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Abstract
How brain functions in the distorted ischemic state before and after reperfu-
sion is unclear. It is also uncertain whether there are any indicators within
ischemic brain that could predict surgical outcomes. To alleviate these issues,
we applied individual brain connectome in chronic steno-occlusive vasculopa-
thy (CSOV) to map both ischemic symptoms and their postbypass changes. A
total of 499 bypasses in 455 CSOV patients were collected and followed up for
47.8 ± 20.5 months. Using multimodal parcellation with connectivity-based and
pathological distortion-independent approach, areal MR features of brain con-
nectome were generated with three measurements of functional connectivity
(FC), structural connectivity, and PageRank centrality at the single-subject level.
Thirty-three machine-learning models were then trained with clinical and areal
MR features to obtain acceptable classifiers for both ischemic symptoms and
their postbypass changes, amongwhich, 11 were deemed acceptable (AUC> 0.7).
Notably, the FC feature-based model for long-term neurological outcomes per-
formed very well (AUC > 0.8). Finally, a Shapley additive explanations plot
was adopted to extract important individual features in acceptable models to
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generate “fingerprints” of brain connectome. This study not only establishes
brain connectomic fingerprint databases for brain ischemia with distortion,
but also provides informative insights for how brain functions before and after
reperfusion.
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brain ischemia, cerebral revascularization, machine learning, neural networks

1 INTRODUCTION

Bypass surgery is effective for the treatment of chronic
steno-occlusive vasculopathy (CSOV) by reducing the risk
of future stroke, reducing frequency of transient ischemic
attacks, and improving long-term cognitive function and
activities of daily living.1–3 The surgery is recommended
to be performed as soon as it can be reasonably sched-
uled after the acute phase.4,5 Nevertheless, not all patients
benefit from this gold-standard surgery due to postopera-
tive ischemia, hyperperfusion syndrome (HPS) and other
unknown reasons.6,7 Regarding these high-risk patients,
surgical indication should be more strict and periopera-
tive management should be more enforced. However, it is
difficult to discriminate high-risk patients from the whole
CSOV group prior to surgery. What is worse, in absence of
effective approaches, mapping neurologic and psychiatric
symptoms in CSOV is still a traditional challenge.
Some clinical factors have been proposed as predic-

tors of postbypass complications sporadically, such as the
advanced age, left-side surgery, some angioarchitectural,
and hemodynamic features.5,8,9 However, these factors are
determined at group level and thus cannot be prognos-
tic to the individual patient. The promising Berlin grading
system is proposed to predict surgical outcomes based on
individual ischemic status, but one involved factor of cere-
brovascular reserve capacity cannot be performed in some
countries, which limits the application of this system.10
Thus, novel measurements of brain ischemia should be
developed to evaluate clinical symptoms and to predict
surgical outcomes.
The complicated pathogenesis of the CSOV leads to

abnormal brain activation and thereafter observable clini-
cal symptoms. Clinically, lesions in different brain regions
often cause similar symptoms, which is explained by the
theory that symptoms correspond more closely to net-
works of connected regions rather than specific regions.11
Therefore, features of brain connectome are valuable, indi-
vidualized characteristics that reflect brain abnormalities
caused by disease.12 The promising approach of symp-
tom mapping has been applied to many neuropsychiatric
symptoms, but is rarely used in brain ischemia due to

its common pathological distortion. Neuroscientists find
it difficult to parcellate distort cortex at the single-subject
level or make an accurate identification of areal boundary.
Fortunately, a novel connectivity-based parcellation

approach has been proposed to acquire single-subject atlas
independent of brain pathological distortion and can be
used to solve the above problems.13,14 After extracting indi-
vidual areal features of the brain connectome in patients
with CSOV using this approach, we trained machine-
learning (ML) models to recognize clinical neurological,
and cognitive status at admission, long-term follow-ups,
as well as postoperative aggravated or newly onset com-
plications. Finally, important areal features in acceptable
models were generated as individual fingerprints via a
Shapley additive explanations (SHAP) plot. This study not
only establishes the first brain connectomic fingerprint
database for brain ischemia with distortion, but also pro-
vides informative insights for how brain functions after
reperfusion.

2 RESULTS

2.1 Clinical features

Four hundred fifty-five patients of CSOVwith 499 bypasses
were identified from May 2013 to 2021 (Table 1). Post-
operative ischemic stroke and HPS were recorded in 31
(6.2%) and 166 (33.3%) bypasses, respectively. All involved
bypasses were confirmed patency through angiography at
6-month follow-up. The mean follow-up was 47.8 ± 20.5
months. Twelve (2.4%) procedures failed to receive neu-
ropsychological follow-up due to severe neurological
deficits.

2.2 Eleven acceptable MLmodels and
four effective tests are generated

A total of 33 ML models were developed for the 11
tests, among which 11 models were considered accept-
able (Table 2). The very good performance is noted in
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TABLE 1 Clinical characteristics of hemispheres with CSOV.

Total
(n = 499)

General campus
(n = 142)

North campus
(n = 301)

West campus
(n = 56)

Age (years) 42.7 ± 11.4 41.6 ± 10.5 43.0 ± 11.7 43.7 ± 12.4
Male (%) 227 (45.5) 65 (45.8) 139 (46.2) 23 (41.1)
Left side (%) 254 (50.9) 76 (53.5) 148 (49.2) 30 (53.6)
Ischemic type (%) 378 (75.8) 99 (70.0) 236 (78.4) 43 (76.8)
Past medical history (%)
Hypertension 114 (22.8) 30 (21.1) 70 (23.3) 14 (25.0)
Diabetes 102 (20.4) 25 (17.6) 67 (22.3) 10 (17.9)
Hyperlipidemia 86 (17.2) 24 (16.9) 53 (17.6) 9 (16.1)
Current Smoking 100 (20.0) 27 (19.0) 61 (20.3) 12 (21.4)

Clinical symptoms at admission
NIHSS score 1.8 ± 2.1 1.8 ± 2.0 1.7 ± 2.0 1.8 ± 2.5
MMSE score 25.0 ± 5.0 25.2 ± 4.8 25.1 ± 4.9 23.9 ± 6.2
MES score 73.5 ± 21.0 69.8 ± 22.6 75.5 ± 19.5 72.0 ± 23.4

Perioperative surgical outcomes
NIHSS score 3.3 ± 4.5 3.0 ± 4.4 3.4 ± 4.6 3.9 ± 4.0
mRS score 1.9 ± 1.5 1.8 ± 1.5 1.9 ± 1.6 2.2 ± 1.5
Aphasia (%)a 102 (20.4) 24 (16.9) 66 (21.9) 12 (21.4)
Motor paresis (%)a 119 (23.8) 28 (19.7) 76 (25.2) 15 (26.8)

Long-term surgical outcomes
NIHSS score 1.4 ± 4.1 1.4 ± 4.3 1.5 ± 4.0 1.5 ± 3.7
mRS score 0.7 ± 1.2 0.6 ± 1.1 0.8 ± 1.2 0.8 ± 1.2
MMSE score 26.5 ± 4.6 26.6 ± 4.4 26.5 ± 4.6 25.8 ± 5.2
MES score 80.4 ± 20.0 79.3 ± 21.8 80.8 ± 19.2 81.3 ± 19.6

Note: a means postoperative newly onset or aggravated symptoms.

TABLE 2 Performances of machine-learning models based on individual clinical features and brain connectome (shown as
AUC ± standard deviation).

Models

Tests
Functional
connectivity

Structural
connectivity

PageRank
centrality

Clinical symptoms localization at admission
NIHSS score 0.688 ± 0.044 0.652 ± 0.049 0.592 ± 0.044
Memory 0.708 ± 0.048a 0.662 ± 0.062 0.737 ± 0.049a

Executive function/attention 0.719 ± 0.116a 0.766 ± 0.100a 0.764 ± 0.065a

Language 0.668 ± 0.064 0.688 ± 0.080 0.745 ± 0.103a

Visuospatial function 0.633 ± 0.080 0.644 ± 0.079 0.626 ± 0.110
Prediction of short-term surgical recovery
NIHSS changes 0.663 ± 0.047 0.602 ± 0.074 0.656 ± 0.039
Aphasia 0.668 ± 0.070 0.701 ± 0.066a 0.714 ± 0.058a

Motor paresis 0.659 ± 0.083 0.636 ± 0.061 0.596 ± 0.080
Prediction of long-term surgical recovery
NIHSS changes 0.817 ± 0.112b 0.733 ± 0.085a 0.620 ± 0.068
MMSE changes 0.640 ± 0.104 0.619 ± 0.208 0.686 ± 0.182
MES changes 0.794 ± 0.071a 0.633 ± 0.197 0.680 ± 0.171

aAUC over 0.7 implies a good performance model.
bAUC over 0.8 implies a very good performance model.
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TABLE 3 Brain networks with important contribution in tests with at least two acceptable models.

Brain networks
Tests Models Sensor cortex systems Task-positive systems
Admission memory FC, PR Auditory network;

Sensorimotor networka
Default mode networka

Admission executive
function/attention

FC, SC, PR Limbic/Paralimbic network;
Sensorimotor networka;
Visual network

Default mode networka;
Multiple demand network;
Salience network;
Ventral attention network

Short-term aphasia SC, PR Sensorimotor networka Default mode networka

Long-term NIHSS
changes

FC, SC Auditory network;
language network;
limbic/paralimbic network;
sensorimotor networka;
visual network

Default mode networka;
dorsal attention network;
medial temporal region;
multiple demand network;
salience network;
ventral attention network

aNetworks as an important contributor in all tests.

a functional connectivity (FC) model to predict long-
term National Institutes of Health Stroke Scale (NIHSS)
changes, while the good performance is revealed in six
models for admission status recognition, two models for
short-term outcomes prediction, and two models for long-
term outcomes prediction. Afterward, three effective tests
and one very effective test are generated, amongwhich, the
sensorimotor network (SMN) and default mode network
(DMN) are top contributors in all good models (Table 3).

2.3 Individual brain connectomic
fingerprints for symptoms before
reperfusion

Performances of ML models are acceptable in recognizing
memory with FC and PageRank centrality (PR) analyses,
executive function/attention with FC, structural connec-
tivity (SC), and PR analyses, as well as language with PR
analysis. In SHAP analysis of memory, a high FC between
the right V7 and right 5mv, and a low FC between left STV
and right STSda are the top two features, while the visual
network has the highest contribution at the network level
(Figure 1). Besides, a lowPR score of the right POS1 and left
A5 contributes most, while the auditory network is the top
feature at the network level. In addition, three networks
are noted as important contributors in both FC and PR
models (Table 3).
Referring to the executive function/attention, the FC

between the right V7 and right 5m is the top feature,
though there is significant overlap among features, and
none particularly stands out. Among the networks, the
accessory language network is the top feature (Figure 2).
Next, a low SC between the right TPOJ3 and left MI is

the top feature, while the central executive network con-
tributes most at the network level. Finally, a high PR score
of the left ventralDC is the top feature, and the salience
network ranks the top at the network level. Notably, seven
networks contribute to all three models (Table 3).
Referring to the language, a high PR of the brainstem

and a low PR of the right MT are the top features, though
there is a great degree of overlap in the SHAP values
of features. At the network level, the accessory language
network has the highest mean importance (Figure 3A).

2.4 Individual brain connectomic
fingerprints for symptoms shortly after
reperfusion

Performances of ML models is acceptable in predicting
postoperative aphasia with SC and PR analyses. In SHAP
analysis, a high SC between the brainstem and right 6mp,
and a low FC between the brainstem and left 10r are top
two features, while the SMN is the top feature at the net-
work level (Figure 4). Besides, a high PR score of left 10r
is the top feature, though the data show large variability
in individual observations. The DMN is the top feature at
the network level. In addition, two networks are found to
contribute in both SC and PR models (Table 3).

2.5 Individual brain connectomic
fingerprints for long-term symptoms after
reperfusion

Performances of ML models are excellent in predict-
ing long-term NIHSS changes with FC analysis and
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F IGURE 1 The SHAP plot of feature importance for models classifying tests of admission memory at the single-subject level. Top areal
features of brain connectome from each model are represented on a model brain. One asterisk means good performance of a model.

F IGURE 2 The SHAP plot of feature importance for models classifying tests of admission executive function/attention at the
single-subject level. Note that the brainstem, and left ventral diencephalon are also top features of the SC and PR models, respectively. Top
areal features of brain connectome from each model are represented on a model brain. One asterisk means good performance of a model.
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F IGURE 3 The SHAP plot of feature importance for models classifying tests of admission language (A) and long-term MES changes (B)
at the single-subject level. Note that the brainstem is also a top feature in the PR model in testing language. Top areal features of brain
connectome from each model are represented on a model brain. One asterisk means good performance of a model.

F IGURE 4 The SHAP plot of feature importance for models classifying tests of postoperative aphasia at the single-subject level. Note
that the brainstem is also a top feature in the SC model. Top areal features of brain connectome from each model are represented on a model
brain. One asterisk means good performance of a model.
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F IGURE 5 The SHAP plot of feature importance for models classifying tests of long-term NIHSS changes at the single-subject level.
Note that the brainstem is also a top feature in the SC model. Top areal features of brain connectome from each model are represented on a
model brain. One asterisk means good performance of a model. Two asterisks mean very good performance.

acceptable with SC analysis. Besides, the performance is
also acceptable in predicting long-termMemory and Exec-
utive Screening (MES) changes with FC analysis. In SHAP
analysis of NIHSS changes, there is significant overlap
among FC features at the regional level and none stands
out, while among the networks, the ventral attention net-
work ranks the top (Figure 5). Furthermore, the low SC
between the right IFSa and left 47s is the top feature, while
the medial temporal region and the limbic/paralimbic net-
work are the top two features at the network level. In
addition, 11 networks are shown as important contributors
in both FC and SC models (Table 3).
Referring to the MES changes, the high FC between

left IFSa and left A4 is the top feature, while the audi-
tory network is the top feature at the network level
(Figure 3B). In addition, the ML models with poor per-
formance (AUC < 0.7) are detailed in Supplementary
Materials.

3 DISCUSSION

Clinical neurological and cognitive status are both
reflected in the performance of brain networks and con-
nection of their constituent parcels. Disruptions to specific
networks or their components produce discrete clinical
symptoms. Studies based on group-average parcellation
often overlook inaccurate alignment of regions across
subjects due to anatomical distortion of diseased brain.
Moreover, the nonergodicity of group effects limits the
clinical utility of most researches. This study utilizes
connectivity-based parcellation at single-subject level
to acquire areal “fingerprint” of brain connectome and
trains ML classifiers with samples from three indepen-
dent cohorts to identify key network features that can
reflect ischemic status and possibility of benefits after
reperfusion. Our results demonstrate that impairment in
memory, executive function/attention, and language can
be recognized at admission. Additionally, postoperative
newly onset or aggravated aphasia, long-term neurological
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improvement, as well as improvement of memory and
executive function/attention, can also be predicted.
The connectomic analyses of areal FC, SC, and PR

provide network information in three aspects. The SC is
extracted in terms of fiber bundles according to the regions
they interconnect and stands for undirected anatomical
links. The FC is calculated by correlation between nodal
activities and stands for undirected statistical dependen-
cies. In addition, the PR algorithm is developed based
on link structure of websites to sort pages with impor-
tance. The distributed PR scores is commonly used
to measure network topological characteristics of nodal
prioritization.15 In this study, network models of FC, SC,
and PR all performed well in recognizing admission exec-
utive function/attention, implying that network features
of functional and structural connections, as well as key
brain regions all contribute to individual cognitive status
of executive function/attention.
Referring to tests with two satisfactory ML classifiers,

memory at admission can be recognized with FC and PR
models, while postoperative aphasia can be predicted with
SC and PR models. Notably, the PR models performed rel-
atively better than connectivity in both tests, implying that
connected regions have greater impact on the outcomes
than regional connectivity. Additionally, language perfor-
mance at admission can be recognized with the PRmodel,
and the long-term MES changes can be predicted with the
FC model, indicating the significance of related regions
and connections in each situation. Commonly, a brain
network is composed of regions and their connections.
Although clinical behaviors can be mapped within the
brain connectome, based on our results, we suggest that
each specific symptom or outcome is determined mainly
by regions, connections, or both.11
Afterward, the SHAPmethod is performed in each effec-

tive model to acquire connectomic feature importance. In
tests with at least two satisfactory models, components of
SMN and DMN are noted in all models. The SMN belongs
to the sensor cortex systems and is considered as the trans-
ducer to convert inputs into electrical signals and initiate
physical responses.16 Conversely, the DMN is active in the
resting state.17 Thus, these two networks are seemingly a
good reflection of brain healthy. Because components of
these two networks were among the top features in our
results, we speculate that these two networks are good
neuroimaging biomarkers for individual status recognition
and treatment outcomes prediction.
The current study possesses several limitations or issues

necessitating additional refinement or exploration. Pri-
marily, we note that the top feature lists are different
among models of the same test. For example, executive
function/attention at admission was predicted by both FC
and SCmodels; however, themost predictive features were

connections between the right V7 and 5m, and between
the right TPOJ3 and left MI, respectively. Such disparate
regions andnetworks being predictive of the same function
are prohibitive to intuitive interpretation. Further stud-
ies should be performed to disambiguate the functional
and structural contributions to network effectivity. Sec-
ond, while we analyze the largest sample of CSOV to date,
and rely on fivefold cross validation, the sample size is
still small from the perspective of ML models. Further-
more, the study lacks an independent test set. More data
are necessary to achieve generalizable and stable individ-
ual classifiers of complicated clinical status. In addition,
patients with larger cerebral infarctions are excluded as it
becomes challenging to predict the outcomes of patients
with only cerebral hypoperfusion. This exclusion criterion
makes the study more beneficial for clinical decision-
making. Besides, large infarct lesions hamper the study
of the internal neurons and their external FCs. Neverthe-
less, this study provides new insights into exploring clinical
outcomes of CSOV from perspectives of individual brain
connectome.

4 CONCLUSIONS

Our findings suggest that individual connectomic data
derived from multimodal MRI is valuable for researches
of brain ischemia with distortion. This study provides
informative insights for how brain functions before and
after reperfusion. Even in the context of experimental
limitations, we are optimistic that the results will be
integrated into public software in subsequent research
and, by connecting to scanning devices, will offer clini-
cal decision-making recommendations for patients with
cerebral ischemia.

5 MATERIALS ANDMETHODS

5.1 Participants

The study, which is observational in nature, received
authorization from the ethics committee at Huashan
Hospital (NO. 2014−278) and adhered to the principles
outlined in the Declaration of Helsinki. Written informed
consent was obtained from all participants. Inclusion
criteria for patients included (1) right-handed individu-
als of Chinese descent, aged from 18 to 70 years; (2)
diagnosis of moyamoya disease, moyamoya syndrome, or
cerebral occlusive disease determined by digital subtrac-
tion angiography18; (3) received extracranial–intracranial
bypass surgery; (4) assessed by cognitive testing and mul-
timodal MR scan at admission. Exclusion criteria for
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patients encompassed the presence of cortical or subcor-
tical lesions exceeding 8 mm in their largest dimension
on structural imaging,19 the existence of substantial neu-
rological or psychiatric conditions, the presence of severe
systemic illnesses or additional cerebrovascular disorders,
or the use of specific medications like the benzodiazepine
clonazepam.
We recruited patients from the general, north, and

west campuses of our hospital, where they received
care under consistent protocols and were operated on
by skilled neurosurgeons at each respective campus.
The surgical procedure was a combination of superfi-
cial temporal artery-middle cerebral artery bypass and
encephaloduromyosynangiosis.20 Bypass patencywas con-
firmed through indocyanine green fluorescence imaging.
Besides, the control group was selected from urban com-
munities within Shanghai and underwent through MR
angiography. Patients and controls were paired based on
age, gender, level of education, and handedness.

5.2 Clinical assessment

A team of neurologists and neuropsychologists who were
unaware of the patient diagnoses administered the assess-
ment. Neurological status was evaluated using the NIHSS,
an increase of which indicates unfavorable outcomes.
Aphasia and motor paresis were common newly onset or
aggravated symptoms after revascularizations due to either
ischemic stroke or HPS.5,6
Cognitive function was assessed through an extensive

array of neuropsychological examinations, encompassing
overall cognitive performance and four specific cognitive
domains:memory, executive function/attention, language,
and visuospatial function.21 For a general evaluation, the
MES and Mini-Mental State Examination (MMSE) were
utilized, with higher scores signifying enhancement in
condition. The diagnosis of domain impairment was made
based on the criteria set forth by the AHA/ASA.22 For this
research, impairment was defined as scoring 1.5 SDs away
from the normative means of healthy controls on two tests
within the same domain.

5.3 Multimodal MR image acquisition

Data were scanned on 3.0 Tesla MR systems. Referring
to the general campus (Siemens Medical Solutions), the
fMRI parameters encompassed gradient echo-planar imag-
ing, TR/TE of 2000/35 ms, FOV of 240 × 240 mm, and
slice thickness of 4 mm. The structural images param-
eters encompassed a fast spoiled gradient recalled echo
inversion recovery sequence, thick axial section of 1 mm,

TR/TE of 1000/5 ms, FA of 20◦, and FOV of 240 × 240mm.
The diffusion-weighted images (DWI) parameters encom-
passed a slice thickness of 3 mm, FOV of 230 × 230 mm,
diffusion-weighted volumes of 20 with noncollinear direc-
tions (b = 1000 s/mm2) and nondiffusion-weighted vol-
umes of one (b= 0 s/mm2). Referring to the north campus
(GE Healthcare), the fMRI parameters encompassed a
TR/TE of 2000/30 ms, FOV of 220 × 220 mm, and slice
thickness of 3.2 mm. The structural images parameters
encompassed a thick axial section of 1 mm, TR/TE of
8100/3.2 ms, FA of 12◦, and FOV of 256 × 256 mm. The
DWI parameters encompassed a slice thickness of 1.5 mm,
FOV of 270 × 270 mm, diffusion-weighted volumes of
30 with noncollinear directions (b = 1000 s/mm2) and
nondiffusion-weighted volumes of five (b = 0 s/mm2).
Referring to the west campus (Philip Medical Systems),
the fMRI parameters encompassed a TR/TE of 2000/35ms,
FOV of 210 × 210 mm, and slice thickness of 4 mm. The
structural images parameters encompassed a thick axial
section of 1 mm, shortest TR/TE, FA of 8◦, and FOV of
240 × 240 mm. The DWI parameters encompassed a slice
thickness of 5 mm, FOV of 224 × 224 mm, diffusion-
weighted volumes of 15 with noncollinear directions
(b = 1000 s/mm2) and nondiffusion-weighted volumes of
one (b = 0 s/mm2).

5.4 Data preprocessing

5.4.1 Diffusion tractography preprocessing

The DWI underwent processing through the Infinitome
software from Omniscient Neurotechnology (https://o8t.
com), which used standard procedures written with the
Python language.23 The specific procedures have been out-
lined in another published articles of our collaborative
team.14

5.4.2 Developing an individualized brain
atlas through ML-driven parcellation

To reduce the impact of individual gyrus differences, a
ML-driven, personalized adaptation of the Human Con-
nectomeProjectMultimodal Parcellation 1.0 (HCP-MMP1)
atlas was employed.13 Briefly, the process involved train-
ing a ML algorithm on a distinct group of 200 healthy
controls, initially by processing their DWI and T1 scans
as previously described. Subsequently, a NIFTI MNI space
version of the HCP-MMP1 atlas was morphed to fit each
individual brain, and SC metrics were computed for every
atlas pair and a predefined set of regions of interest (ROIs).
These ROIs encompassed eight subcortical structures in

https://o8t.com
https://o8t.com
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each hemisphere, alongside the brainstem, identified by
the streamlines that concluded within an ROI. This phase
facilitates the creation of feature vectors and the gen-
eration of a parcellation centroid. This centroid is then
used to limit the voxels examined, with the aim to assign
them to a specific parcellation that is within a reasonable
proximity of its standard location. The feature vectors cor-
responding to each region were subsequently utilized as a
training dataset, and the data weremodeled employing the
XGBoost technique.24
This developed model was then deployed on a new sub-

ject by initially morphing the HCP-MMP1 atlas to fit the
new brain, followed by the extraction of a set of feature
vectors for the connectivity of each voxel. Subsequently,
these feature vectors were employed to ascertain whether
each voxel was part of a specific parcellation region, and
if it was determined to be so, the voxel was allocated to
that particular parcellation. In this way, a version of the
HCP-MMP1 atlas was constructed, comprising 180 cortical
regions and nine subcortical structures per hemisphere, as
well as a single brainstem region. This version was tailored
to each subject and remained unaffected by variations in
brain shape or pathological distortions. Furthermore, the
parcels that were detected were automatically categorized
by the Infinitome software according to their recognized
associations with large-scale brain networks (Figure S1).

5.4.3 Resting-state FMRI preprocessing

The processing of the data entailed a series of essential
steps, which included: (1) stabilizing the T1 and BOLD
images by performing motion correction through rigid
body transformations; (2) removing any image slices that
showed significant movement artifacts; (3) utilizing a
CNN for skull stripping on T1 images, which were then
inverted, rigidly matched to the BOLD data, and subse-
quently utilized to facilitate skull removal from the fMRI
images; (4) rectifying timing discrepancies between slices
with slice timing correction and equalizing the signal
levels across all images using global intensity normaliza-
tion; (5) applying a diffeomorphic mapping approach to
correct for gradient field distortions, thereby enhancing
the local alignment between the fMRI and T1 images;
(6) high-variance nuisance variables were calculated using
the CompCor technique.25 These variables, together with
motion-related confounds, were subsequently removed
from the fMRI dataset. The procedure also entailed the
detrending of the fMRI time series by eliminating linear
and quadratic components, and it is important to highlight
that this method abstained from conducting global signal
regression; (7) applying a smoothing filter with a FWHM
of 4 mm. The tailored atlas developed in earlier stages was

mapped onto the T1 image and targeted to the regions of
grey matter. This positioning was ideal for the retrieval
of an average BOLD signal time series across all 379 des-
ignated areas (180 parcellations × 2 hemispheres, plus 19
subcortical structures), and resulted in a total of 143,641
correlational values.
Several techniques were used to minimize the impact of

vendor specific variabilities. These include: (1) resampling
fMRI and DWI voxel grids to a standard 2 mm voxel size
across all scans. (2) The fMRI preprocessing (slice time cor-
rection, motion correction) to reduce site specific impacts.
(3) Registration based distortion correction of both fMRI
and DWI to reduce site specific gradient distortions. (4)
High variance nuisance regression via the CompCor algo-
rithm also helps standardize the signal for comparison
across subjects.

5.4.4 ML classification and feature
extraction

The ML techniques were employed to predict the per-
formance on tests for everyone, drawing on the pairwise
FC, the SC among the 379 areas of the personalized brain
atlas, or the PR metrics for each region, thereby creat-
ing a trio of predictive models for every test administered.
For every model constructed, variables including age, gen-
der, and surgical side were factored in as predictors, and
the analysis was conducted using the XGBoost Classifica-
tion algorithm. A fivefold cross-validation approach was
employed to assess eachmodel, and performancewasmea-
sured using the average area under the receiver operating
characteristic curve (AUC–ROC)± standard deviation. An
AUC score exceeding 0.7 indicated that the model could
yield reliable classification results. A total of 11 tests were
trained, including (1) the neurological (NIHSSpre scores)
and cognitive status (four cognitive domains) at admission;
(2) perioperative outcomes of general status (NIHSSperi–
NIHSSpre scores) and specific newly onset or aggravated
complications (aphasia and motor paresis); (3) long-
term outcomes of the neurological (NIHSSLTFU–NIHSSpre
scores) and cognitive status (MMSELTFU–MMSEpre scores
andMESLTFU–MESpre scores) (Table S1). Tests with at least
two good models are deemed effective.
Extracting features from ML models utilizing large

datasets is difficult, especially when investigating themag-
nitude and directionality of the features. This is however
necessary given the need-to-knowwhich parts of the brain
are associated with pathology in clinical practice. For each
model, we produced a representation of the importance of
each large-scale brain network in the output of the model,
and a SHAP plot of the top 20 features contributing to the
model. The SHAP method calculates feature importance
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by deriving Shapley values for each feature.26 Each SHAP
plot provides a list of features in descending order of impor-
tance, along with their impact on the model on the x-axis,
with the color of each point, representing a single observa-
tion, indicating whether a high (red) or low (blue) value
of that feature is associated with the classification. The
schematic description of the conceptual basis behind the
data processing is shown in Figure S2.

AUTH OR CONTRIBUT IONS
Yu Lei and Xin Zhang wrote the original draft; Ying Mao
and Michael E. Sughrue served as scientific advisors. Yux-
iang Gu critically reviewed the study proposal. Wei Ni and
ChaoGao participated in the surgery. Heng Yang, Yanjiang
Li, and Xinjie Gao cared for study patients and arranged
the follow-ups. Ding Xia and Xia Zhang collected data.
Karol Osipowicz and Stephane Doyen performed the data
processing. All authors have read and approved the final
manuscript.

ACKNOWLEDGMENTS
We are grateful for the technical assistance of Peter Rud-
der, Peter J. Nicholas, Angus Joyce, Onur Tanglay, and
Xiaorong Hu from the Omniscient Neurotechnology. This
studywas supported by theNationalNatural ScienceFoun-
dation of China (No. 82271338); the Three-Year Action
Plan of Research Physician Innovation and Transforma-
tion Ability Training Project (No. SHDC2022CRD032), and
Shanghai Zhou Liangfu Medical Development Founda-
tion “Brain Science and Brain Diseases Youth Innovation
Program (No. XM00037-2022-2).”

CONFL ICT OF INTEREST STATEMENT
Karol Osipowicz, Stephane Doyen, and Michael E.
Sughrue are employees in Omniscient Neurotechnology,
but have no potential relevant financial or nonfinancial
interests to disclose. The other authors declare that they
have no conflict of interests.

DATA AVAILAB IL ITY STATEMENT
The data supporting the findings of this study are available
upon reasonable request from the corresponding author
following publication.

ETH ICS STATEMENT
The study protocol was approved by the Ethics Commit-
tee ofHuashanHospital (NO. 2014−278).Written informed
consent was obtained from all participants.

REFERENCES
1. Fujimura M, Tominaga T, Kuroda S, et al. 2021 Japanese guide-

lines for the management of moyamoya disease: guidelines

from the Research Committee onMoyamoya Disease and Japan
Stroke Society. Neurol Med Chir (Tokyo). 2022;62(4):165-170.

2. Grüter BE, Tosic L, Voglis S, et al. Trends in literature on
cerebral bypass surgery: a systematic review. Cerebrovasc Dis.
2022;51(1):102-113.

3. Khan NR, Elarjani T, Jamshidi AM, et al. Direct bypass surgery
for moyamoya and steno-occlusive vasculopathy: clinical out-
comes, intraoperative blood flow analysis, long-term follow-up,
and long-term bypass patency in a single surgeon case series of
162 procedures.World Neurosurg. 2022;168:e500-e517.

4. Ihara M, Yamamoto Y, Hattori Y, et al. Moyamoya disease:
diagnosis and interventions. Lancet Neurol. 2022;21(8):747-758.

5. Rice CJ, Cho SM, Taqui A, et al. Early versus delayed
extracranial-intracranial bypass surgery in symptomatic
atherosclerotic occlusion. Neurosurgery. 2019;85(5):656-663.

6. van Mook WN, Rennenberg RJ, Schurink GW, et al. Cere-
bral hyperperfusion syndrome. Lancet Neurol. 2005;4(12):
877-888.

7. Nguyen VN, Motiwala M, Elarjani T, et al. Direct, indirect,
and combined extracranial-to-intracranial bypass for adult moy-
amoya disease: an updated systematic review andmeta-analysis.
Stroke. 2022;53(12):3572-3582.

8. Pang CH, Lee SU, Lee Y, et al. Prediction of hemorrhagic cere-
bral hyperperfusion syndrome after direct bypass surgery in
adult nonhemorrhagic moyamoya disease: combining quantita-
tive parameters on RAPID perfusion CT with clinically related
factors. J Neurosurg. 2023;138(3):683-692.

9. Lu J, Zhao Y, Ma L, et al. Predictors and clinical features
of transient neurological events after combined bypass revas-
cularization for moyamoya disease. Clin Neurol Neurosurg.
2019;186:105505.

10. Teo M, Furtado S, Kaneko OF, et al. Validation and applica-
tion for the berlin grading system of moyamoya disease in adult
patients. Neurosurgery. 2020;86(2):203-212.

11. FoxMD.Mapping symptoms to brain networks with the human
connectome. N Engl J Med. 2018;379(23):2237-2245.

12. Li W, Tang Y, Peng L, Wang Z, Hu S, Gao X. The reconfig-
uration pattern of individual brain metabolic connectome for
Parkinson’s disease identification.MedComm. 2023;4(4):e305.

13. Glasser MF, Coalson TS, Robinson EC, et al. Amulti-modal par-
cellation of human cerebral cortex. Nature. 2016;536(7615):171-
178.

14. Doyen S, Nicholas P, Poologaindran A, et al. Connectivity-
based parcellation of normal and anatomically distorted human
cerebral cortex. Hum Brain Mapp. 2022;43(4):1358-1369.

15. Tanglay O, Young IM, Dadario NB, et al. Eigenvector PageR-
ank difference as a measure to reveal topological characteris-
tics of the brain connectome for neurosurgery. J Neurooncol.
2022;157(1):49-61.

16. Comstock DC, Hove MJ, Balasubramaniam R. Sensorimotor
synchronizationwith auditory and visual modalities: behavioral
and neural differences. Front Comput Neurosci. 2018;12:53.

17. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional con-
nectivity in the resting brain: a network analysis of the default
mode hypothesis. Proc Nat Acad Sci USA. 2003;100(1):253-258.

18. Velo M, Grasso G, Fujimura M, et al. Moyamoya vasculopa-
thy: cause, clinicalmanifestations, neuroradiologic features, and
surgical management.World Neurosurg. 2022;159:409-425.



12 of 12 LEI et al.

19. Karzmark P, Zeifert PD, Bell-Stephens TE, Steinberg GK,
Dorfman LJ. Neurocognitive impairment in adults with moy-
amoya disease without stroke.Neurosurgery. 2012;70(3):634-638.

20. Jiang H, Ni W, Xu B, et al. Outcome in adult patients
with hemorrhagic moyamoya disease after combined
extracranial-intracranial bypass. J Neurosurg. 2014;121(5):1048-
1055.

21. Lei Y, Li YJ, Guo QH, et al. Postoperative executive function in
adult moyamoya disease: a preliminary study of its functional
anatomy and behavioral correlates. J Neurosurg. 2017;126(2):527-
536.

22. Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to
cognitive impairment and dementia: a statement for healthcare
professionals from the american heart association/american
stroke association. Stroke. 2011;42(9):2672-2713.

23. Garyfallidis E, Brett M, Amirbekian B, et al. Dipy, a library for
the analysis of diffusion MRI data. Front Neuroinform. 2014;
8:8.

24. Chen T, Guestrin C, XGBoost: a Scalable Tree Boosting System.
presented at: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining;
2016; San Francisco, California, USA.

25. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise
correction method (CompCor) for BOLD and perfusion based
fMRI. Neuroimage. 2007;37(1):90-101.

26. Lundberg SM, Lee S-I, A unified approach to interpretingmodel
predictions. presented at: Proceedings of the 31st International
Conference on Neural Information Processing Systems; 2017;
Long Beach, California, USA.

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Lei Y, Zhang X, Ni W,
et al. Application of individual brain connectome in
chronic ischemia: mapping symptoms before and
after reperfusion.MedComm. 2024;5:e585.
https://doi.org/10.1002/mco2.585

https://doi.org/10.1002/mco2.585

	Application of individual brain connectome in chronic ischemia: mapping symptoms before and after reperfusion
	Abstract
	1 | INTRODUCTION
	2 | RESULTS
	2.1 | Clinical features
	2.2 | Eleven acceptable ML models and four effective tests are generated
	2.3 | Individual brain connectomic fingerprints for symptoms before reperfusion
	2.4 | Individual brain connectomic fingerprints for symptoms shortly after reperfusion
	2.5 | Individual brain connectomic fingerprints for long-term symptoms after reperfusion

	3 | DISCUSSION
	4 | CONCLUSIONS
	5 | MATERIALS AND METHODS
	5.1 | Participants
	5.2 | Clinical assessment
	5.3 | Multimodal MR image acquisition
	5.4 | Data preprocessing
	5.4.1 | Diffusion tractography preprocessing
	5.4.2 | Developing an individualized brain atlas through ML-driven parcellation
	5.4.3 | Resting-state FMRI preprocessing
	5.4.4 | ML classification and feature extraction


	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ETHICS STATEMENT
	REFERENCES
	SUPPORTING INFORMATION


