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Abstract: BackgroundBackground: Genetic syndromes of hyperkinetic movement disorders associated with
epileptic encephalopathy and intellectual disability are becoming increasingly recognized. Recently, a de
novo heterozygous NACC1 (nucleus accumbens-associated 1) missense variant was described in a patient
cohort including one patient with a combined mitochondrial oxidative phosphorylation (OXPHOS)
deficiency.
ObjectivesObjectives: The objective is to characterize the movement disorder in affected patients with the
recurrent c.892C>T NACC1 variant and study the NACC1 protein and mitochondrial function at the
cellular level.
MethodsMethods: The movement disorder was analyzed on four patients with the NACC1 c.892C>T (p.Arg298Trp) variant.
Studies on NACC1 protein and mitochondrial function were performed on patient-derived fibroblasts.
ResultsResults: All patients had a generalized hyperkinetic movement disorder with chorea and dystonia, which
occurred cyclically and during sleep. Complex I was found altered, whereas the other OXPHOS enzymes and
the mitochondria network seemed intact in one patient.
ConclusionsConclusions: The movement disorder is a prominent feature of NACC1-related disease.

Childhood movement disorders comprise a heterogeneous group
of disorders that lead to the impairment of voluntary move-
ments, abnormal postures, or inserted involuntary move-
ments.1 Movement disorders in children are often classified
into two main categories: hyperkinetic/dyskinetic (including
stereotypies, tics, tremor, dystonia, chorea, athetosis, and
myoclonus) and hypokinetic (encompassing parkinsonian phe-
notypes).1,2 Hyperkinetic movement disorders are commonly
attributed to dysfunction of the basal ganglia, cerebral cortex,
cerebellum, and other motor pathways because of static or
progressive injury.1

Underlying etiologies are diverse, including both acquired and
genetic conditions.2 The symptoms commonly overlap with the
clinical features observed in mitochondrial disorders and other
neurogenetic diseases—for example, glucose transporter type
1 deficiency syndrome (GLUT1DS).3,4

Advances in molecular genetics have discovered various novel
genes responsible for pediatric movement disorders as part of
neurodevelopmental diseases. There are several genetically
and clinically heterogeneous disorders that involve both hyperki-
netic movement disorder and epileptic encephalopathy and
usually present in combination with developmental disability.
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TABLE 1 Movement disorder characteristics and main clinical features associated with pathogenic heterozygous NACC1 c.892C>T (p.Arg298Trp)

Patient 1 Patient 2 Patient 39 Patient 4

Age, y 6 9 15 16

Gender Male Male Female Male

NACC1 c.892C>T (p.Arg298Trp)
de novo variant

Yes Yes Yes Yes

Age of onset (movement disorder) 6 months 9 months 1 y 2 months

Myoclonus + + + +

Dystonia + + + +

Dystonic crisesa � + � �
Chorea + + + +

Orolingual dyskinesia + + + +

Stereotypic behavior + + + +

Sleep related dyskinesias + + + +

Spasticity � + + +

Evolution of movement disorder +b � +c +d

Drugs trialed for movement
disorder and effect

CLO+e

CLZ++f

GBP�
NTZ�
DZP�
LZP�
OZP�
BLF+g

CLO ++h

DZP�
LZP�
DZP�

CLO+i

TCH++j

BTX++j

GBP�
CPH�
CH�
BLF�
CLZ�
DZP�
GFC�

Cyclic dysautonomia, irritability,
and insomnia

+ + + +

Epilepsy + + IS + IS + IS

Profound intellectual disability + + + +

Bilateral cataracts + + + +

GI problems/feeding difficulties + + + +

Iron-deficiency anemia + + + +

Microcephaly + + + +

Mitochondrial dysfunction (+)k NA +l +m

Brain MRI Delayed myelination, thin
corpus callosum, mild
decrease in brain volume

Normal Delayed myelination,
minimal volume
loss

Delayed myelination,
diffuse atrophy

Abbreviations: NACC1, nucleus accumbens-associated 1; +, mild effect, �, no effect; CLO, clonidine; LZP, lorazepam; CLZ, clonazepam; ++, moderate effect; DZP,
diazepam; TCH, tetrahydrocannabinol; GBP, gabapentine; BTX, onabotulinum toxinA; NTZ, nitrazepam; CPH, cyproheptadine; CH, chloral hydrate; OZP, oxazepam;
BLF, baclofen; GFC, guanfacine; IS, infantile spasms; GI, gastrointestinal; NA, not assessed; MRI, magnetic resonance imaging.
aOccasionally requiring hospitalization.
bStereotypic hand mouthing and biting during hyperactive stage increased at the age of 5 y.
cStereotypical hand clasping in midline, hand mouthing, and biting was present by 3 y of age. Intensity of the hyperkinetic movements during irritability and insomnia
periods have reduced with age.
dStereotypical hand clasping and hand mouthing were observed by 3 y of age. Spasticity has increased with age.
eHas been partially helpful for insomnia, vomiting, and tachycardia.
fHas usually helped with the hyperkinetic movement disorder and partially with muscle hypertonia.
gPartially helpful for muscle hypertonia.
hHas been effective for dystonic crises and spasticity but has not had an effect on choreic tremulous jerks during sleep.
iHas been helpful in promoting rest.
jHas been helpful for spasticity and involuntary movements.
kComplex I activity, when normalized to the level of the fully assembled enzyme complex, was detected as being decreased in patient-derived fibroblasts.
lMuscle biopsy showed a reduction in several respiratory chain complexes, including complexes I and IV6.
mCitrate synthase activity was increased, thereby suggesting mitochondrial proliferation, and the activities of several respiratory chain complexes were reduced fulfilling
minor modified Walker criteria, with a more severe deficiency of complex I activity.
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Several genes associated with rare disorders can be responsible for
these phenotypes. In addition, variants in a given gene can be
associated with several phenotypes, which are often part of a
spectrum and not discrete entities.5 In combined pediatric and
adult patient populations, the diagnostic yield of next-generation
sequencing (NGS) panels and whole exome sequencing (WES)
is estimated at between 14.8% and 20%;6,7 however, in pediatric
cohorts, the yield is usually higher—32% to 51%.4,8

Recently, a de novo heterozygous NACC1 (nucleus
accumbens-associated 1), HUGO Gene Nomenclature Com-
mittee (HGNC) Identifier HGNC:20967, c.892C>T
(NM_052876.4; NP_443108.1: p.Arg298Trp) variant has
been described in nine patients with infantile onset epilepsy,
postnatal microcephaly, severe to profound intellectual disabil-
ity, bilateral cataracts, and hyperkinetic movements including
hand stereotypies, chorea, and dystonia.9–11 Furthermore, one
of these patients also exhibited combined oxidative phosphor-
ylation (OXPHOS) deficiency.9 NACC1 encodes nucleus
accumbens-associated protein 1 (NACC1), which is also
known as BTB/POZ domain-containing protein 14B (BTBD14B),
and it is a multifunctional protein that has been shown to act as
a versatile transcription factor, but it also plays a role in protein
turnover.12,13

In this study, we describe a patient cohort of four patients to
illustrate the hyperkinetic movement disorder associated with the
recurrent missense NACC1 variant. We also report treatment
responses for the currently available drugs. Patient-derived fibro-
blasts were used to study the effects of this variant on NACC1
expression, localization, and mitochondrial function.

Materials and Methods
Clinical Features and Genetic
Testing
Clinical information was collected from the medical reports and
the parents of four patients harboring the recurrent de novo het-
erozygous NACC1 missense c.892C>T (p.Arg298Trp)
(NM_052876.4) variant found by WES. Patient 3 in this study
was previously described as participant 5 by Schoch et al.9 Analy-
sis of movement semiology was undertaken by M.A.K. and
L.C. (Great Ormond Street Hospital) using the videos of the
patients, recorded at different ages (patient 1 from 1 year to
3 years of age, patient 2 from 1 year to 6 years of age, patient
3 from 1 year to 12 years of age, and patient 4 at 14 years of
age). The videos were reviewed independently, with consensus
agreement for any noted differences.

Functional Studies on Patient-
Derived Fibroblasts
To study the effect of the NACC1 p.Arg298Trp variant on cel-
lular and mitochondrial function in vitro, cultured fibroblasts
were obtained from one patient (patient 1). Commercially

available fibroblast cell lines derived from healthy adults were
used as controls. Methods for cell culture, reverse transcription
polymerase chain reaction (RT-PCR), quantitative RT-PCR,
immunocytochemistry, western blotting, Blue Native (BN)
polyacrylamide gel electrophoresis (PAGE) and in-gel activity
assay are described in detail in Data S1.

Results
Clinical Features of the
Movement Disorder
All four patients presented with a complex neurological phe-
notype, including cyclic dysautonomia, extreme irritability,
and insomnia; profound intellectual disability; postnatal micro-
cephaly; epilepsy; bilateral cataracts; iron deficiency anemia;
and feeding difficulties leading to the requirement of tube
feedings. Clinical features, detailed descriptions of each

Video 1. Patient 1 with cyclic hyperkinetic movement disorder
and sleep-related paroxysmal dyskinesia. Segment 1: Age,
2 years and 4 months. He is lying supine on the mat. There is
limited social engagement with the adults around him or with
the toy he is given. Hyperkinetic movement disorder with jerky,
dyskinetic, and occasionally athetoid movements of the upper
limbs and repeated episodes of tongue protrusion and
mouthing, facial grimacing, and limb posturing suggestive of
dystonia (fisted hands striatal toe, toe clawing). Marked axial
hypotonia and head lag when pulling to sit and when sitting.
Segment 2: Age, 3 years and 6 months. More prominent
generalized hyperkinetic jerky movement disorder with
orolingual dyskinesia, upper and lower limb posturing (fisted
hands), and striatal toe/foot clawing from time to time.
Segment 3: Age, 3 years. During sleep, there is episodic
generalized jerky and low to moderate amplitude choreiform
movements with a few possibly tremulous and jerky
movements (possible myoclonus) predominantly of the upper
limbs, but also affecting the lower limbs. The episodes are
short and appear to last for <30 seconds. At times, there is
either fisting or dystonic posturing of the right hand. Perioral
dyskinesia is also present.
Video content can be viewed at https://onlinelibrary.wiley.com/
doi/10.1002/mdc3.14051
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patient’s movement disorder, and movement analyses are pres-
ented in detail in Data S2.

The movement disorder was recognized between 2 months
and 1 year of age. Generalized hyperkinetic movement disorder
included myoclonus, dystonia, chorea, orolingual dyskinesia, and
sleep-related paroxysmal dyskinesias in all four patients. Spasticity
was present in three patients and increased with age in two
patients. The fourth patient also experienced muscle hypertonia
during insomnia periods. All four patients experienced sleep-
related paroxysmal dyskinesias. The hyperkinetic movements and
spasticity or muscle hypertonia were more prominent during irri-
tability and insomnia periods in all the patients. Stereotypic hand
clasping in midline, hand mouthing, and biting began by the
time the children were 3 to 5 years old. Several drugs were
trialed, and mild to moderate effects was seen with clonidine in
three patients, moderate effect with onabotulinum toxinA and
tetrahydrocannabinol in one patient, and moderate effect with
clonazepam in one patient. Baclofen had a mild effect on muscle
hypertonia in one patient.

The characteristics of the patients’ movement disorder and
clinical features are summarized in Table 1. The videos reveal

the features of the movement disorder for patient 1 (Video 1),
patient 2 (Video 2), and patient 4 (Video 3).

NACC1 Expression and
Mitochondrial OXPHOS Assembly
Studies in Patient-Derived
Fibroblasts
The de novo NACC1 c.892C>T variant of the primary
patient-derived fibroblasts was confirmed using Sanger
sequencing, and Sanger sequencing of the complementary
DNA was used to show that the NACC1 c.892C>T variant is
expressed at the mRNA level (Fig. 1B). Further, to study the
effect of the p.Arg298Trp variant on NACC1 gene and pro-
tein expression levels, the patient-derived fibroblasts were
analyzed using immunoblotting and quantitative RT-PCR
(Fig. 1C–E). The NACC1 transcript or protein levels showed
no statistically significant change in its intensity in patient-
derived cells compared to the control. Next, the subcellular
localization of NACC1 was studied using immunocytochemis-
try. The majority of the NACC1 signal was found to be nor-
mally localized into the nucleus, and the mitochondrial
network was intact (Fig. 1A).

Before the genetic diagnosis of NACC1 c.892C>T
(p.Arg298Trp), two patients (patients 3 and 4) were suspected

Video 2. Patient 2 with hyperkinetic movement order and
sleep-related paroxysmal dyskinesia. Segment 1: Age, 4 years
and 6 months. An opisthotonic posture, with retrocollic neck
posture, truncal arching, and extension of the legs and bilateral
equinus posturing of the feet. The right arm is repeatedly lifted
and held in dystonic posture, arm extended, wrist flexion, and
in pronation on one occasion. His legs are intermittently flexed.
Segment 2: Age, 6 years and 6 months. There is tongue
protrusion and a tendency to bring his hands to his mouth.
There are some low amplitude stereotyped movements of the
hands in the midline, with a degree of hand fisting. From time
to time, there is elevation of both legs and possibly similar,
rather subtle choreiform movements distally in the lower limbs.
Some paroxysmal eye blinking and oromotor movements are
also noted. Segment 3: Age, 6 years and 6 months. The child is
lying on the bed. On turning, a few choreiform movements are
evident, mostly in the hands and feet. Toe clawing is seen.
Paroxysmal opening and closing of the mouth is also evident.
Segment 4: Age, 6 years and 6 months. From sleep, there are
episodic generalized jerky movements that are either
choreiform or possibly myoclonic; these are evident on turning.
Video content can be viewed at https://onlinelibrary.wiley.com/
doi/10.1002/mdc3.14051

Video 3. Patient 4 with hyperkinetic movement order. Segment
1: Age, 14 years. Posture is flexed, except on one occasion
when he throws his head back into an extensor posture. Upper
limb voluntary movements appear jerky, dyskinetic, and
occasionally athetoid. Some subtle hand and finger posturing
is also noted. Elbows and knees are flexed at all times. Both
feet show clawing postures. There is also intermittent jaw
opening, tongue protrusion, and orolingual dyskinesia. He does
not appear to be able to visually track an object. Segment 2:
Age, 14 years. Upper limb dyskinesia while rolling from back to
front. He is able to raise his head and trunk onto flexed arms.
Elbows and knees are flexed. There is orolingual dyskinesia
and repeated jaw opening with intermittent tongue protrusion.
Foot clawing is also evident.
Video content can be viewed at https://onlinelibrary.wiley.com/
doi/10.1002/mdc3.14051
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(Figure legend continues on next page.)
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of having primary mitochondrial disease and underwent a mus-
cle biopsy. Mitochondrial respiratory chain enzymatic activities
in skeletal muscle of patient 3 showed a reduction in several
respiratory chain complexes, including complexes I and IV.9

Citrate synthase activity was increased in patient 4, thereby
suggesting mitochondrial proliferation, and the activities of sev-
eral respiratory chain complexes were reduced fulfilling minor
modified Walker criteria, with a more severe deficiency of
complex I activity.

We conducted a detailed study of the levels of mitochondrial
OXPHOS complexes in cultured fibroblasts from patient 1 using
BN PAGE (Fig. 1F,G). Fully assembled complex I level was
increased 1.5-fold (P < 0.05) in the patient-derived cells when
compared to the control cell line. Interestingly, the in-gel activ-
ity was similar to the control, thereby suggesting that complex I
activity—when normalized to the level of fully assembled com-
plex I—is decreased in the patient-derived fibroblasts (Fig. 1H,I).
The expression of other OXPHOS complexes was found to be
normal in patient-derived fibroblasts.

Discussion
Affected patients had a generalized hyperkinetic movement dis-
order with chorea and dystonia, which was more prominent dur-
ing periods of insomnia. Hyperkinetic paroxysmal dyskinesias
also occurred during sleep, reminiscent of ADCY5-related disor-
ders.14 Hand stereotypies seemed to appear by the age of 3 years
in certain patients. A similar evolution from early onset hyperki-
netic movement disorder to hand stereotypy has been described
in patients with FOXG1-related disease.15

There is a selective constraint against missense variants in
NACC1, making the excess of an identical missense in this gene
an extraordinary event. The c.892C>T variant occurs in a CpG
dinucleotide within an arginine codon. This CpG pattern is asso-
ciated with de novo events at numerous loci when advanced
paternal age is present.16 However, advanced paternal age has
not been reported earlier or found in our cohort. These findings
are still evocative of a germline recurrent mutational hotspot

associated with this neurodevelopmental disorder. To our
knowledge, all the cases of NACC1-related disease have been
associated with de novo mutations.

Mitochondrial dysfunction can cause a wide spectrum of neu-
rological symptoms, including movement disorders (often dysto-
nia in pediatric patients) and epilepsy.17,18 The phenotype of the
patients with the recurrent NACC1 missense variant has neuro-
logical features, such as dystonia, that may overlap with those
observed in primary mitochondrial disorders. In this study, the
biochemical results pointing to mitochondrial dysfunction were
scarce, showing normal results in blood or plasma lactate and
cerebrospinal fluid lactate in all the patients (Data S2). Urine
organic acid analyses were normal in other patients except for a
slight elevation of lactic acid and citric acid cycle intermediates in
patient 3. Mitochondrial function was studied in participant 5 by
Schoch et al9 (patient 3 in the current study) and analysis of mus-
cle biopsy revealed reduction in several OXPHOS complexes,
including complexes I and IV, whereas the evaluation of mito-
chondrial copy number was normal and mitochondrial DNA
genome sequencing did not show any pathogenic variants.9

Therefore, we sought to evaluate whether secondary mitochon-
drial dysfunction is associated with the symptoms observed in
our patients. Moreover, the expression of mitochondrial
OXPHOS complexes was studied in detail in patient-derived
fibroblasts from patient 1. Our results indicate that in fibroblasts,
the NACC1 p.Arg298Trp variant cell line exhibits over-
expression of complex I in BN gel, but it does not have an
immediate effect at the cellular level on the expression of mito-
chondrial OXPHOS complexes. However, complex I activity
was impaired in patient-derived fibroblasts compared to controls
because in-gel complex I activity when normalized to the level
of fully assembled complex I, is decreased in the patient-derived
fibroblasts compared to control activity. Importantly, this finding
does not eliminate other possible effects on mitochondrial func-
tion and metabolism in different cell types, such as skeletal mus-
cle and neurons. More investigations—for example, by using
human induced pluripotent stem cell (iPSC) -derived neuronal
model systems—are required to better understand the role of
NACC1 in mitochondrial dysfunction and in general in this
condition.

(Figure legend continued from previous page.)

FIG. 1. Cellular phenotype, nucleus accumbens-associated protein 1 (NACC1) expression and expression, function, and assembly of
mitochondrial complexes were studied in patient-derived fibroblasts. (A) Patient-derived fibroblasts from patient 1 have normal cell
morphology and NACC1 is localized in the nucleus; a faint signal is observed in the cytoplasm both in patient-derived cells and controls.
Tom20 antibody was used to visualize the mitochondrial network, which appears normal in patient-derived cells. Phalloidin:FITC was used
to visualize actin cytoskeleton. Images were taken using 63� magnification. (B) Heterozygous expression of nucleus accumbens-
associated 1 (NACC1) c.892C>T variant in patient-derived fibroblasts was verified using reverse transcription polymerase chain reaction
(RT-PCR) and Sanger sequencing. (C) Immunoblotting of cell lysates from patient-derived (P) and control (C) fibroblasts with
NACC1-specific antibody. GAPDH was used as loading control. (D) NACC1 levels normalized to GAPDH revealed normal amount of 57-kDa
band detected by NACC1 antibody in patient fibroblasts (P) compared to controls (C). (E) NACC1 gene expression level in patient-derived
cells was studied using quantitative PCR and it did not differ from the control cells. (F,G) Blue Native polyacrylamide gel electrophoresis
and protein quantification derived from the western blot method indicated that complex I level in patient cells was 1.5-fold compared to
the control fibroblasts (P < 0.05, two-tailed Student’s t test). Other mitochondrial complexes were expressed at a normal level in patient-
derived fibroblasts. The levels of the marker proteins representative of mitochondrial complexes encoded by mitochondrial DNA were
normalized to succinate dehydrogenase complex flavoprotein subunit A (SDHA), thereby representing complex II, which is encoded by
the nuclear genome. (H,I) In-gel activity assay to measure complex I function showed normal function in patient-derived fibroblasts when
compared to two control cell lines. Signal intensity was normalized to control 1 (C1) fibroblast line. Error bars in the images indicate
standard deviation.
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Conclusion
We suggest that NACC1 should be included in the gene panels
for hyperkinetic movement disorders and be especially consid-
ered in patients with cyclical movement disorders. To understand
the pathomechanisms leading to neurological manifestations and
to find potential treatment targets to alleviate the symptoms,
more cellular studies (preferably using specific cell types, such as
neurons and glial cells) and animal models are required.
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