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Validation of a polygenic risk 
score for frailty in the Lothian 
Birth Cohort 1936 and English 
longitudinal study of ageing
J. P. Flint 1,2,3,4*, M. Welstead 3,4, S. R. Cox 2,3, T. C. Russ 4,5, A. Marshall 1,6 & M. Luciano 2,3

Frailty is a complex trait. Twin studies and high-powered Genome Wide Association Studies conducted 
in the UK Biobank have demonstrated a strong genetic basis of frailty. The present study utilized 
summary statistics from a Genome Wide Association Study on the Frailty Index to create and test 
the predictive power of frailty polygenic risk scores (PRS) in two independent samples – the Lothian 
Birth Cohort 1936 (LBC1936) and the English Longitudinal Study of Ageing (ELSA) aged 67–84 years. 
Multiple regression models were built to test the predictive power of frailty PRS at five time points. 
Frailty PRS significantly predicted frailty, measured via the FI, at all-time points in LBC1936 and ELSA, 
explaining 2.1% (β = 0.15, 95%CI, 0.085–0.21) and 1.8% (β = 0.14, 95%CI, 0.10–0.17) of the variance, 
respectively, at age ~ 68/ ~ 70 years (p < 0.001). This work demonstrates that frailty PRS can predict 
frailty in two independent cohorts, particularly at early ages (~ 68/ ~ 70). PRS have the potential to be 
valuable instruments for identifying those at risk for frailty and could be important for controlling for 
genetic confounders in epidemiological studies.

Frailty is a clinical state commonly associated with ageing and weakening in physiology and risk to  stressors1. 
This deterioration often leads to poorer health outcomes in later life, including falls, long-term hospital stays, 
disability, and  mortality2. Worldwide, the prevalence of frailty is ~ 16% in adults above 60 years  old2; within the 
United Kingdom, the prevalence of frailty in over 60-year-olds was estimated to be ~ 6.5%, rising substantially 
for adults over 80 years old and estimated at ~ 65% for adults over 90 years  old3. Given that between 2015 and 
2030 the number of people aged 60 across the world is expected to grow from 901 million to 1.4 billion, frailty 
is now a recognised global health issue – as the population ages, the prevalence of frailty is predicted to  rise4. 
Population ageing and the rise in age-related conditions, such as frailty, bring a necessity to use omics and data 
science to understand the aetiology and mechanisms influencing the development of frailty.

Despite growing evidence that frailty is a public health issue, a universal definition or measurement is yet to 
be established for  frailty5. Some studies view frailty as a physical condition that should be considered a medical 
condition/clinical state—measured, for example, with Fried’s frailty  phenotype6. Others take a wider definition 
where frailty is characterised by a reduction in strength, endurance, cognitive and physiological function—
measured, for example, with the Frailty  Index7—all of which contribute to a decline in independent living and 
an increased risk of  death5.

The most recognised predictors of frailty are age and  sex8,9. Further predictors include: cognitive, physical, 
biological, lifestyle and environmental factors, social, sociodemographic and psychological  factors10,11. Such 
factors accumulate across the lifespan and during early life. Despite a multitude of risk factors being identified 
for frailty, the underlying mechanisms behind such risk factors and the development of frailty have yet to be 
fully understood, making prediction challenging/imprecise at an individual  level12,13. To refine the prediction 
of traits like frailty the genetic propensity for the manifestation of frailty must be explored. Like many human 
traits, Frailty Index is partly inherited; twin studies have found that genes explain 30–45% of trait  variance1.
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Developments in molecular genetics allow for more refined prediction of complex traits, such as frailty. For 
example, Genome-Wide Association Studies (GWAS) explore genetic markers across the genomes of many 
different people to uncover genetic variations associated with diseases and  traits14 and explore how these are 
associated with other biological mechanisms. GWAS reveal that much of the genetic basis for many complex traits 
come from multiple small effects of thousands of  variants14,15. Such genetic associations can allow researchers 
and clinicians to develop methods to detect, delay, and prevent diseases and certain traits. Furthermore, given 
that frailty has been shown to be  reversible16,17, polygenic risk scores (PRS) may not only reveal associations 
with frailty status, but may also assist in identifying groups of higher risk individuals who could benefit from 
early intervention.

GWAS have only recently reached large enough sample sizes to uncover reliable and reproducible associa-
tions between genetic variants and complex polygenic traits. There have been two high-powered GWAS studies 
examining  frailty14,15. One measured frailty with the frailty index, whilst the other used the Fried phenotype 
criteria. The former, which will be the focus of this study, to capture a wider measure of frailty, is a GWAS on 
164,510 UK Biobank participants, aged between 60 and 70 years, in which 14 loci were found to be associated 
with the Frailty  Index14. 13 of these loci were previously associated with diseases and traits such as depression, 
smoking, Body Mass Index (BMI), cardiovascular diseases, neuroticism, and Human Leukocyte Antigen Proteins 
(HLA). The Single Nucleotide Polymorphism (SNP)-based heritability for frailty, measured via the Frailty Index, 
was 11%, lower than twin-based estimates of 30–45%. However, this is unsurprising given that the SNP based 
estimate does not include rare genetic variation and structural genetic variation that is captured by twin and 
family modelling–SNPs index common genetic variation. This high-powered GWAS of frailty points towards 
genetic determinants linked to cardiovascular health, mental health, and brain  functioning14. Thus, frailty is a 
highly polygenic trait, and GWAS are important to understand the underlying biology with potential to robustly 
predict frailty.

Given the highly polygenic nature of frailty, one method that has become increasingly used to investigate the 
genetic propensity of diseases and traits is polygenic  scoring18,19. This method utilises summary statistics from 
GWAS, which have examined the associations of millions of SNPs with phenotypes of interest, including in this 
case, frailty. Weightings (regression coefficients) are then taken for each SNP from GWAS data to create a poly-
genic risk score for genotyped individuals in an independent sample (participants who are not in the targeted 
GWAS). This PRS indicates the small cumulative effects contributing to a genetic risk or probability of a higher 
level of a particular disease or  trait19,20. There have been multiple updates in polygenic risk scoring methods to 
achieve efficient and generalizable  results20,21.

PRS can identify individuals at high risk to a certain disease or trait, such as cardiovascular  disease19. Thus, 
many researchers have advocated the potential for PRS to be instrumental biomarkers in identifying, predict-
ing, and informing treatment in  individuals19–21. Considering the ageing population, as personalised genomics 
expands and robust data and methods are applied to understand complex diseases and traits, PRS may be an 
objective tool in understanding and identifying complex traits like frailty. Furthermore, PRS are used to discrimi-
nate environmental from genetic sources of variability, allowing outcomes such as frailty to be better understood.

It is clear that frailty is a multifaceted trait, influenced by many genetic determinants linked to various bio-
logical, physical, cognitive, social, psychological, and environmental  traits14,15,22. Despite recent findings, there 
remains a dearth of genetic frailty research. Thus far, no studies have utilised the summary statistics from a frailty 
GWAS from the UK Biobank to compute polygenic risk scores in independent samples. This study addresses this 
gap in the literature by applying the UK Biobank GWAS summary statistics to two independent cohorts, LBC1936 
and ELSA, at five different age bands within the range of 67 to 84. The scores will then be used in multiple linear 
regression models to predict frailty at five different time points.

Methods
Prediction Samples
LBC1936
The target data contains the genotypes (genome-wide SNPs) and phenotypic data from 1005 older adults in 
LBC1936. LBC1936 is an ongoing longitudinal study of older adults living in the community in Edinburgh 
and surrounding Lothian areas of Scotland, United  Kingdom23. Individuals were initially recruited based on 
having been part of the Scottish Mental Survey (1947) and have thus far taken part in 5 waves of testing. The 
mean age at the first wave was 69.60 (SD = 0.83, n = 1005, 509 males), at the second wave was 72.55 (SD = 0.71, 
n = 800, 415 male), at the third wave was 76.30 (SD = 0.68, n = 649, 339 male), at the fourth wave was 79.39 (SD 
0.62, n = 514, 261 male) and at the fifth wave was 82.06 (SD = 0.53, n = 402, 196 male). Ethical permission was 
approved from the Multi-Centre Research Ethics Committee for Scotland (Wave 1: MREC/01/0/56), the Lothian 
Research Ethics Committee (Wave 1: LREC/2003/2/29), and the Scotland A Research Ethics Committee (Waves 
2, 3, 4 and 5: 07/MRE00/58) and all methods were performed in accordance with the relevant guidelines and 
regulations. Informed Written Consent was obtained from participants at each of the waves. The genotypes, 
collected via blood samples from the majority of participants at wave 1 were processed using stringent quality 
control  measures24.

ELSA
For ELSA, the target data contained polygenic risk scores and phenotypic data from 5448 adults aged between 
67 and 84 (from 9 waves/data collection points in ELSA) living in the community in  England25. To mirror the 
format of the LBC1936 waves, the ELSA data was split into five groups based on the same age bands. The mean 
age in the first group (mirror of LBC1936 Wave 1) was 68.44 (SD = 1.10, n = 3983, 1851 male), in the second group 
(mirror of LBC1936 Wave 2) was 72.4 (SD = 1.09, n = 3491, 1605 male), in the third group (mirror of LBC1936 
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Wave 3) was 76.37 (SD = 1.09, n = 2727, 1247 male) , in the fourth group (mirror of LBC1936 Wave 4) was 79.95 
(SD = 0.76, n = 2020, 874 male), and in the fifth group (mirror of LBC1936 Wave 5) was 82.88 (SD = 0.76, n = 1495, 
619 male) . Unlike LBC1936, samples in ELSA are refreshed with new participants; therefore, the age groups 
created for ELSA contained longitudinal participants (with more than one frailty measure across groups) and 
participants with just one measure in one group. Within the ELSA age groups (1–5), which were created to mirror 
the format of LBC1936 and validate the PRS prediction, there are individuals who have been tested at differ-
ent times (from ELSA waves 1–9, which spans from 2002/3 to 2018/19). Supplementary tables S1-S5 show the 
number of participants, and frailty index means and standard deviations in each age group (1–5) by ELSA wave 
(1–9), supplementary table S6 shows how many participants have longitudinal measures across the five groups. 
Supplementary tables S7 – S9 show the items in the frailty index from the discovery sample (UK Biobank) and 
two target samples (LBC1936 and ELSA).

Ethics for ELSA have been approved via the South Central – Berkshire Research Ethics Committee (21/
SC/0030, 22nd March 2021) and all methods were performed in accordance with the relevant guidelines and 
regulations. Polygenic risk score data was acquired through request to the ELSA genetics team and the pheno-
typic data was curated at the Advanced Care Research Centre from ELSA data available on the UK data service.

Predictors
Discovery sample
GWAS summary statistics for the largest GWAS to date on frailty were sourced from the European Bioinformatics 
Institute (EBI) GWAS  catalogue26. The GWAS included 164,610 individuals (48.5% male) from the UK Biobank 
aged between 60 and 70 years old. The researchers used the Frailty Index based on 49 self-reported items on a 
range of physical, social, cognitive, and biological characteristics alongside disabilities and diagnoses.

Quality control was carried out on the GWAS summary statistics. Initial steps included ensuring that the 
effect and non-effect allele were known to ensure the direction of effect is in the correct direction. Any duplicate 
and ambiguous SNPs were removed.

Outcomes
Phenotypic data
LBC1936. Frailty is measured by the Frailty Index, previously constructed in the LBC  dataset27. The Frailty 
Index in the LBC1936 constitutes 30 deficits, including physical, biological, social, psychological, and cognitive 
deficits, consistent with the Frailty Index in previous  research7. Deficits were either dichotomised as either 0 
(absent) or 1 (present); in some cases, 0.5 was used to represent a partially present deficit or were on a continu-
ous scale (e.g. walking time) on a scale ranging from 0 to 1. For each individual, the number of deficits present 
was summed and divided by the total number of deficits (30). Scores ranged from 0 to 1 – with higher scores 
indicating higher frailty.

ELSA. The Frailty Index in ELSA was derived from the ELSA dataset following previous  work15. The index 
contained 62 deficits and a participant would ascertain a frailty score if data were available for 30 (similar, if not 
the same, deficits as LBC1936) out of the 62 deficits. Despite there being more deficits in the Frailty Index used in 
ELSA than LBC1936, guidelines indicate that as long as a minimum of 30 deficits are used to cover the relevant 
domains (disability, disease, cognitive functioning) then differences between number of deficits should not be an 
 issue7. Due to skewness in the data, the frailty index variable was transformed using a square root transforma-
tion. Further, the index was calculated in the same way as the LBC1936 index; both LBC1936 and ELSA followed 
the same guidelines when creating the  index7. For LBC1936 and ELSA frailty index scores were standardised to 
allow comparisons when interpreting the results.

Covariates
Variation in frailty caused by age and sex (the strongest frailty predictors) were controlled in analysis. Four 
ancestry principal components for LBC1936 and 10 ancestry principal components for ELSA were also included 
as covariates to account for population stratification, that is, systematic genetic differences due to ancestry dif-
ferences – both LBC1936 and ELSA only included participants with European ancestry in genotyping.

Polygenic risk scores
LBC1936
Using the summary statistics from the frailty  GWAS14 (the base data) and the LBC1936 raw genotype and phe-
notype data (the target data), PRS were created for 1005 individuals at multiple p-value thresholds (PT). Quality 
control processing was done using the R package QCGWAS and PRS were derived using PRSice (version 2) 
polygenic  software28,29.

ELSA
PRS for 7223 individuals were provided by the ELSA genetics team and were calculated on genotyped data at 
multiple PT to match the thresholds selected in LBC1936. PRS calculation methods and quality control methods 
in ELSA can be found in the documentation  report30. When joined with the phenotypic data 5448 ELSA indi-
viduals remained for downstream analysis.
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Statistical analysis
Data preparation details can be found in supplementary materials. Prediction analyses were run using the PRSice 
2 software and R studio in R version 2022.7.1.55431.

Polygenic risk scores for individuals were calculated with P value thresholds optimised to select the best fitting 
PRS – the p-value thresholds were between 0.01, 0.05, 0.1, 0.3 and 1. That is, multiple PRS were calculated that 
included SNPs with association p-values less than the specified threshold and the most predictive of these was 
retained (93,579 SNPs under p-value threshold 1 in LBC1936 and 1,349,585 SNPs under p-value threshold 1 in 
ELSA). Clumping was performed to thin SNPs according to the linkage disequilibrium (how correlated SNPs 
close together are) and p-value. The SNP with the smallest p-value in every 250 kb frame was retained, and all 
SNPs having  r2 > 0.1 were removed from further analysis.

To explore genetic correlation, multiple linear regression models were built on the PRS against the frailty 
phenotype and adjusted for age, sex and ancestry principal components. As the PRS were constructed in PRSice 
for LBC1936, the regression models were also run by the program but built separately in R for the ELSA analysis.

A multiple linear regression was first performed between the covariates (sex, age, and ancestry principal 
components) and the phenotype (Frailty Index), and constitutes the null model. The PRS is then added as a 
predictor in the model and re-run (i.e., the full model). The variance explained by the PRS (PRS  R2) was calcu-
lated by subtracting the  R2 of the null model from that of the full model. ELSA groups were mixed across data 
collection time points; for example, anybody with a Frailty Index aged 67–70 in group 1 could come from any of 
the 9 waves of ELSA data collection which can span 16 years. Due to this sampling structure, sensitivity analyses 
were performed to control for potential cohort effects. This consisted of creating dummy variables for each ELSA 
wave and adding them as covariates to the regression models.

Results
The mean scores for frailty and age, at each time point, in the LBC1936 and ELSA are shown in Tables 1 and 2. 
As expected, mean frailty scores increase with age across the waves. The pairwise correlations of frailty between 
the waves confirmed that frailty is relatively stable over time (see supplementary tables S10 and 11). Correlations 
were at a minimum moderate, > 0.5 correlation, and most were strong, Pearson’s r > 0.7.

Supplementary Fig. S1 compares the predictive power of the differing  PT in LBC1936, with the bar explaining 
the most variance representing the best fit. Supplementary Fig. S2 similarly demonstrates the significant relation-
ship at various  PT in ELSA. The multiple regression model outputs for each time point can be found in Tables 3 
and 4; supplementary Figures S1and S2 display the raw p values for each regression model.

LBC1936
At Wave 1, the optimal  PT was 0.3, demonstrating the best prediction between frailty PRS and frailty (p < 0.001). 
As Table 3 shows, the PRS explains 2.1% of variation in frailty within LBC1936 at aged ~ 70 and is based on 
49,325 SNPs. At Wave 2, the optimal  PT was 0.1 (p < 0.001) explaining 1.8% of variation in frailty at ~ 73 years 
and is based on 24,171 SNPs. At Wave 3, the optimal  PT was 0.3 (p < 0.01), explaining 1.4% of variation in frailty 
at ~ 76 years. At Wave 4, the optimal  PT was 0.3 (p < 0.05), with the PRS explaining 1.3% of variation in frailty 
at ~ 79 years. At Wave 5, the optimal was 0.1, p < 0.1, and the PRS at age ~ 82 explains 1.7% of variation in frailty.

Sensitivity analysis
Multiple sensitivity analyses were carried out to test if there was an effect in the loss of data from Wave 1 to 
Wave 5 in LBC1936. Such analysis was first restricted to participants who had data for the frailty index at all 5 
waves of data n = 402 and then restricted to participants who dropped out after each wave given that they had 

Table 1.  Descriptive statistics for age and raw Frailty Index at each wave in LBC1936.

N Mean SD Range

Wave 1

 Frailty Index 1005 0.16 0.09 0–0.49

 Age 1005 69.58 0.83 67.66–71.35

Wave 2

 Frailty Index 800 0.18 0.09 0–0.55

 Age 800 72.55 0.71 71.96–74.21

Wave 3

 Frailty Index 649 0.20 0.09 0.02–0.65

 Age 649 76.30 0.68 74.64–77.75

Wave 4

 Frailty Index 514 0.21 0.09 0.03–0.63

 Age 514 79.38 0.62 78.1–80.93

Wave 5

 Frailty Index 402 0.22 0.09 0.03–0.58

 Age 402 82.06 0.54 80.98–83.19
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higher frailty scores compared to those who continued in the study. There was no change in effect size when 
the analysis was restricted to participants who were part of all 5 waves of LBC1936, these results are reported in 
Supplementary Table S12 and Supplementary Fig. 3. However, the effect sizes increased when the analysis was 
restricted to those who dropped out in the subsequent wave (e.g., at Wave 2 in only those who did not return at 
Wave 3); these results are reported in Supplementary Table S13 and Supplementary Fig. 4.

ELSA
For Group 1, the optimal  PT was 1, demonstrating the best prediction between frailty PRS and frailty (p < 0.001). 
As Table 4 shows the PRS explains 1.8% of variation in frailty within ELSA at aged ~ 68 and based on 1349,585 
SNPs. For Group 2, the optimal  PT was also 1, with the best prediction between frailty PRS and frailty (p < 0.001) 
explaining 1.8% of variation in frailty at ~ 73 years. For Group 3, the optimal  PT was again 1 (p < 0.01), explaining 
1.3% of variation in frailty at ~ 76 years. For Group 4 the optimal  PT was 0.3 (p < 0.05), with the PRS at this wave 
explaining 1.3% of variation in frailty at ~ 79 years and is based on 486,667 SNPs – thus far following similar 
trends to the variance explained in LBC1936. Finally for Group 5, the optimal  PT was 0.1, p < 0.1. The PRS explains 
0.4% of variation in frailty and is based on 204,805 SNPs.

Table 2.  Descriptive statistics for age and raw Frailty Index at each wave in ELSA.

N Mean SD Range

Group 1

 Frailty index 3983 0.14 0.10 0–0.68

 Age 3983 68.44 1.10 67.00–70.00

Group 2

 Frailty index 3491 0.15 0.10 0.007–0.66

 Age 3491 72.4 1.09 71.00–74.00

Group 3

 Frailty index 2727 0.18 0.11 0.01–0.79

 Age 2727 76.37 1.09 75.00–78.00

Group 4

 Frailty index 2020 0.20 0.12 0.01–0.79

 Age 2020 79.95 0.76 79.00–81.00

Group 5

 Frailty index 1495 0.22 0.12 0.01–0.74

 Age 1495 82.88 0.76 82.00–84.00

Table 3.  Results of multiple linear regression analyses showing associations between the optimal frailty PRS 
and the Frailty Index in the LBC1936. All analyses controlled for sex and age and population stratification.

Multiple linear regression β SE p PRSR2

Frailty PRS at ~ 70 0.15 0.03  < 0.001 0.021

Frailty PRS at ~ 73 0.14 0.04  < 0.001 0.018

Frailty PRS at ~ 76 0.11 0.04  < 0.001 0.014

Frailty PRS at ~ 79 0.11 0.04  < 0.001 0.013

Frailty PRS at ~ 82 0.13 0.04  < 0.001 0.017

Table 4.  Results of multiple linear regression analyses showing associations between the optimal frailty PRS 
and the Frailty Index in the English Longitudinal Study of Ageing. All analyses controlled for sex and age, 
population stratification and ELSA wave.

Multiple linear regression β SE p PRSR2

Frailty PRS at ~ 68 0.014 0.01  < 0.001 0.018

Frailty PRS at ~ 72 0.14 0.01  < 0.001 0.018

Frailty PRS at ~ 76 0.12 0.01  < 0.001 0.013

Frailty PRS at ~ 80 0.10 0.02  < 0.01 0.013

Frailty PRS at ~ 83 0.06 0.02  < 0.001 0.004
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The findings between LBC1936 and ELSA, apart from at the final time point at Wave/Group 5, were consist-
ent. Figure 1 shows that the standardised coefficients overlap across the waves/groups at each time point across 
the cohorts, even when the variance drops at the last time point in ELSA – Wave 1 LBC1936 (β = 0.15, 95%CI, 
0.085–0.21) and Group 1 ELSA (β = 0.14, 95%CI, 0.10–0.17); Wave 5 LBC1936 (β = 0.13, 95%CI, 0.034–0.23) 
and Group 5 ELSA (β = 0.06, 95%CI, 0.016–0.10).

Discussion
This present study used summary statistics from a highly powered GWAS on the frailty index to compute poly-
genic risk scores (PRS) in an independent sample of community-dwelling older Scottish adults and a nationally 
representative sample of older adults living in England. Frailty PRS significantly predicted frailty at all five time-
points, accounting for the most variance at Wave 1/Age Group 1 (when LBC1936 participants were ~ 70 years 
old and ELSA participants were ~ 68 years old); the proportion of variance explained decreased, albeit mini-
mally, across the waves. At the final Wave/Age Group (~ age 82 in LBC 1936 and ~ age 83 in ELSA) the variance 
explained by frailty PRS had a greater discrepancy between the two cohorts when compared to other ages. 
Although frailty PRS predicted frailty at all ages, it was most predictive when adults were younger at ~ 68/70 years 
old. This study adds further evidence to the role of genetics in the development of frailty and demonstrates that 
PRS for frailty can significantly predict frailty outcomes.

Regarding the specific findings, it may have been expected that frailty PRS would explain more variance in 
adults in the later waves who are approaching and beyond 80 years old given the prevalence of frailty is higher 
at these  ages3. But previous research shows that genetic effects on cognitive aging decrease in later  life32, so it is 
possible that whereas frailty phenotypic variance increases with age its genetic variance decreases. Our finding 
that the frailty PRS explained the most variance at the earliest age, when participants were ~ 68/70 years, sup-
ports such an interpretation. An alternative interpretation of this finding relates to characteristics of the base data 
(GWAS on frailty) which was performed on adults aged 60 to 70 in the UK  Biobank14. The age characteristics of 
the base data were most aligned with the first time point in LBC1936 and ELSA where the mean was ~ 68/70 years 
old. In terms of Frailty Indexing – frailty in the GWAS and at Wave/Age Group 1 in the LBC1936 and ELSA 
was at a similar mean level. Frailty measured in the GWAS had not yet progressed to higher levels and may not 
be the most accurate GWAS to use when predicting frailty in older adults, who are at most risk of being  frail2,3. 
Therefore, measuring frailty between 60–70 years old, as the GWAS did, may limit the utility of the findings. 
Nonetheless, it still offered significant prediction in our samples across the range of 67 to 84 years.

To understand the findings further, it is useful to understand the frailty score in the GWAS and how that may 
impact the findings. The Frailty Index mean in the UK Biobank GWAS was 0.13, which most closely resembles 
the mean frailty levels of 0.16 and 0.14 in the respective LBC1936 Wave 1 and ELSA Age Group 1 cohorts. It is 
possible that frailty measured in a younger group (such as the base data in the UK Biobank) may not necessarily 
resemble frailty measured at older ages. The example of BMI/weight loss is a good way to illustrate that frailty 
can mean different things at different ages. In middle age, a relatively lower weight is usually indicative of good 
health, however in older age a much lower relative weight is indicative of frailty/sarcopenia/poor  health33,34–these 
age-moderated nuances may not be picked up well in the current GWAS-PRS data. The current study would 
benefit from research comparing the Frailty Index at an item level with younger and older ages. This would allow 

Figure 1.  A bar plot comparing the standardized coefficients from the most predictive model at each time point 
in LBC1936 and ELSA. Error bars represent 95% confidence intervals. The darker the bar the stronger the effect 
size.
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researchers to explore the different genetic correlations in frailty at younger ages and at older ages and investigate 
whether frailty at older ages is tapping the same measure as frailty at younger ages.

Alongside exploring the influence of frailty PRS at increasing ages, the current study has several strengths. 
The analysis was firstly conducted in LBC1936 and then validated in ELSA. LBC1936 is a unique cohort and is 
not as representative of the British population when compared to ELSA, thus replicating the analysis with the 
ELSA cohort increased the validity and generalisability of the findings. Further, the study used p-value thresh-
olding to find the most predictive threshold when creating the polygenic risk scores. Thus, we ensured that the 
most predictive PRS was used when modelling frailty. The frailty measure in the GWAS and the Frailty Index in 
both LBC1936 and ELSA used similar indices to create the Frailty Index. If the base and target measures are too 
dissimilar this can be an issue as it weakens the maximal variance in the target measure that can be explained 
by the  PRS18,19.

Despite such strengths, the results should be contextualised within various confines. Firstly, the base data, as 
previously mentioned, represented frailty at a very early/mild  stage35. Thus, due to the narrow age examined, the 
polygenic prediction of frailty at later ages will be biased. Furthermore, participants within the UK Biobank, in 
which the base data consisted of, are less likely to be obese or inactive, smoke, have lower educational attainment 
and have fewer health conditions when compared to the general population – the ’healthy volunteer’  effect36. 
LBC1936 and ELSA are also volunteer studies and are vulnerable to the healthy volunteer effect. The Frailty Index 
in the base data, LBC1936 and ELSA at ~ 70 represented individuals who would be classified as fit or pre-frail 
– consistent with the idea of healthy participation selection  bias37,38. Despite similarities between ELSA and the 
LBC1936, we imposed group categories in ELSA to represent waves (time points) to mirror the LBC1936 ones. 
This is a limitation as LBC1936 and ELSA differ in recruitment methods – unlike LBC1936, ELSA recruits and 
introduces new participants at new time points – this addition of new cohort members (and sampling variation) 
could explain the lack of variance explained at the last time point in ELSA. Another issue is the reduced sample 
size from Wave/Age Group 1 to Wave/Age Group 5, and that individuals who remained in the subsequent waves/
older ages were healthier on average than those who did not remain in the  cohorts37,38. Thus, opportunities were 
likely missed to study individuals with the highest levels of frailty—this may have been another reason why 
predictive power decreased at the later waves. However, our sensitivity analysis on participants in LBC1936 who 
dropped out suggests that frailty PRS may be more predictive at higher frailty levels. In following the GWAS 
analysis, we deliberately fitted only three covariates (sex, age, and ancestry principal components) in the model 
given that the frailty PRS is known to genetically correlate with a range of variables which may represent the 
constituents of frailty; by including them as confounders we would reduce PRS prediction. Future studies could 
include such covariates alongside their associated PRS to understand if any unique variance in frailty PRS remains 
following multiple adjustment.

Future studies should continue polygenic prediction of frailty but with more power and refinement to address 
the challenge of population ageing and support those in and approaching later life. To address the issue of the 
base data having a narrow age range of 60–70 years, GWAS samples from population representative adults 
80 + is needed. This would maximise PRS prediction and allow for more refined identification of those at risk to 
frailty. This will be challenging as such a GWAS would need to be highly powered with many participants which 
can prove difficult when attempting to circumvent healthy selection to collect data on older adults, and likely 
necessitates a meta-analysis approach. A GWAS study conducted on a different measure of frailty—the frailty 
phenotype was recently  published15. The frailty phenotype takes a physiological approach to measuring frailty, 
measuring five physical systems weight loss, exhaustion, weakness, slowness when walking and low levels of 
physical  activity6. Unlike the Frailty Index it does not feature cognitive elements of frailty and there is a moderate 
correlation) between the two, R = 0.43 in LBC1936 and 0.50 in  ELSA39,40. Nonetheless, a future study could test 
the utility of this PRS in both LBC1936 and ELSA who have measures of the frailty phenotype.

Lastly, the models built in this study contained single polygenic predictors. Despite us showing that single 
polygenic prediction can be informative when predicting traits like frailty, due to the complexity of frailty, it 
would add even more value to use a more novel approach such as a multi-polygenic method (MPS)41. MPS would 
increase predictive power via exploiting the combined power of multiple PRS. For example, summary statistics 
of high-powered GWAS on traits associated with frailty, such as cardiovascular diseases, BMI, and diabetes, 
could be used to create multiple polygenic risk scores and examine how they perform together in a prediction 
model to explore the complex nature of frailty. Other recent methodological advancements include the use of 
multivariate GWAS, such as genomic structural equation modelling (SEM). Genomic SEM could be a valuable 
approach to investigate how similar deficits in frailty cluster and explore whether more variance is captured using 
a multivariate approach as research looking at the phenotypic clustering of frailty has  done42.

The present findings have several implications. The summary statistics from the largest GWAS on frailty to 
date can significantly predict frailty in two independent cohorts at multiple time points. This is a starting step in 
research with complex traits, such as frailty, in utilising genetic data to refine prediction. Polygenic risk scores 
have the potential to be efficient instruments in detecting genetic liability to a disease or trait and identify these 
individuals at a point before frailty progresses – a point at which interventions would be  effective12,17. Further-
more, this study contributes to the small body of research exploring genetic predictors of frailty. These findings 
support the notion that genetics play an important role in the development of ageing conditions such as frailty 
and the magnitude of the effect sizes found here are similar to those reported for environmental predictors of 
frailty and cognitive  ageing43,44. As we tested the associations at five different time points from ages ~ 67 to ~ 84, 
this study also supports the importance of an accurate measurement of the Frailty Index–one in which frailty has 
had the opportunity to progress in both the base and target samples, as this will allow for more refined predic-
tion. Future work could include a high-powered GWAS on advanced frailty, high-powered independent target 
samples to test frailty PRS in and applying novel methods to utilise multiple PRS in the prediction of frailty.
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Data availability
The data for the GWAS summary statistics on frailty can be found on: https:// www. ebi. ac. uk/ gwas/. For the 
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anbir thcoh ort. ed. ac. uk/. The English Longitudinal Study of Ageing data was sourced from https:// ukdat aserv 
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