PDX models
presented more epithelioid differentiation than the parent tumor
(Supplementary Fig. 6A). Other models varied between the initial P0
and established P3 samples, with the initial P0 PDXmodelmore closely
resembling the patient region than the P3 PDX model; for example,
CRUK0941 R2 PDXmodel showed prominent rhabdoid differentiation
at P3 that had not been present in either the patient or P0 samples
(Supplementary Fig. 6B), though this was consistent with the cytolo-
gical pleomorphism seen in this poorly differentiated pleomorphic
carcinoma. In multiple CRUK0606 regional PDX models, substantial
variation between either tumor and P0 PDXmodels, or P0 and P3 PDX
models was observed. Glandular features were a minor component of
the patient’s regional tissue but became more prominent in PDX
models, either in both initial P0 and established P3 models (R5, R8) or
in the established P3 model only (R1, R6; Supplementary Fig. 6B).
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Engraftment characteristics of PDX-forming NSCLC tumor
regions
Consistent with previous reports suggesting that PDX establishment is
linked to poor prognosis in NSCLC18,25–27, we observed a trend towards
shorter disease-free survival in patients for whom at least one PDX
model was established (Log rank test, p =0.098; Fig. 1E). Univariate

analysis of clinical characteristics showed that lesion size was sig-
nificantly associated with PDX engraftment in LUAD (p =0.0072, Wil-
coxon rank sum test) and other NSCLC histologies (p = 0.024,
Wilcoxon rank sum test), but not LUSC tumors (p =0.95, Wilcoxon
rank sum test; Supplementary Fig. 7A). Consistent with this, an asso-
ciation between higher T stage (to which lesion size is a major

A

Multiple spatial region
sampling of primary
NSCLC (TRACERx)

R1

R2
R3

R4

‘Passage 0’ ‘Passage 1’ ‘Passage 2’ ‘Passage 3’

PDX
engraftment

PDX
expansion

R1

R2

R3

R4

Whole exome
sequencing

Mutation calling
Phylogenetics

Signature analysis

B

0

2

4

6

8

CRUK06
06

CRUK06
40

CRUK09
35

CRUK07
48

CRUK09
49

CRUK08
16

CRUK07
18

CRUK09
95

CRUK06
82

CRUK08
85

CRUK07
33

CRUK07
72

CRUK10
54

CRUK09
41

CRUK10
61

CRUK07
04

CRUK09
34

CRUK09
83

CRUK08
61

CRUK08
83

CRUK08
17

CRUK09
39

CRUK08
10

CRUK09
62

CRUK07
01

CRUK06
44

CRUK07
17

CRUK08
94

CRUK08
30

CRUK08
25

CRUK11
41

CRUK08
81

CRUK08
79

CRUK08
06

CRUK07
31

CRUK07
95

CRUK07
64

CRUK07
42

CRUK07
62

CRUK07
15

CRUK07
39

CRUK07
55

CRUK09
23

CRUK11
91

N
um

be
r 

of
 r

eg
io

ns

First Event

N Stage

T Stage

TNM Stage

Smoking Status

Age

Sex

Histology Histology

Adenocarcinoma
Squamous cell carcinoma
Adenosquamous carcinoma
Collision LUAD and LUSC
Combined LUAD and SCLC
Pleomorphic carcinoma
Carcinosarcoma
LCNEC

Sex

Female
Male

55

65

75

85
Age

Smoking Status

Never Smoked
Ex−Smoker
Smoker

TNM Stage

IA
IB
IIA
IIB
IIIA
IIIB

T Stage

1
2
3
4

N Stage

0
1
2

First Event

Recurrence
New Primary
Death

PDX outcome

NSCLC PDX
CD45+ xenograft
None

C
Modelled Observed

0

300

600

900

10 15 20
Number of patients with PDX model

co
un

t

D

P0 P1 P2 P3
0

100

200

300

400

500

Passage

D
ay

s 
fr

om
 in

je
ct

io
n 

to
 h

ar
ve

st

p = 1.5e-6

p = 1.2e-4

p = 3.2e-11

+
+

++ + +

+

+

+
+

+ + + ++ +

+
p = 0.098

0.00

0.25

0.50

0.75

1.00

0 400 800 1200 1600
Time (days)

S
ur

vi
va

l p
ro

ba
bi

lit
y

+
+

PDX
no PDX

21 10 4 3 0

21 17 8 7 0−
−

Number at risk

E

Fig. 1 | Lung TRACERx patient-derived xenograft (PDX) cohort overview.
A Schematic of the study protocol to derive and expand PDX models within the
lung TRACERx study. B Outcomes of regional non-small cell lung cancer (NSCLC)
tumor tissue engraftment in NSG mice, including patient characteristics.
CDownsampling to one engraftment attempt for each patient. Green line indicates
median modeled number of patients with a PDX model following a single
engraftment attempt, browndashed line indicates theobservednumber of patients
forwhomPDXmodelswerederivedwith amulti-region sampling approach.DTime
from tumor injection to PDX harvest by passage number. Only PDX models for

which complete P0-P3 data were available are shown (n = 40 PDX models at each
passage). Bar shows median time for all models. Two-sided Friedman test with
Dunn’s test for multiple comparisons, p values as indicated. E Disease-free survival
over a 1600 day period following tumor resection is shown grouped by the gen-
eration (PDX) or not (no PDX) of at least one regional NSCLC PDX model for each
patient. Log rank test, p value as indicated. LUAD—lung adenocarcinoma; LUSC—
lung squamous cell carcinoma; SCLC—small cell lung cancer; LCNEC—large cell
neuroendocrine carcinoma.

Article https://doi.org/10.1038/s41467-024-47547-3

Nature Communications |         (2024) 15:4653 3



contributor) and engraftment was observed in LUAD (p =0.044, Fish-
er’s exact test; Supplementary Fig. 7E). No significant differences in
overall age, smoking pack years, sex, TNM stage, pleural invasion,
vascular invasion, N stage were observed between tumors that
engrafted and those that did not (Supplementary Fig. 7B–I). PDX
models were established for six of 20 (30.0%) LUAD patients, ten of 15
(66.7%) LUSC patients and six of nine (66.7%) patients with other
NSCLC histologies (p =0.064, Fisher’s exact test comparing engraft-
ment success versus histology; Supplementary Fig. 7J), consistent with
literature reports of greater engraftment rates for LUSC compared to
LUAD tumors (Supplementary Fig. 7K16–18,21,23,26–32). However, this
patient-level analysis was complicated by our multiple sampling of
tumors; when considering engraftment by tumor region, 11/45 LUAD
(24.4%), 18/56 LUSC (32.1%) and 19/44 'other' (43.2%) regions formed
PDX models (p =0.18, Fisher’s exact test comparing engraftment suc-
cess versus histology; Supplementary Fig. 7J).

Leveraging primary tumor WES data from 43 patients (46 geno-
mically distinct tumors), we investigated potential genomic differ-
ences between tumors that engrafted and those thatdid not.We found
no differences in the overall number of mutations or the number of
truncal and subclonal mutations (Fig. 2; Supplementary Fig. 8A-8B).
Overall, differences in mutational signatures were minimal (Fig. 2),
although we observed a higher number of mutations associated with
APOBEC mutagenesis (SBS2 and SBS13) in LUSC tumors that did
not engraft (p =0.011, Wilcoxon rank sum test) and a trend was
observed in the opposite direction in LUAD tumors (p =0.12,Wilcoxon
rank sum test; Supplementary Fig. 8C). Clustering of all samples
based on total copy number led to grouping primarily by whole-
genome doubling status and then by tumor of origin (Supplementary
Fig. 9A, B). Regardless of engraftment success, most LUAD tumor
regions analyzed were subject to whole-genome doubling. Approxi-
mately half of LUSC regionsweregenome-doubled, again regardless of
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clonality status of alterations. Second panel: proportion of truncal and subclonal

mutations. Third panel: proportion of copy number alterations that were truncal or
subclonal. Fourthpanel: proportionofmutational signatures asestimatedacross all
mutations. Bottom panel: driver alterations on a per tumor basis. The genes shown
are mutated in more than three tumors in this patient cohort. Mutations are
colored by the clonal status of alterations. LUAD—lung adenocarcinoma; LUSC—
lung squamous cell carcinoma; CN—copy number; MMR—mismatch repair.
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engraftment success. However, among regions from other NSCLC
histologies, we noted a significantly higher proportion of genome-
doubled regions among those that did not engraft (p = 5.24e–6, Fish-
er’s exact test; Supplementary Fig. 9C).

We found that LUAD tumor regions that engrafted had higher
copy number instability than those that did not. Specifically, the pro-
portion of the genome that was aberrant in LUAD tumors that
engrafted was significantly higher than in those that did not (p =0.010
and p = 0.00096, tumor level and region level, respectively, Wilcoxon
rank sum test; Supplementary Fig. 10A). The same pattern was
observed when only considering subclonal copy number alterations.
However, when considering the proportion of the aberrant genome
that was subclonal, a metric that was previously associated with
disease-free survival in NSCLC33, no differences were observed (Fig. 2;
Supplementary Fig. 10B). Additionally, we found that LUAD tumor
regions that gave rise to PDX models had a higher fraction of the
genome subject to lossof heterozygosity (LOH) than those thatdid not
engraft (p =0.0015, Wilcoxon rank sum test; Supplementary Fig. 10C).
Consistent with this and the established association between TP53
mutations and chromosomal instability in cancer34, TP53 mutations
were enriched in tumors that gave rise to PDX models (p =0.026,
Fisher’s exact test; Fig. 2). Considering tumor histology revealed that
this was likely driven by a decreased likelihoodof PDX engraftment for
TP53 wildtype LUAD tumors (p = 0.15, Fisher’s exact test; Supplemen-
tary Fig. 10D). Indeed, the LUAD tumors with low proportions of the
genome that are aberrant (Supplementary Fig. 10E) and low propor-
tions of LOH (Supplementary Fig. 10F) were TP53wildtype and did not
engraft.

Considering recurrent gain and/or loss events, we found several
significant differences between LUAD tumor regions that successfully
engrafted and those that did not. In particular, we found losses of 1p,
8p, 12p, 15q, 18q and 20p (Supplementary Fig. 11A; q =0.044 and 0.03
(1p); q =0.044 (8p); q =0.044 (12p); q =0.03 (15q); q = 0.044 (18q);
q =0.044 (20p), Fisher’s exact test with false discovery rate (FDR)
correction). Additionally, we observed a focal loss event on chromo-
some 9 that was found in all of the LUAD tumor regions that formed
PDX models and approximately half of those that did not (Supple-
mentary Fig. 11A). Higher resolution analysis of this genomic region
showed that the loss event occurswithin 9p21.3-9p21.1, which contains
genes including CDKN2A, CDKN2B and a cluster of type I interferon
genes (Supplementary Fig. 11B). A subset of ten genes, including
CDKN2A, CDKN2B, IFNA1 and IFNE, were found within the same seg-
ment in all engrafting LUAD tumor regions andwere significantlymore
likely to be lost homozygously in LUAD regions that formed PDX
models compared to those that did not (p =0.00022, Fisher’s
exact test).

As estimated from patient WES data, the tumor purity of engraf-
ted regions was higher than for non-engrafted regions overall
(p = 0.00029, Wilcoxon rank sum test) and in both LUAD (p =0.011,
Wilcoxon rank sum test) and other NSCLC histologies (p =0.020,
Wilcoxon rank sum test; Supplementary Fig. 12A). T cell infiltration of
the primary tumor regions was lower for engrafted regions as esti-
mated using the T cell ExTRECT tool35 (overall p =0.028, Wilcoxon
rank sum test), and this was driven by LUSC tumors where T cell
abundance was associated with failure for PDX models to engraft
(p = 0.015,Wilcoxon rank sum test; Supplementary Fig. 12B). Increased
T cell contentmight reflect a higher stroma:tumor ratiowithin a region
or may directly reduce the viability of tumor cells. Consistent with the
latter, analysis of RNA sequencing data (from the subset of regions
where data were available36) found enrichment for apoptosis-related
pathways (apoptosis Hallmark pathway37, FDR q = 5 × 10−4) in regions
that fail to engraft and for proliferation-related pathways in regions
that engrafted (E2F targets, MYC targets v1 and G2M checkpoint
Hallmark pathways37, FDR q = 1.1 × 10−7, 2 × 10−6 and 2.1 × 10−5, respec-
tively; Supplementary Fig. 12C).

An NSG-adapted reference genome improves removal of con-
taminating mouse WES reads
We subjected PDX models to WES (median depth after mouse read
removal = 397x, interquartile range = 357-448x) in order to compare
their genomic features to matched primary tumor regions for which
WES was available within the TRACERx study (median depth = 404x,
interquartile range = 373-434x). PDXmodels were analyzed once upon
their first engraftment in mice (P0) and again once established (P3).
Quality control identified a subset of contaminating reads mapping to
the mouse reference genome in PDXmodel sequencing data (Fig. 3A).
Filtering was performed to remove these reads using the bamcmp
tool38,39 and, initially, the mouse GRCm38 (mm10; C57BL/6J strain)
reference genome, which is routinely used in xenograft studies. We
examined non-driver mutations that were shared across tumors (i.e.
recurrent passenger alterations), reasoning that these should be
infrequent. However, we found 222 instances of 38 PDX-unique, non-
driver mutations in PDX models recurrent in two or more tumors
(Fig. 3B). As a reference genome based on the NSG mouse strain was
not available, we performed whole-genome sequencing on an NSG
mouse to inform the development of an NSG-adapted reference gen-
ome. This identified 7,333,533 NSG-specific single nucleotide poly-
morphisms (SNPs) thatwere not found in themm10 reference, 90.05%
of which were homozygous (Fig. 3C). Incorporating these improved
the accuracy of mouse read removal, removing 168/222 (75.7%)
instances of 21mutations, with preferential removal of those that were
shared acrossmany PDXmodels (median removed = 6, range removed
= 2–18 vs median remaining = 2, range remaining = 2–8; Fig. 3B). The
remaining 54 instances occurred across 17 shared mutations and were
found in tumors with a higher degree of mouse DNA contamination in
P0 PDXmodels (Supplementary Fig. 13A). This suggests that, while our
approach successfully removes most host-reads, higher mouse con-
tamination decreases the probability of filtering such variants without
a full NSG referenceassembly. To validate thesefindings, we applied an
independent analysis workflow to seven NSCLC xenografts that were
established and subjected to WES at a different center. The use of the
NSG-adapted reference removed amajority of PDX-unique, non-driver
mutations, many of which were overlapping between the two experi-
ments (Supplementary Fig. 13B).

Genomic bottlenecks on engraftment result in PDXmodels that
are monoclonal with respect to their tumor region of origin
As an initial investigation of the suitability of our sampling approach
for studying genomic representation of primary tumors in PDX mod-
els, we sequenced two samples from each of five PDXmodels (four P0,
one P3). Where a PDX model was sampled multiple times by WES, we
named these samples ‘A1’ and ‘A2’. Intra-PDXmodel heterogeneity was
low (Supplementary Fig. 14) so we proceeded with characterization of
one sample per PDXmodel, a priori designating the ‘A1’ sample as the
canonical sample for subsequent analysis.

In the knowledge that primary tumor regions are heterogeneous
(i.e. consist of multiple genomic subclones), we inferred the subclonal
composition of P0 PDX models relative to their primary tumor region
of origin. If multiple primary tumor subclones were found in the PDX
model, we defined this as polyclonal engraftment, whereas if only a
single primary tumor subclone was found in the PDX model, we
defined this asmonoclonal engraftment (Fig. 4A). Of 42 unique P0 PDX
models where WES data were available, 28 were monoclonal engraft-
ments and 14 were polyclonal (Fig. 4B). Where the clonality of the
matched primary tumor region of origin could be inferred, three
monoclonal PDX models arose from homogenous primary tumor
regions (i.e. the PDX model was necessarily monoclonal due to the
region of origin consisting of only a single clone). Of the 33 hetero-
geneous primary tumor regions, 13 gave rise to polyclonal PDXmodels
with respect to the primary tumor, meaning that 20 PDXmodels from
heterogeneous tumor regions contained only one primary tumor
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subclone (Supplementary Fig. 15A). These findings suggest that PDX
engraftment commonly produced a bottleneck event, such that single
regional PDX models frequently did not capture the genomic com-
plexity of the primary tumor.

To further explore the similarity between the PDX models and
their matched primary tumors, we calculated a mutational distance
score (see Methods). This measure captures both the number of
shared mutations and their prevalence for each PDXmodel compared
to its region of origin and to all other spatially distinct regions from the
same tumor. We also calculated the mutational distance between
regions within each primary tumor in TRACERx421 data33 to give an
indication of diversity within primary NSCLC tumors. PDX models
were significantly more similar to their region of origin than to other
tumor regions from the same tumor (Fig. 4C;p = 8.2e−7,Wilcoxon rank
sum test). Indeed, the mutational distances between PDX models and
regions of the tumor other than the one used to derive the PDXmodel
(‘non-regions of origin’) were comparable to those between primary
tumor regions (Fig. 4C). No differences between the mutational dis-
tance of the region of origin and P0 were observed across histological
subtypes (Supplementary Fig. 15B). However, we observed notable
variability in the extent of similarity to the region of origin in different
cases. At one extreme, the CRUK0606 R2 P0 PDX model was highly
similar to its region of origin, with the lowest mutational distance
within the cohort (mutation distance = 0.103). Of all mutations across
the CRUK0606 R2 P0-region of origin pair, the majority of mutations
were shared (68 of 111 non-truncal mutations present across the pair),
with only a small number of mutations differing between the two (43/
111; Fig. 4D, upper panel). Conversely, in CRUK0995 R3, which had the
highestmutationdistancebetween the P0PDXand the regionof origin
(mutation distance = 0.819), shared mutations (83/791) were low fre-
quency within the primary tumor and both the primary tumor region
and P0 PDXmodel containedmany additionalmutations thatwere not
shared (a total of 708/791; Fig. 4D, lower panel).

Using a comparable approach to the above for mutational dis-
tance, we calculated a copy number distance score (see Methods).
We observed a significant correlation between the two metrics
(Supplementary Fig. 15C; R = 0.71, p = 1.1e−6, Pearson’s correlation).
Similar to mutational distance, the copy number of P0 PDX models
resembled their region of origin more closely than non-regions of
origin (Fig. 4E; p = 8.3e−6, Wilcoxon rank sum test). No differences
between the copy number distance of the region of origin and P0
were observed across histological subtypes (Supplementary
Fig. 15D). Consistent with this, analysis of the proportion of the
genome that had identical copy number between P0 PDXmodels and
other sample types showed that P0 PDX models were frequently
most similar to their matched region of origin and weremore similar
to non-regions of origin from their parent tumor than to regional
samples from other tumors which generated at least one PDXmodel
(Supplementary Fig. 15E). Although mutational and copy number
distances followed similar patterns overall, z-transformation of the
distances to compare their relative ordering across the cohort
revealed that the individual PDX models with the highest mutational
distances to their regions of origin did not necessarily have the
highest copy number distances and vice versa (Supplementary
Fig. 15F). This suggests that in specific cases, clonal selection on PDX
engraftment can have different impacts on the mutational and copy
number similarity to the tumor region of origin.

Next, we linked themutational and copy number distances to PDX
engraftment clonality with the hypothesis that polyclonal engraftment
would better represent the heterogeneity of the tumor region of origin
and therefore these metrics would be lower in those models with
polyclonal P0 engraftment. Consistent with this, we found that PDX
models with polyclonal engraftment trended towards a lower copy
number distance to their respective region of origin than models with
monoclonal engraftment from heterogeneous tumor regions
(p = 0.057, Wilcoxon rank sum test). We did not see a difference when

Wilcoxon, p = 1.4e−35
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considering mutational distance (p = 0.22, Wilcoxon rank sum test;
Supplementary Fig. 15G).

To assess whether the cell populations that form a PDX model (i.e.
the engrafting clone(s)) are dominantwithin the primary tumor regionof
origin, we compared the clone proportions of engrafting and non-
engrafting clones within each tumor region of origin. Engrafted clones
had significantly higher clone proportions compared to non-engrafting
clones (p=0.0018, Wilcoxon rank sum test; Fig. 4F). Despite this, we
observed abimodal distributionof engrafting cloneproportions thatwas
not driven by PDX engrafting clonality, demonstrating that minor tumor
clones can contribute to monoclonal PDX model engraftment (Fig. 4F).

Although the majority of tumor region-specific PDX models were
themselves heterogeneous (40/42; 95.2%), due to the dominant

monoclonal engraftment patterns observed they often represented
only a single branch of the overall tumor phylogeny. In 8 of 9 cases in
which we could compare multiple PDX models from the same tumor,
we observed engraftment of more than one tumor subclone in inde-
pendent PDX models (Fig. 5). This raised the possibility that indepen-
dent PDX models from the same patient might represent different
features of the primary tumor. Investigation of the distribution of
driver mutations across multi-region PDX models revealed cases in
which driver mutations that were subclonal in the primary tumor
became fixed clonally in PDX models (Supplementary Fig. 16A). For
example, CRUK0606 R3 had a subclonalMGA (p.G2017X) mutation in
the primary tumor region, which became clonally represented in the
P0 PDX model. Of note, this mutation was absent from the patient-
matched R6 PDX model. Similarly, CRUK0816 R2 and R5 P0 PDX
models both had a clonal CDKN2A (p.R46W) mutation that was absent
from the R3 model, demonstrating that genomic bottlenecks during
PDX engraftment can lead to altered driver mutation representation.
In a third case, when considering only the primary tumor sequencing
data,CRUK0995had a truncaldrivermutation in the tumor suppressor
gene STK11 (p.P179L).However,with the additional resolutionafforded
by sequencing PDX models, mutations with an illusion of clonality in
the primary tumor could now be classified as subclonal. The STK11
mutation was detected clonally in the R1 PDX model, consistent with
the primary tumor samples, but was absent from the R3 PDX model
(Supplementary Fig. 16B). This suggested that a very small ancestral
subclone of the primary tumor, which had not been detected in the
primary tumor sequencing data, engrafted to form the PDX model. In
all three cases, these driver mutation statuses persisted in P3 models,
where data were available. Thus, genomic characterization of PDX
models can inform more accurate phylogenetic reconstruction of
primary tumors, and monoclonal engraftment in xenografts from
different tumor regions can result in PDX models with distinct driver
mutation profiles.

Matched primary lymph node or recurrence/progression WES
data were available for eight patients from our cohort. In an inde-
pendent analysis of this patient subset, we investigated the similarity
of PDX-engrafting clones and metastasis-seeding clones. Where the
metastatic seeding clone(s) were present in the primary tumor at
sampling (7/8 patients), metastatic seeding clones were found in at
least one PDX model in 3/7 patients. In CRUK0640, the metastatic
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clone was found to engraft a monoclonal R7 P0 PDX model, as well as
contributing to the engraftment of polyclonal P0 PDXmodels derived
fromR1, R5, andR8but this clonedidnot engraft theR3P0PDXmodel.
CRUK0718 also had a single metastatic clone which was found to
engraft the monoclonal P0 PDX model derived from R4, and was also
found to contribute to engraftment of the polyclonal R7 and R8 P0
PDX models. CRUK0748 had multiple metastatic clones of which one

was found to contribute to the engraftment of the polyclonal R6 P0
PDXmodel but did not engraft in the R1, R2, R3 or R8 P0 PDXmodels.
In two further cases, the CRUK0885 R3 and CRUK0816 R2 and R5 PDX
models engraftment was by the direct descendent clone of the
metastasis seeding clone, although a further PDX model from
CRUK0816 (R3) was engrafted by a clone on a separate branch.
CRUK0941 and CRUK1061 PDX models were engrafted by clones on a
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distinct branch from the metastasis. Consideration of the mutational
and copy number distance scores between PDX models, primary
tumor regions andmetastases did not strongly support the hypothesis
that PDXmodels from theprimary tumor resemblepatientmetastases;
while in some cases, the distances between PDX models and metas-
taseswaswithin the rangeof thedistances between the PDXmodel and
the primary tumor regions, in other cases PDX models were more
dissimilar to the metastases than to any primary tumor region (Sup-
plementary Fig. 17).

Overall, these data suggest that PDXmodel engraftment induces a
genomic bottleneck that commonly results in engraftment of a single
tumor subclone, that multiple tumor subclones can engraft in inde-
pendent PDX models, and that clonal selection can alter the repre-
sentation of driver mutations in PDX models. No clear signal
supporting a relationship between the PDX model and metastasis
seeding clones was found.

On-going genome evolution during NSCLC PDX expansion
Our phylogenetic analyses revealed multiple clusters of PDX-unique
mutations (Fig. 5), suggestive of on-going evolution distinct from the
primary tumor region from which the PDX model was derived. Com-
parison of established P3 and matched P0 PDX models revealed that
nine of 12 polyclonal P0 models (where P3 data were available) were
monoclonal with respect to the primary tumor at P3 (Fig. 6A), indi-
cating that, even if multiple subclones had initially engrafted, some
PDX models had lost subclonal complexity reflective of the primary
tumor region over passaging. Consistent with this, the mutational
distance of P0-P3 PDX pairs was significantly lower than that from the
region of origin-P0 pairs (p =0.0028, Wilcoxon signed rank test), as
well as region of origin-P3 pairs (p = 9.9e−6,Wilcoxon signed rank test;
Fig. 6B), likely due to the substantial initial genetic bottleneck (Fig. 4).
The same pattern was observed for copy number distance (p = 0.041
and p =0.00023, respectively,Wilcoxon signed rank test; Fig. 6C). PDX

models where WES was performed at each passage supported the
notion that initial engraftment represented a strong bottleneck in
terms of both mutational (Supplementary Fig. 18A) and copy number
diversity (Supplementary Fig. 18B), but these distances were more
stable once PDX models were established.

In PDX models that had sufficient numbers of unique mutations,
we performed mutational signature analysis to determine whether
specific biological processes underlie the acquisition of newmutations
in PDXmodels during passaging. InCRUK0935, primary tumor regions
were mismatch repair (MMR) deficient and analysis of the PDX-unique
mutations found in P0 and P3 models for both R1 and R5 showed
evidence of on-going acquisition of mutations linked to MMR defi-
ciency (Supplementary Fig. 18C). CRUK0995 R1 had evidence of
APOBEC signature mutations (SBS2 and SBS13) in both the primary
tumor-unique and the matched P3 PDX model-unique mutations,
indicative of APOBEC-induced mutagenesis in the primary tumor and
during PDX expansion (Supplementary Fig. 18C). In CRUK0748 R1 and
R6P3PDXmodelsweobserved a largenumber of P3-uniquemutations
that were related to clock-like signatures (Supplementary Fig. 18C).
These data suggest that tumor-intrinsic mutational signatures are
active in at least some PDX models.

Comparison of the representation of driver mutations between P0
andP3PDXmodels revealed that all drivermutations thatwere subclonal
in the primary tumor and present in P0 PDXmodels persisted in P3 PDX
models (16/16), with two of these (a KMT2D mutation in CRUK0606 R6
and a NOTCH1 mutation in CRUK0816 R3) becoming clonally repre-
sented in P3 PDX models (Supplementary Fig. 18D). Additionally, we
noted the emergence of five driver mutations (affecting TP53, NOTCH1,
PTEN and NF1) in P3 PDX models that had been detected in neither the
primary tumor nor the P0 PDX model (Supplementary Fig. 18D).

Analysis of the proportion of the genome that was aberrant
revealed significant differences between the region of origin and P0
PDX models (p = 0.0050, Wilcoxon signed rank test), as well as

Fig. 5 | Representation of multiple primary tumor subclones in multi-region
PDXmodels.Anoverviewof phylogenetic trees (basedon all primary tumor region
and PDX data) and subclonal composition of the P0 PDXmodels is shown for each
tumor that underwent whole-exome sequencing. Nine cases with multiple region-
specific PDX models are shown (top). Eight of these cases have multiple primary
tumor clones engrafting in the PDX models (blue border), while in one case both
PDX models were engrafted by the same clone (green border). A further ten cases
had a single PDX model per tumor which was engrafted by a single tumor clone
(light green border, bottom). For each case, a phylogenetic tree constructed from
primary tumor data and all PDX samples is shown in the center. Regional phylo-
genetic trees are shown for regions with attempted PDX engraftments highlighting

clusters that were present in the primary tumor region of origin and/or the mat-
ched PDX model. Black - shared clusters between primary tumor (main tree), or
primary tumor region of origin (regional trees) and PDX model; gray - primary
tumor specific clusters (or primary tumor region specific); colors (red, blue, green,
purple, orange) indicate independent engrafting clusters, and subsequent diver-
sification in the PDX models is indicated by a gradient of each color (to white).
Clusters highlighted with a bold black border were present (either detectable as
clones or ancestral) in the primary tumor (main tree) or primary tumor region of
origin (regional trees) while the other clusters are either PDX-specific or below the
limit of detection in the primary tumor. Additionally, for each PDX model a clone
map illustrates the clonal composition of the P0 PDX sample. T—tumor; R—region.
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Fig. 6 | On-going evolution in PDX models. A Overview of engraftment patterns
relative to the primary tumor of initial (P0) and established (P3) PDX models.
B,CComparisonofmutational distance (B) and copy number distance (C) between
P0 andmatched P3 PDXmodels, P0 PDXmodels and thematched region of origin,
and P3 PDX models and the matched region of origin (n = 32 comparisons per
group). D The proportion of the aberrant genome for matched primary tumor
region of origin, P0 PDX model and P3 PDX model samples (n = 32 samples per

group). E Proportion of the genome subject to loss of heterozygosity (LOH) for
matched primary tumor regionof origin, P0 PDXmodel and P3 PDXmodel samples
(n = 32 samples per group). B–E The box plots represent the upper and lower
quartiles (box limits), the median (center line) and the whiskers span 1.5*IQR. Lines
indicate sample matching. Two-sided Wilcoxon signed rank test, p values as indi-
cated. LUAD—lung adenocarcinoma; LUSC—lung squamous cell carcinoma.
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between the region of origin and P3 PDXmodels (p =0.038, Wilcoxon
signed rank test) with no differences between P0 and P3 PDX models
(p = 0.42,Wilcoxon signed rank test; Fig. 6D). This effectwas seenmost
strongly in ‘other’ NSCLC histologies (Supplementary Fig. 19A) and
supports our finding that PDX models are often less heterogeneous
than their tumor region of origin. Next, we considered loss of het-
erozygosity (LOH),which is an irreversible event: once a cell undergoes
LOH, the affected genomic region cannot be reacquired. We observed
slight but significant increases in the proportion of the genome
affected by LOH from the region of origin to P0 (p = 0.011, Wilcoxon
signed rank test) and from P0 to P3 PDX models (p =0.00056, Wil-
coxon signed rank test; Fig. 6E), with the clearest effect seen in LUSC
models (Supplementary Fig. 19B). Conversely, we also investigated the
phenomenon of LOH reversion, in which LOH events that are called in
an early sample are not called in a related downstream sample9. Given
the irreversibility of LOH in individual cells, this can only be explained
by the expansion of aminor cell population that did not undergo LOH.
The overall proportion of LOH events subject to apparent reversion
was low and occurred predominantly in the region of origin-P0 com-
parisons in LUSC and other histologies (Supplementary Fig. 19C). In
one outlier case, CRUK1054 R4, 21.7% of LOH events from the primary
regionwere absent from the P0 PDXmodel. In this case, the engrafting
clone was not detected in the primary tumor region suggesting
engraftment of a minor ancestral clone.

To further investigate on-going copy number heterogeneity, we
determined the proportion of allelic imbalance that was subject to
mirrored subclonal allelic imbalance (MSAI)40 in region of origin-P0
and P0-P3 comparisons. There was significantly more MSAI in the
region of origin-P0 than P0-P3 comparisons, although some MSAI
events were also observed over early PDX passages (Supplementary
Fig. 19D). In one outlier model, CRUK0748 R1, 14.3% of allelic imbal-
ance was affected by MSAI between P0 and P3 (Supplementary
Fig. 19E), suggesting a high rate of on-going copy number evolution.
Considering the proportion of the genomewith identical copy number
states, we find that P0 models are generally more similar than P3
models to the region of origin, although overall most P0 and P3model
pairs are consistent with eachother (Supplementary Fig. 19F). Notably,
the outliers include CRUK0748 R1, which we identified as having high
levels of MSAI, and CRUK0606 R6 where we inferred a whole-genome
doubling event between P0 and P3 (Supplementary Fig. 19F).

Taken together, these data suggest that, although we find on-
going evolution of NSCLC PDX models over mouse passaging, the
extent to which this contributes to differences between PDX models
and their tumor region of origin is generally small in comparison to
those caused by the genomic bottleneck on initial engraftment.

Discussion
Here we investigated the genomic evolution of NSCLC during sub-
cutaneous engraftment and propagation in immunodeficient mice.
Previous studies based on gene expression profiling, SNP array, panel
sequencing and/or whole-genome sequencing have demonstrated
widespread conservation of the genomic landscape in PDX models
from a range of cancer types6,8,41. There have been conflicting reports
about the extent of on-going genomic evolution within PDX models,
with different analyses suggesting that genetic drift in PDX models is
either minimal3,11,42 or substantial9,10. To address these issues, we
developed a PDX collection within the context of a NSCLC patient
cohort for whom detailed annotation, including multi-region primary
tumor WES, was available for comparison. Our findings implicate a
genomic bottleneck upon PDX engraftment as the major source of
genomic variability between PDX models and their associated tumor
region. Heterogeneous primary tumor regions often generated PDX
models that were monoclonal with respect to the primary tumor, and
distinct tumor clones gave rise to PDX models from different spatial
regions of the primary tumor.

Quality control to ensure model and data validity are key com-
ponents of PDXmodel pipelines. Our findings regarding the formation
of B lymphoproliferations15 are mirrored in previous PDX studies in
NSCLC13 and other cancer types43. These are thought to arise fromEBV-
transformed B cells within transplanted material whose expansion is
prevented by host immune surveillance but enabled following trans-
plantation in immunodeficient mice44. Measures to ensure authentic
engraftment of the tissue of interest in xenograft studies are therefore
essential, and, sincemurine lymphomas can also be transferred during
subsequent passaging45, regular surveillance for CD45+ xenografts is
required. For sequencing data analysis, PDX workflows typically
include a step to remove contaminating mouse reads (e.g. using
bamcmp38, Xenome46, or other tools47–49). We identify mutation calls
that arise in PDX samples as a result of the different SNP profiles of
contaminatingNSGmouseDNAand themm10 referencegenomeused
to identify contaminating WES reads, which is based on the C57Bl/6 J
strain. By adapting the mm10 reference genome and spiking in the
divergent NSG SNPs, we generated an improved filtering method.
Despite this progress, our data support the need for the derivation of a
complete NSG reference genome assembly for use in xenograft
studies.

Few previous studies have established multiple PDX models per
primary tumor, particularly in the context of matched patient tumor
sequencing data. One common conclusion of studies based on single-
region PDX models has been that engraftment success or failure can
represent the behavior of the tumor overall. However, we find that
distinct spatial regions of the same tumor can have divergent out-
comes in PDX models. For example, prior studies suggest that lung
squamous carcinomas more readily give rise to PDX than lung
adenocarcinomas16–18,21,23,26–32. Our patient-level engraftment rates were
consistent with this, but the LUSC engraftment rate was substantially
lower at the region level than the patient level. This suggests that PDX
engraftment potential might be more spatially variable in LUSC
tumors, although other sampling biases (e.g. higher tissue availability
from larger tumors) might play a role in the apparent histology-
dependent changes in engraftment rates seen in other studies and a
relatively small number of LUSC tumors (n = 15 patients, 56 regions)
were analyzed here. In LUAD, successful engraftment correlated with
larger tumor size (and relatedly higher T stage), a higher proportion of
the genome with aberrant copy number, the presence of TP53 muta-
tions and homozygous loss of a genomic region containing CDKN2A,
CDKN2B and a cluster of type I interferon genes. TP53 mutations have
been associated with better engraftment of EGFR-mutant lung ade-
nocarcinomas in PDX models previously50 and we speculate that, in
LUAD tumors, higher chromosomal instability might represent an
advantage in adapting to novel environments. In LUSC, T cell infiltra-
tionwas negatively correlatedwith PDX engraftment, consistentwith a
study of breast cancer PDX models51.

Previous studies using WES or whole-genome sequencing have
typically found the conservation of a majority of tumor mutations in
PDX models, but are often limited in their ability to call subclonal
mutations by a low depth of coverage and a lack of comprehensive
patient tumor sampling. Here, by using the same sequencingmethods
aswereused in theTRACERx study,we could confidently call subclonal
mutations. In the TRACERx 421 study, we identified a median of 8
(interquartile range, IQR: 5-12) subclones per tumor and a median of 3
(IQR: 2-4) subclones per tumor region, but themajority of PDXmodels
in the current study were monoclonal with respect to the primary
tumor. Even those that were polyclonal at P0 consisted of a median of
2 (IQR: 1.25-2) subclones that were present in the primary tumor.
Therefore, a single NSCLC PDX model only modestly represents the
subclonal diversity of a primary tumor. In a small number of cases,
these genomic bottleneck events resulted in the derivation of PDX
models with a different complement of driver alterations from the
same tumor (seen in this study affecting CDKN2A, STK11 and MGA).
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This may provide an explanation for the ~10% discordance in driver
mutations seen between patient-PDX pairs in a recent pan-cancer
study52. It is possible that the presence or absence of these mutations
affects the drug sensitivity profiles of the PDX models; for example,
mutation of STK11/Lkb1, which was found in one CRUK0995 PDX
model but not the other, is known to modulate therapy response53.
Such bottlenecking represents a potential limitation of PDX models,
and should also be a consideration in approaches that use PDXmodels
to derive cell lines or organoids for further study7,54,55. Moreover, the
monoclonality of NSCLC PDX models with respect to the primary
tumor might be a relevant consideration in designing personalized
therapy approaches where representation of subclonal events could
affect the therapy response of models and/or the routes available for
therapy resistance.

PDX models more closely represented the tumor region from
which they were derived than spatially distinct tumor regions and
multiple primary tumor subclones were capable of engraftment in
different engraftment attempts. The development of libraries of mul-
tiple PDX models per patient might therefore improve the capture of
intratumor heterogeneity. Our data also suggest that the PDX
engrafting clone cannot easily predict primary tumor clones with
metastatic potential in patients.

We noted that the clonal architecture of established P3 PDX
models could still be complex as a result of PDX-uniquemutations that
were not found in the primary tumor. Thesemutations suggested that
genomic evolution was on-going in the PDXmodels, and we identified
models that were defined by specific mutational signatures, such as
mismatch repair deficiency and APOBECmutagenesis. Overall, the on-
going accumulation of mutations over approximately eight months of
expansion in mice contributed less to the overall genomic distance of
PDX models from primary tumors than initial bottlenecking events.
A caveat of our study is that we did not analyze PDX tumors after P3,
meaning that we cannot assess the genomic evolution in later passage
models, which are frequently used in the literature. Nevertheless, the
on-going evolution of models suggests the value of generating banks
of low passage PDX models and regular screening of PDX cohorts for
acquired genomic changes.

In summary, by tracking cancer mutations through primary
NSCLC engraftment and expansion in PDX models, we reveal a geno-
micbottleneckduring engraftment that oftenmeans an individual PDX
model is representative of only one subclone of the primary tumor.
The full representation of truncal tumor alterations (those present in
all cells of the tumor) in PDXmodels supports their use in cohort level
studies and for testing therapeutics targeting truncal events. However,
the underrepresentation of subclonal heterogeneity in PDX models
suggests that care should be taken in extrapolating data from single
region PDX models in experiments where subclonal events (i.e. intra-
tumor heterogeneity) might be significant for the outcome (e.g. in
personalized medicine approaches56). Experimental approaches to
assess the functional consequences of PDXmonoclonality, particularly
for therapy response and resistance, are now required.

Methods
Generation and maintenance of multi-region NSCLC
PDX models
Ethical approval to generate patient-derived models was obtained
through the Tracking Cancer Evolution through Therapy (TRACERx)
clinical study (REC reference: 13/LO/1546; https://clinicaltrials.gov/ct2/
show/NCT01888601). Animal studies were approved by the University
College London Biological Services Ethical Review Committee and
licensed under UK Home Office regulations (project license
P36565407).

Tissue frompatients undergoing surgical resectionofNSCLCswas
immediately transported on ice from the operating room to a
pathology laboratory where it was dissected for diagnostic and then

research purposes. Tumor samples were dissected by a consultant
pathologist such that the tissue used to generate patient-derived
xenograft (PDX) models was considered to be within the same tumor
region as material sequenced in the TRACERx study. In cases where
region-matched tissue could not be collected for PDX studies, inter-
region (IR) tumor tissue was used. Tumor samples for PDX studies
were transported to the laboratory in a transportmediumconsistingof
MEM alpha medium (Gibco) containing 1X penicillin/streptomycin
(Gibco), 1X gentamicin (Gibco) and 1X amphotericin B (Fisher Scien-
tific,UK). Sampleswereminced using a scalpel and either resuspended
in 180μl growth factor-reduced Matrigel (BD Biosciences) for fresh
injection, or frozen in ice-cold fetal bovine serum plus 10% DMSO, first
to −80 °C in a CoolCell (Corning) before long-term storage in liquid
nitrogen.

Male non-obese diabetic/severe combined immunodeficient
(NOD scid gamma; NSG) mice were housed in individually ventilated
cages under specific pathogen-free conditions and had ad libitum
access to sterile food and water. The room housing the mice was
maintained on a 12 h light-dark cycle (with gradually increasing light
from 6:30 am to 7:00 am and gradually decreasing light from 6:30 to
7:00pm). Temperature was maintained in a 20–24 °C range and
humidity wasmaintained at 55% (±10%).Micewere typically between 6
and 12 weeks of age at the time of tumor/PDX implantation. To gen-
erate PDX tumors, mice were anesthetized using 2–4% isoflurane, the
flank was shaved and cleaned before tumor tissue in Matrigel was
injected subcutaneously using a 16G needle. Mice were observed
during recovery, then monitored twice per week for tumor growth.
When xenograft tumors formed, tumor measurements were taken in
two dimensions using calipers and mice were euthanized before
tumors reached 1.5 cm3 in volume (this animal license limit was not
exceeded). Mice without xenograft tumors were terminated after a
median of 306 days (range 37–402 days). Successfully engrafted
tumors were propagated through four generations of mice, with
banking of histology tissue, OCT-embedded frozen tissue and xeno-
graft DNA at each generation. Cryopreservation of living xenograft
tissue was also performed at each tumor transfer as per patient tissue.

Histopathological characterization
Paraffin-fixed tissue sections were routinely obtained at PDX passage
by fixation of tumor fragments (approximately 3 × 3 × 3 mm in size) in
4%paraformaldehyde. Sampleswerefixedovernight at 4 °Cand stored
in 70% ethanol at 4 °C before being processed through an ethanol
gradient using an automated pipeline and embedded in paraffin.
Formalin-fixed paraffin‐embedded tissue sections of PDX tumors and
their equivalent primary tumor region were subjected to hematoxylin
and eosin (H&E) staining or immunohistochemistry with the following
antibodies; anti-CD45 (Clone HI30; Dilution 1:200; Cat No 304002);
anti-keratin (Clone: AE1/AE3; Dilution: 1:100; Cat No: 13160); anti-CD3
(Clone: LN10; Dilution: 1:100; Cat No: NCL-L-CD3-565); anti- CD20
(Clone L26; Dilution: 1:200; Cat No: M0755). Optimization of the
antibodies was carried out on sections of human tonsil tissues.
Immunostaining was performed using an automated BOND-III Auto-
stainer (Leica Microsystems, UK) according to protocols described
previously57. Slide images were acquired using a NanoZoomer 2.0HT
whole slide imaging system (Hamamatsu Photonics, Japan). Figure
panels containing overview images with a selected region of interest
were generated semi-automatically from Nanozoomer ndpi whole-
slide digital images using the PATHOverview tool (https://github.com/
EpiCENTR-Lab/PATHOverview)58.

Slides fromP0andP3PDXmodels, alongwith region-specificH&E
images from the patient tumor, were subjected to a comprehensive
pathology review by a consultant pathologist. Instances in which
samples were consistent with one another were scored 2 (consistent),
instances in which broad similarity of histopathological subtype were
observed but with minor differences, for example in the prevalence of
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a particular growth pattern, were scored 1 (divergent), while samples
that were dissimilar from one another were scored 0 (inconsistent).
Differences in the extent of necrosis between samples were common
but were ignored for scoring purposes as it is likely to be affected by
experimental factors in addition to being a characteristic of specific
tumor regions/PDX models.

Genomic profiling
DNA was extracted from PDX models at each transfer using either the
PureLink Genomic DNA Mini Kit (Invitrogen) or the DNA/RNA AllPrep
Kit (Qiagen). For each PDX sample, exome capture was performed on
200ng DNA using a customized version of the Agilent Human All
Exome V5 Kit (Agilent) according to the manufacturer’s protocol, as
previously reported40. Following cluster generation, samples were
100bp paired-end multiplex sequenced on the Illumina HiSeq 2500
and HiSeq 4000 at the Advanced Sequencing Facility at The Francis
Crick Institute, London, U.K. Protocols for DNA extraction and pro-
cessing of the tumor samples have been previously reported33,40.

Generation of independent PDX model WES data for validation
of the NSG-adapted reference genome
At a different center, xenograft models were generated by the
implantation of fresh tumor tissue from resected patient lung tumors
subcutaneously into NSG mice. If xenografts formed, these were pas-
sed into subsequent mice up to three times. Either snap-frozen xeno-
graft tissue or xenograft tissue stored in RNAlater was used to extract
nucleic acids with a QIAGEN kit. DNA was also isolated from matched
patient white blood cell samples for use as germline controls. WES
target enrichment was performed using the Agilent SureSelectXT
HumanAll ExonV6Capture Library for all samples, followedbypaired-
end 2 × 101 bp sequencing on a NovaSeq sequencer.

Bioinformatics pipeline
Alignment. Initial quality control of rawpaired-end reads (100bp) was
performed using FastQC (0.11.8, https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and FastQ Screen (0.13.0, https://
www.bioinformatics.babraham.ac.uk/projects/fastq_screen/, flags:
--subset 100000; --aligner bowtie2). Subsequently, fastp (0.20.0, flags:
--length_required 36; --cut_window_size 4; --cut_mean_quality 10;
--average_qual 20) was used to remove adapter sequences and quality
trim reads. Trimmed reads were aligned to the hg19 genome assembly
(including unknown contigs) using BWA-MEM (0.7.17)59,60. Alignments
were performed separately for each lane of sequencing and then
merged from the same patient region using Sambamba (0.7.0)61 and
deduplicated using Picard Tools (2.21.9, http://broadinstitute.github.
io/picard/)62. Local realignment around indels was performed using
the Genome Analysis Toolkit (GATK, 3.8.1)63. Further quality control
following alignment was performed using a combination of Somalier
(0.2.7, https://github.com/brentp/somalier), Samtools (1.9)64, Picard
Tools62, and Conpair (0.2)65.

For PDX samples, the steps above were repeated twice, aligning
once to the hg19 genome assembly and once to the mm10 genome
assembly or an NSG-adapted mouse reference (see below). Subse-
quently, bamcmp38 (v2.1, using the alignment score metric) was used
to identify contaminating mouse reads in our xenograft data. Only
reads aligning solely to hg19or better to hg19 compared tomm10were
included in subsequent downstream processing steps.

To obtain themedian coverage per primary tumor or PDX sample,
we used GATK DepthOfCoverage (GATK v4.2.0.0; with flags: --omit-
depth-output-at-each-base true; --omit-interval-statistics true; --read-
filter MappingQualityReadFilter; --minimum-mapping-quality 20;
--stop 1000)63. This step was performed after alignment and, in the
case of the PDX samples, after mouse read deconvolution using
bamcmp.

NSG-adapted reference genome. Genomic DNA was extracted from
the tail of one NSG mouse using the PureLink Genomic DNA Mini Kit
(Invitrogen). Library preparation was performed on 500ng DNA using
an Illumina DNAPrep kit (#20018705) according to themanufacturer’s
protocol. Libraries were amplified through five cycles of PCR and
sequencing was performed on a NovaSeq 6000 (100bp paired-end
reads)with a target sequencingdepthof 30x. The rawpaired-end reads
were processed through the nf-core Sarek pipeline (v2.7.1)66 using
Nextflow (v21.01.4)67. The reference genomewasmanually specified as
mm10 and subsequently GATK HaplotypeCaller was run to detect
single nucleotide polymorphisms (SNPs) differing between mm10 and
the sequenced NSG genome.

The output from HaplotypeCaller was subsequently filtered to
remove heterozygous and only retain homozygous and non-reference
heterozygous SNPs. These variants were spiked into the mm10 refer-
ence genome using BCFtools (v1.12)68 ‘consensus’ specifying that the
first allele should be used.

The raw sequencing output of theNSGmouse canbe downloaded
from ENA (accession number PRJEB65917) while the processed output
from HaplotypeCaller, the NSG-adapted reference and the scripts to
reproduce these can be found on Zenodo (https://doi.org/10.5281/
zenodo.10304174)69.

Quantifying mouse contamination. To estimate the proportion of
reads mapping to human (GRCh38) and mouse (GRCm38) reference
genomes in the primary tumor and PDX samples, FastQ Screen (0.13.0,
https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/)
was run individually on each lane of sequencing (flags: --subset
100000; --aligner bowtie2)70. Subsequently, search libraries that were
not humanormousewere summarized as ‘Other’ and, for each sample,
all lanes of sequencing were summarized using the median number of
reads mapping to each group (Human, Mouse, Other, Multiple Gen-
omes, No hits). The final output specifies the percentage of the query
reads mapping to each group.

Subsequent processing. The downstream steps of somatic mutation
calling and somatic copy number alteration detections, as well as
manual quality control were performed analogously to the methods
described previously33.

In brief, SAMtools mpileup (v1.10) was used to locate non-
referencepositions in tumor and germline samples and the outputwas
used by VarScan2 somatic (v2.4.4)71 to identify tumor somatic variants.
The resulting single nucleotide variant (SNV) calls were filtered for
false positives using Varscan2’s associated fpfilter.pl script. MuTect
(1.1.7)72 was also used to detect SNVs utilizing annotation files con-
tained in GATK bundle 2.8. Following completion, variants called by
MuTect were filtered according to the filter parameter ‘PASS’.

Additional filtering was performed to minimize false positive
variant calls. An SNV was considered a true positive if the variant allele
frequency (VAF) was greater than 2% and the mutation was called by
both VarScan2, with a somatic p-value ≤0.01, and MuTect. Alter-
natively, a frequency of 5% was required if only called in VarScan2,
again with a somatic p-value ≤0.01. Additionally, sequencing depth in
each region was required to be ≥30x and ≥10 sequence reads had to
support the variant call. In contrast, the number of reads supporting
the variant in the germline data had to be <5 and the VAF ≤ 1%.

The power ofmulti-region sequencing was leveraged to allow low
variant frequency to be called with increased confidence: Where a
somatic variant was not called ubiquitously across tumor regions but
was called in one ormore region, read information was extracted from
the original alignment file using bam-readcount (v0.8.0, https://
github.com/genome/bam-readcount). In such cases, VAF restrictions
were reduced to VAF ≥ 1% allowing for the positive identification of
low-frequency variants that would otherwise have been missed.
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Indels were filtered using the same parameters as described
above, with the exception of the requirement of ≥10 reads supporting
the variant call, a somatic p-value of ≤0.001 and a sequencing depth of
≥50x. Occasionally, when attempting to identify indels across multiple
tumor regions, discrepancies in the start position, end position or
length of the indel were identified. In such cases, the longest predicted
indel was reported and the maximum sequence-related values
reported.

Dinucleotide variants were identified in cases where two adjacent
SNVs were called. In such cases, a proportion test was performed to
provide an indication as to whether the frequency of the two SNVs was
significantly similar and thereby indicative of a singlemutational event.
In such cases, the start and stop position was corrected to represent a
dinucleotide substitution and sequence-related values (e.g. coverage
and variant count) were recalculated to represent the mean of
the SNVs. Variants were annotated using Annovar73 and COSMIC74.

For somatic copy number alteration, heterozygous SNPs were
identified from the germline samples using platypus (v0.8.1)75. LogR
data was calculated using VarScan271 and GC-corrected using a wave-
pattern GC correction method76. These data were processed using
ASCAT (v2.3)77 as well as Sequenza (v2.1.2)78 for tumor purity and
ploidy estimation. Manual verification of the automatically selected
models was performed and samples that had insufficient purity (<10%)
were excluded.

Subsequently, refphase79 was used to infer haplotype-specific
copy number alterations and to rescue low purity tumor regions,
leveraging the multi-region data. CONIPHER80 was used to cluster
mutations and reconstruct phylogenetic trees for both the primary
tumor regions and all PDX samples combined.

For analysis of driver alterations, lung cancer-associated genes
were derived from Bailey et al.81, Berger et al.82, Martincorena et al.83 or
through de novo dN/dS discovery in Frankell et al.33. If the mutation
was found to be deleterious (either a stop-gain or predicted deleter-
ious in two out of the three computational approaches applied: Sift84,
Polyphen85 and MutationTaster86), and the gene was annotated as
being recessive in COSMIC (tumor suppressor), the variant was clas-
sified as a driver mutation. Also, if the gene was annotated as being
dominant (oncogene) in COSMIC, and we could identify ≥3 exact
matches of the specific variant in COSMIC, we classified the mutation
as a driver mutation, as per the approach in Frankell et al.33.

Distinguishing multiple independent tumors from a single patient.
On a per patient basis, to determine whether multiple samples were
genomically related, we performed a clustering step on the mutations
identified in each region. Firstly, all ubiquitous mutations were deter-
mined that had a VAF greater than 1% in all regions. If more than ten
suchmutations existed, the regions were deemed genomically related.
Conversely, if ten or fewer mutations were shared across all regions, a
clustering step using the R function ‘hclust’ was performed on the
mutation VAFs across all regions. Subsequently, the resulting cluster-
ing tree was separated into two groups to determine the regions
associatedwith two distinct tumors. This stepwas repeated on the two
distinct tumors, respectively to yield a maximum of four distinct
tumors.

Pipeline for NSG-adapted reference genome validation
experiments
For the seven NSCLC xenograft exomes used in validation experi-
ments, adapter sequences and low quality reads were removed from
the raw FASTQ files using Cutadapt (v.4.487, flags: --trim-n; --minimum-
length=30; -e 0.3; -O 10; -n 2). Trimmed reads from each of the
sequencer lanes were separatelymapped to human genome reference
GRCh38, mouse genome reference GRCm38 and the NSG-adapted
mouse reference genome, all using bwa-mem (v.0.7.17). Potential
mouse contamination reads were identified from the human reference

mapped alignments using bamcmp (v.2.2)38, using the alignment score
metric. Reads that were uniquely aligned or had a better alignment
score to the human reference genome compared to the mouse gen-
omes were included for subsequent downstream analyses (separately
for GRCm38 and the NSG-adapted genome). Alignment from different
lanes were merged using samtools (v.1.17)68, duplicated reads were
marked using Picard tools (v.3.0.0)62 and base quality scores were
recalibrated using GATK (v.4.4.0.0)63.

Somatic variants were called from the mouse-filtered human
alignments usingMutect2 fromGATK (v.4.4.0.0). Commonpopulation
variants from thegnomADdatabase (v.2.1.1) wereusedwithMutect2 to
filter variants that were present in gnomAD with allele frequency
greater than 0.01, followed by using GATK’s FilterMutectCalls. Passed
variants were annotated using VEP (v.106)88 and were converted to
MAF format using vcf2maf (v.1.6.18)89.

Analysis
Downsampling engraftment attempts. To estimate patient-level
engraftment success if only a single tumor region was attempted, we
performed a downsampling approach. For this, we used all attempted
regions per patient (n patients = 44, n regions = 145) and the classifi-
cation of whether the region successfully engrafted or not. We then
randomly sampled one region per patient and summarized the num-
ber of successful engraftment attempts of the selection. This process
was repeated 5000 times. For the histology specific downsampling,
the same approach was taken as described above, except that suc-
cessful engraftment was summarizedwithin the individual histological
subtypes for each iteration.

Mutational signature deconvolution. Mutational signatures were
estimated at the tumor level using deconstructSigs (v1.9.0)90 using all
mutations. Mutation counts were normalized using the ‘exome2gen-
ome’ parameter and COSMIC mutational signatures (v3.2) were spe-
cified. Only SBS1, SBS2, SBS4, SBS5, SBS13, SBS92 which have
previouslybeen shown tobe active in lung cancer91, aswell as SBS6 and
SBS15 which are associated with DNA mismatch repair and were
detected within one patient in the cohort were used to reconstruct
mutational profiles.

To plot individual mutation profiles, the function ‘mut.to.-
sigs.input’ was used to create the mutation counts for each substitu-
tion type which were subsequently visualized using ggplot292.

Weighted fraction of the genome subject to loss of heterozygosity.
The weighted fraction of the genome subject to loss of heterozygosity
(wFLOH) was calculated as the mean of the proportions of LOH across
each chromosome (excluding sex chromosomes).

Somatic copy number alteration metrics. Somatic copy number
alterations (SCNAs) were defined using refphase79 as any gain or loss
occurring in a given sample. These events were defined as homo-
geneous if they were shared across all samples of a tumor and het-
erogeneous if only a subset of the samples had a gain or loss of a given
segment. Theproportionof the genome that is aberrantwasdefined as
the length of segments affected by gains or losses divided by the total
length of the genome. Theproportion of the genome thatwas aberrant
subclonally was calculated by dividing the total length of hetero-
geneous gains or losses by the total length of the genome. These
measures were computed both at the tumor level and individual
sample level. For the proportion of the genome aberrant subclonally at
the sample level only heterogeneous events occurring in the sample
were considered.

SCNA intratumor heterogeneity (ITH) was calculated for each
tumor as the proportion of the genome harboring heterogeneous (i.e.
subclonal) SCNA events divided by the proportion of the genome
harboring any SCNA events.
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For any two samples, the proportion of the genome which was
identical was calculated as the total length of segments where both
samples had the same total copy number divided by the total length of
all segments.

The proportion of the genome with allelic imbalance affected by
mirrored subclonal allelic imbalance (MSAI) was calculated as the total
length of segments where allelic imbalance was detected in both
samples, but affecting different alleles divided by the total length of
segments affected by allelic imbalance.

The proportion of segments with loss of heterozygosity (LOH)
affected by LOH reversion was calculated as the total length of seg-
ments where LOH was detected in the region of origin but was not
detected in the P0 PDX model (LOH reversion) divided by the total
length of segments affected by LOH. To define LOH reversion, only
segments with more than 10 heterozygous SNPs and a minor allelic
copy number of less than 0.1 were considered.

Genome doubling detection. Genome doubling status was estimated
using ParallelGDDetect (https://github.com/amf71/ParallelGDDetect)
analogously as described previously33. In brief, the genome doubling
status of a sample was estimated using the genome-wide copy number
of the major allele. If the major allele had a copy of ≥2 across at least
50% of the genome, the sample was considered to have undergone a
whole genome doubling (WGD) event.

Sample purity. Sample purity was initially obtained from ASCAT
(v2.3)77 or Sequenza (v2.1.2)78 and subject to manual review. Subse-
quently, refphaseperformed additional slight purity corrections based
on the multi-region informed segmentation and phasing.

Calculating the T cell fraction fromwhole-exome sequencing data.
To calculate the T cell fraction of the tumor samples from whole
exome sequencing, theRpackageT cell ExTRECT35wasused. Coverage
values were extracted using the pre-defined TCRA gene segments
(‘tcra_seg_hg19’). Subsequently, T cell fractions were estimated using
the pre-specified exon locations for the Agilent capture kit
(‘TCRA_exons_hg19’), the TCRA gene segments (‘tcra_seg_hg19’) and
specifying the reference genome version as ‘hg19’.

Copy number analysis across the genome. The copy number across
the genome for samples that engrafted and those that did not, split by
histology was visualized using complex heatmap (v2.15.4)93. For this,
the total copy number, i.e. sumof integer copy numbers of allele A and
B, was used and for visualization purposes, the total copy number was
capped at 10. The histology and PDX vs no PDX groups were pre-
specified.

For clustering of total copy number across the genome, a Eucli-
deandistancematrixwas calculated using the ‘dist’ function inR. Then,
hierarchical clustering was performed using Ward’s method94 and the
resulting dendrogram was split into three groups.

We split the genome into 5 megabase (Mb) bins and over-
lapped the segments obtained from refphase79 for each sample with
these bins. If, for a sample, any segment overlapping a bin was
gained (or lost) the bin was defined as gained (or lost, as appro-
priate) for that sample. The proportion of samples with a gain (or
loss) in a bin was plotted across the genome for LUAD and LUSC
tumor regions that either successfully engrafted (PDX) or did
not (no PDX).

We performed a power calculation (using the ‘power.fisher.test’
function from the R package statmod) to determine the minimum
and maximum number of gains (losses) necessary across both PDX
andnoPDXgroups together to achieve a power > 0.8. This resulted in
a minimum of five samples with a gain (or loss) for both LUAD and
LUSC and a maximum of 26 samples for LUAD and 41 samples
for LUSC.

Segments with n gains (or losses) between these two thresholds
were then testedusingFisher’s exact tests separately for LUADandLUSC.
P values were adjusted using a false discovery rate (FDR) correction.

Classifying engraftment patterns. Within each primary tumor we
identifiedwhich cancer clone(s) were involved in PDXengraftment and
classified the engraftment pattern as monoclonal if only a single clone
of the primary tumor was engrafted in PDX samples, or polyclonal if
multiple cancer clones were involved in engraftment. Specifically, for
each individual PDXsample, if allmutation clusters sharedbetween the
primary tumor and the sample were found to be clonal within the PDX,
the engraftment pattern was defined asmonoclonal. Conversely, if any
cluster defined as subclonal within the PDX sample was also present in
the primary tumor, the engraftment was classified as polyclonal.

If only a single PDX sample was considered for a patient, the
tumor-level engraftment pattern matched the PDX-level engraftment
pattern. If multiple PDX models were sampled and the engraftment
pattern of any individual PDX sample was defined as polyclonal, the
tumor-level engraftment pattern was also defined as polyclonal. Con-
versely, if all PDX samples followed amonoclonal engraftment pattern,
all shared clusters between the primary tumor and each PDX were
extracted. If all shared clusters overlapped across all PDX samples, the
tumor-level engraftment pattern was classified as monoclonal, while if
any PDX sample shared additional clusterswith the primary tumor, the
overall engraftment pattern was defined as polyclonal.

Defining the engrafting clones. The engrafting clone is defined as the
most recent shared clone between the primary tumor and PDXmodel.
Any cluster present in the primary tumor (defined as clonal or sub-
clonal) and absent from the PDX sample was defined as primary spe-
cific, any cluster present solely in the PDX and absent from the primary
tumor was defined as PDX specific, while all clusters present in both
the primary tumor and PDX were defined as shared.

The shared clusters were mapped to the phylogenetic tree to
determine the most recent shared cluster using a leaf-up approach. If
the shared clusters could be mapped to a single branch of the phylo-
genetic tree, the clonality of the most recent shared cluster was
determined in the PDX sample. If the most recent shared cluster was
clonal in the PDX sample, this cluster was defined as the only
engrafting cluster for the PDX sample. On the other hand, if the most
recent shared cluster was subclonal within the PDX, the parent cluster
was also considered. This was done iteratively until the first shared
cluster whichwas clonal in the PDXwas found. Clusters along this path
were defined as engrafting if their phyloCCF valuewas greater than the
phyloCCF of the child cluster.

If the shared clusters were mapped to multiple branches of the
phylogenetic tree, each branch was considered separately in the
manner described above. If a parent cluster was shared between
multiple branches, CCF values of both branches were added together
and the iterative approach continued until the first cluster was found
to be clonal in the PDX sample.

Calculating clone proportions. The clone proportions of engrafting
clones in the region of origin were calculated using the CONIPHER
function ‘compute_subclone_proportions’80. In short, the cancer cell
fraction of the clone and all descendants, as well as the phylogenetic
structure are considered and the proportion of cells belonging to the
engrafting clone present in the sample is calculated as the total CCF of
the clone, subtracting theCCFof all descendants. Notably, all subclone
proportions will sum to 1 in each sample and will only correspond to
the CCF in the case of leaf nodes on the phylogenetic tree. In this way,
subclonal expansions in a tumor or PDX sample can be inferred, aswell
as whether a region is homogeneous (consisting only of a single clone)
or heterogeneous (consisting of multiple subclones at the point of
sampling).
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Mutational distance. Themutational distance gives an approximation
of mutational similarity between two regions, and also accounts for
any large bottlenecks. Specifically, the distance will be large if few
mutations are shared, or shared mutations occur at very different
cellular frequencies; while the distance will be small if most mutations
occur at similar frequencies across two regions.

Given two regions i and j, and M being the total number of
mutations present in either one or the other region, excluding all
truncal mutations; the mutation distance is calculated as:

1
M

XM

m= 1

jCCFi,m � CCFj,mj

Where CCFi,m and CCFj,m are the CCF of mutation m in region i or j,
respectively.

To calculate a distance for each region, the pairwise distance to
each other region of interest is calculated and the average across all
pairwise distances is computed.

Copy number distance. The copy number distance gives an approx-
imation of similarity between two regions relating to relative gains and
losses of segments. If gains/losses of segments relative to ploidy are
consistent across two regions the copy number distance is small;
whereas when they diverge, e.g. a loss in one region and neutral copy
number state in the other, the distance increases.

Given two regions i and j, and S being the total number of aberrant
segments in either one or the other region, excluding all truncal copy
number alterations; the copy number distance is calculated as:

1
PS

s = 1ls
*
XS

s = 1

ls*jCNi,s � CNj,sj

WhereCNi,s andCNj,s are the total copy number of segment s in region
i or j, respectively, and ls is the length of segment s.

Comparing mutational and copy number distances. In order to
classify PDX models whose bottleneck event upon engraftment was
characterized by predominantlymutation versus copy number events,
both distances were z-transformed. PDX models from the upper and
lower quartiles of the difference between mutation and copy number
distances were classified as higher mutation or copy number diversity,
respectively.

Depiction of clonal composition in tumor samples using clone
maps. In Figs. 4 and 5, the clonal composition of tumor samples are
estimated using CONIPHER80, accounting for the nesting structure
determined by the phylogenetic tree building. The images were gen-
erated using the cloneMap R package (version 1.0.0) available on
github (https://github.com/amf71/cloneMap).

Differential gene expression and gene set enrichment analysis.
Differential gene expression and subsequent gene set enrichment
analyses (GSEA) were performed on the samples from this study that
had available RNA-seq in the TRACERx 421 cohort36 (32 primary tumor
samples from 8 patients, of which 10 samples generated a PDX model
and 22 generated no PDX), using the following approach. First, trim-
med mean of M-values normalization from the edgeR (v.3.32.095) R
package was performed on RSEM raw counts. Genes with expression
below 30 counts per million in <70% of the smallest group size were
removed using the function filterByExpr() with min.count set to 30.
Expression differences were performed at the region level through the
limma-voom analytical pipeline, using the sex of the patient as a cov-
ariate and taking patient of origin as a blocking factor, by performing
within-tumor expression correlations and including them within the
voom model estimate using the duplicateCorrelation() function. This

method is analogous to using tumor as a random effect in a linear
mixed-effects model. The raw P values provided by limma for differ-
ential expression were then corrected for multiple testing using the
Benjamini–Hochberg (FDR) method.

The t-statistic generated by limma was used as input for GSEA for
MSigDB hallmark gene sets37 using the R package fgsea (v.1.16.096) with
default parameters. This analysis was run in R v.4.0.0.

Statistical testing
Statistical tests were performed in R (versions 4.2.2) or Prism 9.2.0. No
statisticalmethods were used to predetermine the sample size. Details
of all statistical analyses are provided within figure legends. For all
statistical tests, the number of data points included are plotted or
annotated in the corresponding figure, and all statistical tests were
two-sided unless otherwise specified.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The whole-exome sequencing data (primary tumor data from the
TRACERx study and PDX models data) used during this study have
been deposited with the European Genome–phenome Archive (EGA),
which is hosted by The EuropeanBioinformatics Institute (EBI) and the
Centre for Genomic Regulation (CRG) under study accession code
EGAS00001007364 and dataset accession code EGAD00001012228.
Access is controlled by the TRACERx data access committee and
details regarding applications for access are available on the relevant
EGA page. NSG mouse whole-genome sequencing data have been
deposited with The European Nucleotide Archive (ENA) and are pub-
licly available under the accession code PRJEB65917. The processed
data, including single nucleotide polymorphisms of the NSG mouse
and the NSG-adapted mouse reference genome, as well as code to
reproduce these are available via Zenodo (https://doi.org/10.5281/
zenodo.10304174)69. The GRCm38/mm10 genome assembly can be
downloaded from UCSC.

Biological materials, including PDX models generated within this
study, are available to the community for academic non-commercial
research purposes via standard MTA agreements.

Code availability
All code to reproduce the figures in this manuscript is available via
Zenodo (https://doi.org/10.5281/zenodo.7434887)97. Scripts to repro-
duce the NSG-adapted reference genome are available via Zenodo
(https://doi.org/10.5281/zenodo.10304174)69. Histologyoverviewfigures
were generated from digital pathology images using PATHOverview
(code available at https://github.com/EpiCENTR-Lab/PATHOverview)58.
PDX growth curves and PDX lineage relationshipsweremonitored using
PDX-Tracker (code available at https://github.com/EpiCENTR-Lab/PDX-
Tracker)98.
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