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INTRODUCTION
Immune-checkpoint blockade (ICB) including program

med death 1 (PD-1) inhibition has emerged as a standard 
therapeutic strategy for many tumor types such as lung, 
melanoma, and head and neck cancers, among others (1–3). 
However, even in melanoma, 40% to 70% of patients demon-
strate primary resistance (4). To better identify patients likely 
to benefit from ICB, various predictive genomic biomark-
ers have been identified, including microsatellite instability 
(MSI; ref.  5), tumor mutation burden (TMB; ref.  6), expres-
sion of specific genes such as programmed death ligand 1  
(PD-L1), and multigene-expression signatures (7, 8). A few 
have been validated across cancer types such as MSI or 
high TMB and are currently tumor-agnostic biomarkers for 
pembrolizumab. In addition to baseline molecular features, 
another promising strategy is monitoring the early response 
to treatment or the emergence of resistance (9). Noninvasive 
biomarkers such as circulating tumor DNA (ctDNA) could 
enable on-treatment response assessment and early treat-
ment adaptation (10). We have previously demonstrated in 

the INSPIRE study (an investigator-initiated phase II pan-
cancer study in patients treated with pembrolizumab every 
3 weeks) that a decrease in ctDNA by cycle 3 was predictive 
of response to ICB and longer survival (9, 11). Moreover, 
patients with ctDNA clearance, defined as undetectability 
during treatment, demonstrated the longest survival, con-
firming ctDNA as a promising surrogate marker of treatment 
efficacy in patients treated with ICB. This previous report 
utilized a tumor-informed approach, wherein ctDNA was 
monitored using a bespoke panel that tracked 16 specific var-
iants for each individual patient identified from whole-exome 
sequencing (WES) of tumor tissue. However, this assay may 
not be feasible in all patients as tumor tissue may not always 
be accessible or suitable for genomic analysis.

Cell-free methylated DNA immunoprecipitation and seq
uencing (cfMeDIP-seq) involves selective antibody enrichment 
of cell-free DNA (cfDNA) that contains 5-methylcytosine and 
avoids degradative bisulfite conversion of DNA (12). Methyla-
tion is a stable, cell-type–specific marker that has been used to 
quantify tissue-specific cfDNA (13). Cancers are known to har-
bor characteristic hypermethylation, especially in CpG islands, 
making enrichment-based methylation profiling a promising 
strategy for estimating ctDNA levels. Studies in various tumor 
types have demonstrated the ability of cfMeDIP-seq to facili-
tate tumor-naïve estimation of ctDNA levels (14–16), which 
could overcome the abovementioned limitation of tissue avail-
ability. cfMeDIP-seq also enables the quantification of cfDNA 
fragment lengths. DNA fragments released by tumors into 
circulation are known to have a characteristic fragment-length 
distribution with a higher proportion of short fragments 
(<150 bp) than cfDNA derived from normal tissue (17, 18). 
This enables the calculation of a tumor-specific score based 
on fragment lengths, providing another promising biomarker 
of treatment response orthogonal to methylation (19, 20). 
Previous attempts have been made to boost cancer early detec-
tion using multimodal analysis of ctDNA including bisulfite 
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conversion with targeted deep sequencing (21), cfDNA frag-
mentation patterns and parallel gene panel (18), and whole-
genome sequencing and cfMeDIP-seq (22). Here, we attempt 
an integrative methylation and fragmentation analysis from a 
single data type, cfMeDIP-seq, to monitor the response to ICB.

In this study, we performed a joint tumor-naïve analysis 
of cfDNA methylation and fragmentation. We conducted 
this analysis in blood plasma specimens from the INSPIRE 
study and correlated ctDNA abundance as estimated by 
cfMeDIP-seq against the previously used tumor-informed 
bespoke mutation-based method. We demonstrate that early 
changes in tumor-naïve ctDNA methylation and fragmen-
tation can predict clinical benefit and survival in patients 
treated with pembrolizumab.

RESULTS
Characteristics of the Cohort

From a total of 106 patients treated with pembrolizumab at 
200 mg every 3 weeks in INSPIRE (NCT02644369), cfMeDIP-
seq was performed using 204 blood samples taken at various 
time points from 87 patients (Supplementary Fig.  S1A and 
S1B). This included 85 samples at baseline and 56 at or just 
prior to cycle 3, and 55 patients were analyzed at both time 
points. Other time points were selected based on temporal 
proximity to radiologic response and immune-related adverse 
events as well as sample availability. A CONSORT diagram is 
provided in Fig. 1A. Characteristics of the patients included 
in the analysis as well as response rate are summarized in 
Table 1. The largest cohort was cohort B (triple-negative breast 
cancer, TNBC, n  =  22), followed by cohort C (high-grade 
serous ovarian cancer, HGSOC, n =  21), cohort A (head and 
neck squamous cell carcinoma, HNSCC, n = 19), and cohort D 
(melanoma, n = 12). For cohort E (mixed solid tumors, MST, 
n = 13), tumor types with more than one patient enrolled and 
potential benefit on immunotherapy were selected (Merkel cell 
carcinoma, n = 6; microsatellite instability-high tumor, n = 4; 
and other head and neck cancer including nasopharyngeal can-
cer, n = 3). Because the event rate exceeded 50%, median overall 
survival (OS) and median follow-up time were equivalent at 
11.5 (range, 0.600–64.4) months. Median follow-up among 
surviving patients was 59.8 (range, 46.7–64.4) months. Median 
progression-free survival (PFS) was 1.90 (range, 0.300–63.5) 
months. Median OS and PFS for each cohort are summarized 
in Table 1 and Supplementary Fig. S2A and S2B.

Tumor-Naive Plasma Methylomes and 
Fragmentomes Accurately Estimate ctDNA Levels

To quantify ctDNA abundance without guidance from 
matched tumor tissue, we undertook an integrative analysis 
of methylation and fragment-length profiles by quantifying 
cancer-specific methylation (CSM) and fragment-length score 
(FLS) for each sample (Fig. 1B). To do this, we first indepen-
dently generated a set of regions hypermethylated in cancer 
using 450K methylation array data from The Cancer Genome 
Atlas (TCGA) Pan-cancer Atlas (PanCanAtlas). We extended a 
previously described approach (16) to identify differentially 
methylated CpGs (DMC) using 1,350 tumors from 27 cancer 
types, then excluded any DMCs methylated in cfMeDIP-seq 
of 100 normal control samples donated for two cancer early 

detection studies (ref.  22, medRxiv: 2023.01.30.23285027). 
Next, we removed sites methylated in peripheral blood leu-
kocytes (PBL) based on 30 previous samples profiled by con-
ventional MeDIP-seq (16) and an atlas of cell-type–specific 
methylation profiled by methylation arrays (13). This yielded 
a final immune-depleted signature of 200 DMCs. Consist-
ent with the frequent observation that hypermethylation in 
cancer often occurs in CpG-dense regions, 184 (92%) of the 
DMCs were in CpG islands, and 13 (6.5%) were in shores. The 
CSM score was computed by summing methylation probabil-
ities across these signature regions for each sample (e.g., see 
Supplementary Fig. S3). We also computed this signature in 
independent publicly available data sets from whole-genome 
bisulfite sequencing of human breast cancer, esophageal can-
cer, and adjacent normal esophagus, which confirmed that 
the signature was indeed hypermethylated in cancer relative 
to normal tissue (Supplementary Fig. S4A–S4C).

To calculate FLS, we first computed the sample-specific 
fragment-length histogram of all read pairs mapping at least 
one of the aforementioned CSM signature regions. We then 
determined each sample’s relative similarity to cancer versus 
normal fragment-length profiles by computing the mean log 
cancer-to-normal fragment-length frequency ratio using a 
previously published method and reference data (19). This 
results in FLS > 0 if the fragment-length profile more closely 
resembles ctDNA. We also checked for characteristic cancer-
associated fragmentomic features. The ratio of short to long 
fragments across the genome in 5 Mb windows was more 
variable in cancers relative to normal controls, with a 30.3% 
(range,  −41.1 to 227.9) higher median standard deviation 
across windows (Supplementary Fig. S5), consistent with pre-
vious findings (18). We identified variably fragmented regions 
in cancer versus normal by performing two-sided Ansari–
Bradley dispersion tests and merging neighboring regions 
using Comb-p (23). This revealed 10 regions with significantly 
more fragment-length variability across cfDNA samples from 
patients with cancer than in normal controls, spanning 0.910 
Gb, or 31.7% of the autosomal genome (Supplementary Fig. S5 
SA–S5C). Unsupervised nonnegative matrix factorization 
(NMF) analysis revealed signatures of short fragment length 
(24) and a higher fraction of fragment ends residing within 
the nucleosome core (25) in the cfDNA of patients with can-
cer (Supplementary Fig. S6A–S6C). Together, these findings 
confirm that cfMeDIP-seq fragment-length profiles demon-
strate cancer-distinguishing characteristics similar to those 
observed previously in plasma whole-genome sequencing  
studies (18, 24, 25).

We compared CSM and FLS between normal controls 
and patients with cancer at baseline, cycle 3, and later cycles 
(Fig.  1C and D). Compared with normal controls (median 
CSM =  0.0418), CSM was higher in patients with cancer at 
baseline (median 1.47, Wilcoxon rank-sum P <  0.001), cycle 
3 (median 0.151, P < 0.001), and later cycles (median 0.0745, 
P = 0.001). For FLS, compared with normal controls (median 
FLS = −0.213), FLS was higher in patients with cancer at base-
line (median = 0.151, P < 0.001), cycle 3 (median = −0.0803, 
P < 0.001), and later cycles (median = −0.110, P = 0.005).

Higher CSM and FLS were each independently associated 
with cancer in a logistic regression model that included 85 
patients with cancer at baseline and 100 normal controls 
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Figure 1. Overview of the study and the analysis of cell-free methylomes and fragmentomes. A, CONSORT diagram for cfMeDIP-seq analysis within 
the INSPIRE study. B, We performed cfMeDIP-seq in a cohort of patients with various solid tumors treated with pembrolizumab. We computed CSM 
scores and fragment-length scores through joint analysis of the methylome and fragmentome. C, CSM and (D) FLS were significantly higher in samples 
from patients with cancer than those from normal controls, by Wilcoxon rank-sum tests. Boxplots show median and quartiles.
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(Fig.  2A). We then computed a unified cfMeDIP-seq score 
by calculating the log odds of cancer based on both CSM 
and FLS (Fig.  2B) and regressed this score against ctDNA 
estimates from a tumor-informed bespoke assay (Signat-
era by Natera), which we refer to here as cancer mutation 
concentration (CMC) and were previously reported (11). 
Briefly, a custom panel based on matched tumor exomes was 
designed specifically to detect and quantify 16 mutations in 
plasma samples for each patient, and the resulting CMCs are 
reported as the mean number of tumor molecules observed 
per mL of plasma (MTM/mL). A total of 75 patients had data 
for both CMC and cfMeDIP-seq at baseline and 53 at cycle 3.

Because we previously found CMC clearance to be an 
informative threshold for treatment response and outcomes, 
we aimed to determine whether there was a cfMeDIP-seq 
level that accurately corresponded with CMC undetectabil-
ity. cfMeDIP-seq discriminates samples by CMC detectabil-
ity with an area under the receiver-operator characteristic 
(AUROC) of 0.902 (Fig. 2C). We found that a cancer log-odds 
threshold on the joint cfMeDIP-seq score (incorporating both 
CSM and FLS) of −1.75 maximized the F1 accuracy. 95.8% of 
samples that fell below this threshold were likely to have 
demonstrated clearance by CMC, and of the samples that 
were undetectable on CMC, 54.5% fell below this threshold.

Next, we examined the quantitative correlation of cfMeDIP-
seq with CMC. We found that cancer log odds from 
cfMeDIP-seq demonstrated strong and statistically signifi-
cant correlations with CMC within every individual cohort 
and time point (every Spearman correlation coefficient >0.6, 
each P  <  0.015, Fig.  2D). Taken together, these data sug-
gest that ctDNA levels can be accurately estimated using a 
tumor-naïve approach by integrating cell-free methylomes 

and fragmentomes. We also assessed the association of base-
line radiologically assessed tumor burden (as evaluated by 
the sum of diameters of RECIST v1.1 target lesions) with 
baseline CMC and the joint cfMeDIP-seq scores, as well as 
the CSM and FLS scores separately (Supplementary Fig. S7). 
Although each of these metrics was positively associated with 
tumor burden, none of these associations were strong, with 
only CMC demonstrating a borderline significant association 
(Spearman rho = 0.203, P = 0.048).

Finally, we examined kinetics across the course of treat-
ment (Fig. 2E). From baseline to cycle 3, the cancer log odds 
decreased significantly more in responders than nonrespond-
ers, with a median change of −51.1% (range, −99.5 to 58.3) in 
patients with complete response (CR) or partial response (PR) 
and −2.77% (range, −75.74 to 191.34) in those with stable dis-
ease (SD) or progressive disease (PD; two-sided Wilcoxon rank-
sum test P = 0.002). These results suggest that early changes 
in CSM and FLS may be associated with objective response.

Early Change in CSM Predicts Immunotherapy 
Outcomes

We next turned our attention to the association of cfMeDIP-
seq with survival outcomes after pembrolizumab treat-
ment, analyzing CSM and FLS, first independently and then 
together in a joint survival model. We performed survival 
analysis using Cox proportional hazards models and reported 
hazard ratios and P values adjusted for the cohort. First, we 
assessed CSM at single time points—baseline and cycle 3—
splitting both at the median and by quartiles (Supplementary 
Fig. S8). At baseline (n = 85), below-median CSM was associ-
ated with favorable OS [adjusted HR (aHR) = 0.57 (0.33–0.98), 
P = 0.044] and trended nonsignificantly toward favorable PFS 

Characteristic A: Head and neck, n = 19a B: Breast, n = 22a C: Ovarian, n = 21a D: Melanoma, n = 12a E: Other, n = 13a

Gender
 Female 3 (16%) 22 (100%) 21 (100%) 7 (58%) 5 (38%)
 Male 16 (84%) 0 (0%) 0 (0%) 5 (42%) 8 (62%)
Age at diagnosis 59 (56, 63) 52 (43, 61) 55 (49, 64) 58 (55, 67) 60 (48, 71)
Prior surgery 9 (47%) 16 (73%) 13 (62%) 9 (75%) 8 (62%)
Prior radiotherapy 16 (84%) 18 (82%) 6 (29%) 3 (25%) 9 (69%)
Prior lines of systemic  

treatment
 0 1 (5.3%) 0 (0%) 0 (0%) 7 (58%) 6 (46%)
 1 10 (53%) 4 (18%) 1 (4.8%) 4 (33%) 3 (23%)
 2 4 (21%) 10 (45%) 5 (24%) 1 (8.3%) 3 (23%)
 3 or more 4 (21%) 8 (36%) 15 (71%) 0 (0%) 1 (7.7%)
Prior immunotherapy 0 (0%) 0 (0%) 2 (9.5%) 3 (25%) 0 (0%)
Age at pembrolizumab 62 (58, 67) 56 (46, 67) 61 (52, 68) 65 (57, 71) 62 (49, 72)
Responder (CR or PR) 4 (21%) 1 (4.5%) 0 (0%) 8 (67%) 4 (31%)
Progression 12 (63%) 19 (86%) 20 (95%) 4 (33%) 9 (69%)
Death 17 (89%) 21 (95%) 19 (90%) 4 (33%) 11 (85%)
Median OS (months) 8.7 8.8 16.2 Not reached 17.8
Median PFS (months) 3.2 1.7 1.8 Not reached 3.9

an (%); median (IQR).

Table 1. Overview of the cohort included for cfMeDIP-seq analysis.
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Figure 2. Joint analysis of cell-free methylomes and fragmentomes enables accurate estimation of ctDNA abundance. A, We fit a logistic regression 
model with cancer vs. noncancer as the response variable using cfMeDIP-seq data from 85 blood samples from patients with baseline advanced cancer 
and 100 normal controls. CSM and FLS were each independently associated with cancer. B, The predictions of the logistic regression model can be 
interpreted as a joint cfMeDIP-seq score corresponding to the log odds of a sample arising from a patient with cancer. C, Using this score, we found that a 
threshold of −1.754 best identified cases which had undetectable ctDNA based on targeted deep sequencing of cancer-specific mutations. D, cfMeDIP-
seq scores correlated with tumor-informed CMC determined by tumor-informed bespoke array (SignateraTM) in all cohorts at baseline (SB) and cycle 3 
(C3B). E, cfMeDIP-seq scores vary dynamically across time points and decrease more in patients who exhibit PR or CR to pembrolizumab.
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[aHR = 0.63 (0.37–1.08), P = 0.091]. At cycle 3 (n = 56), below-
median CSM was significantly associated with favorable PFS 
[aHR  =  0.51 (0.26–0.99), P  =  0.047] and OS [aHR  =  0.45 
(0.20–0.99), P = 0.047], but was no longer significant in a mul-
tivariable Cox model incorporating PD-L1 expression and log 
TMB (Supplementary Fig. S9). Similarly, CMC was predictive 
at individual time points when adjusted only for cohort (Sup-
plementary Fig. S10). In multivariable analysis (MVA), these 
associations remained statistically significant at baseline, but 
not at cycle 3 (Supplementary Fig. S11).

We next examined the kinetics of CSM. We computed 
ΔCSM as the difference in log-adjusted CSM from baseline to 
cycle 3 (Fig. 3A). We hypothesized that change in ctDNA lev-
els from baseline to pre-cycle 3 would be associated with both 
OS and PFS, as per the primary finding from our previous 
publication utilizing a tumor-informed bespoke mutational 
assay (11). We performed this analysis in 53 patients assayed 
by both cfMeDIP-seq (CSM score) and bespoke ctDNA (CMC 
level) at both baseline and cycle 3, excluding one patient with 
undetectable CMC at both time points. A decrease in CSM 
from baseline to cycle 3 was associated with prolonged OS 
[aHR  =  0.40 (0.21–0.75); P  =  0.005] and PFS [aHR  =  0.35 
(0.18–0.69); P = 0.003; Fig. 3B]. Similarly, ΔCMC was associ-
ated with OS [aHR =  0.45 (0.23–0.87); P =  0.018] and PFS 
[aHR =  0.45 (0.24–0.85); P =  0.014]. In MVA incorporating 
cohort, PD-L1 expression, and log TMB, ΔCSM remained 
an independent predictive biomarker for OS [aHR  =  0.45 
(0.23–0.88); P  =  0.019] and PFS [aHR  =  0.37 (0.19–0.74), 
P = 0.005; Fig. 3C]. ΔCMC was also an independent predictive 
biomarker in MVA but only for PFS [aHR = 0.51 (0.27–0.97), 
P = 0.04; Supplementary Fig. S12].

To assess the role for joint assessment of methylation-
based and mutation-based ctDNA estimates, we examined 
ΔCSM and ΔCMC in combination. CSM and CMC changed 
in the same direction in 38 patients and in opposite directions 
in 15 patients. Of the 15 patients with discordant changes, 9 
had very low CSM and/or CMC scores below 1.0, and three 
of the remaining six had minor shifts in CMC (<50% change 
from baseline; Supplementary Table  S1). The combination 
of ΔCSM and ΔCMC appeared to identify a subgroup with 
particularly poor outcome characterized by increase in both 
CSM and CMC (Fig.  3D). We show in a post-hoc analysis 
(Supplementary Fig.  S13) that a decrease in either CSM or 
CMC was sufficient to result in a significant improvement in 
OS [aHR = 0.30 (0.14–0.61), P = 0.001] and PFS [aHR = 0.33 
(0.16–0.69), P = 0.003].

Change in FLS Is Associated with Immunotherapy 
Outcomes

The FLS captures characteristic cancer-specific fragmenta-
tion patterns within our CSM windows using a previously 
established formula, detailed in the Methods section (19). 
FLS was correlated with CSM (Spearman ρ = 0.655, P < 0.001; 
Supplementary Fig. S14) and demonstrated a median abso-
lute percent change of 67.7% between baseline and cycle 3. 
Higher FLS represents more cancer-like fragmentation pro-
files, and we thus hypothesized that lower FLS and decreasing 
FLS during pembrolizumab would be associated with favora-
ble outcomes. PFS and OS were indeed prolonged in patients 
with below-median cycle 3 FLS, but these differences were 

not statistically significant when adjusted for cohort (Sup-
plementary Fig. S15). A decrease in FLS from baseline to cycle 
3 was significantly associated with improved OS [aHR = 0.40 
(0.20–0.77), P  =  0.006; Fig.  4A], which remained indepen-
dently predictive in MVA that included cohort, PD-L1, and 
TMB (Supplementary Fig.  S16). There was a nonsignificant 
trend toward improved PFS in patients with decreased FLS 
[aHR = 0.51 (0.26–1.00), P = 0.0503; Fig. 4A].

Cell-Free Methylomes and Fragmentomes Jointly 
Predict Treatment Outcomes

We next assessed whether early changes in CSM and FLS 
were jointly predictive of outcomes. Kaplan–Meier curves were 
consistent with decreases in CSM and FLS each being associ-
ated with favorable PFS and OS (Fig. 4B). An MVA including 
ΔCSM, ΔFLS, and cohort confirmed that both ΔCSM and 
ΔFLS were significant independent predictors of OS, whereas 
only ΔCSM was a significant predictor of PFS (Fig.  4C). 
This supports the complementary use of methylation and 
fragmentation data from the same cfMeDIP-seq assay for  
response prediction.

In our previous study, we showed that clearance of CMC at 
any on-treatment time point was associated with exceptional 
response to pembrolizumab (11). However, for CSM and FLS, 
there is not yet an established threshold below which ctDNA 
can be said to be undetectable. As mentioned previously, we 
trained a logistic regression model with CSM and FLS as 
predictors and cancer versus control as the response variable. 
The output values of the final logistic regression model repre-
sent predicted log odds of cancer, incorporating information 
from both CSM and FLS. A score below −1.75 was associated 
with undetectability by CMC.

By this definition, 11 cases were identified to have achieved 
clearance, 10 by cycle 3 and one by cycle 6. Median follow-up 
for these cases was 59.5 (range, 37.6–64.4) months. Of these, 
nine (82%) were in agreement with clearance criteria by CMC 
(Fig. 5A and B). The two patients with cfMeDIP-seq clearance 
who did not clear by CMC both remained alive at the last 
follow-up of 59.5 and 60.5 months (Fig.  5C). Both were in 
cohort C (ovarian cancer). One patient (INS-C-020) progressed 
after 1.8 months with a 26% increase in target lesions according 
to RECIST 1.1 criteria, whereas the other patient (INS-C-018) 
had a 25% decrease in target lesion size and achieved the long-
est period of SD in this study for a patient with ovarian cancer 
before progression (10.5 months). Conversely, two patients 
achieved clearance by CMC but not cfMeDIP-seq. However, 
both of these cases had low cfMeDIP-seq scores just slightly 
above the clearance threshold (INS-A-019 with HNSCC cycle 3 
score = −1.13, INS-D-012 with melanoma cycle 3 score = −1.63). 
INS-A-019 had a 56% reduction in target lesions and passed 
away after 37.6 months without progression. INS-D-012 had 
a 97% reduction in target lesions and remained alive at last 
follow-up (61.0 months) without evidence of progression. In 
aggregate, the cases with clearance identified by this definition 
demonstrated exceptional PFS and OS (Fig. 5D).

DISCUSSION
To our knowledge, this is the first reported analysis of 

methylated cfDNA in patients with advanced cancer during 
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Figure 3. Association of CSM and CMC with survival 
outcomes in patients with advanced cancer treated with 
pembrolizumab. Circulating tumor DNA was quanti-
fied using a methylation-based approach (CSM) and a 
bespoke tumor-informed mutation sequencing approach 
(CMC). A, Methylation probabilities were summed across 
200 cancer-specific sites, curated based on independ-
ent analysis of methylation array data from The Cancer 
Genome Atlas. ΔCSM was calculated based on the 
change in CSM from SB to C3B. Changing regions are 
shown in the heat map, alongside final ΔCSM values. 
B, Decrease in CSM and CMC from baseline to cycle 3 
are each associated with improved OS and PFS. C, In 
multivariable Cox analyses, ΔCSM was a significant, 
independent predictor of PFS and OS, adjusted for 
cohort, PD-L1 expression, and tumor mutation burden. 
D, A decrease in either CSM or CMC was associated with 
improved survival, whereas increase in both metrics 
identified patients with particularly poor outcome.
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Figure 4. CSM and FLS are jointly predictive of 
survival outcomes in patients with advanced cancer 
receiving pembrolizumab. A, We computed FLS based 
on the relative similarity of fragmentomic profiles to 
reference cancer and normal fragment-length histo-
grams. A decrease in FLS from baseline to pre-cycle 
3 is associated with prolonged OS, with a nonstatisti-
cally significant trend for prolonged PFS. B, In a joint 
model of CSM and FLS, Kaplan–Meier plots show 
that patients with a decrease in each biomarker from 
baseline to cycle 3 are associated with improved OS 
and PFS. C, Multivariable analyses confirm that both 
CSM and FLS are independently predictive of OS, 
whereas only CSM achieves statistical significance 
for PFS.
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treatment with ICB. This is also one of the first direct compar-
isons between a tumor-informed mutation-based approach 
and a tumor-naïve methylation-based approach to ctDNA 
analysis. Moreover, this is the first analysis to examine the 
integration of methylomic and fragmentomic scores from 
a single assay to refine ctDNA quantification and response 
prediction. Our results suggest that analysis of the cfDNA 
methylome and fragmentome assayed by cfMeDIP-seq yields 
promising tumor-naïve predictive biomarkers. Tumor-naive 
CSM and FLS were strongly correlated with tumor-informed, 
mutation-based ctDNA quantification. Change in CSM from 
baseline to cycle 3 predicted both PFS and OS whereas change 

in FLS predicted OS, each independently of cohort, TMB, and 
PD-L1 status. Lastly, we proposed a reasonable threshold for 
clearance within our data, which was concordant with unde-
tectable CMC, and identified a set of exceptional responders. 
This clearance threshold requires validation in independent 
cohorts. Taken together, these findings suggest that predic-
tion of response to pembrolizumab can be refined through 
the integration of methylome and fragmentome analysis 
and represents a possible alternative to tumor-informed, 
mutation-based approaches.

We previously reported that early ctDNA kinetics are 
predictive of pembrolizumab outcomes (11). However, this 

Figure 5. CSM and FLS estimate ctDNA clearance status, identifying patients with durable response to pembrolizumab. The log odds of cancer 
were computed using a logistic regression model with CSM and FLS as independent variables. A threshold of below −1.754 was determined to identify 
patients with clearance. A, By this criterion, 11 patients cleared ctDNA based on cfMeDIP-seq, of which 9 also had undetectable ctDNA based on CMC 
from targeted deep sequencing. B, Patients with clearance demonstrated persistently low cfMeDIP-seq scores. The two patients with clearance by CMC 
but not cfMeDIP-seq (INS-A-019 and INS-D-012) both had low cfMeDIP-seq scores near the clearance threshold. C, The clinical course and radiologic size 
of index tumors of all 13 patients with clearance by either method are shown. Vertical lines show the median and maximum PFS of patients within each 
cohort. D, Patients meeting the cfMeDIP-seq clearance criteria demonstrated strikingly favorable PFS and OS.
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approach requires WES of the tumor, thus excluding patients 
without available tumor tissue and potentially leading to 
delays in obtaining results. cfMeDIP-seq is a tumor-naïve 
approach that could overcome these limitations. Because 
methylation is highly cell-type specific (26), the use of meth-
ylation also bypasses challenges in tumor-naïve ctDNA pro-
filing caused by nontumoral mutations arising from clonal 
hematopoiesis (27). Unlike clonal hematopoiesis, methyla-
tion in PBLs is largely conserved and nonrandom and can 
be reliably filtered out. We also observed differences in out-
comes according to CSM at cycle 3 approaching statistical 
significance in MVA that warrant further study. This single 
time-point readout may allow simplification by omitting 
baseline ctDNA profiling in resource-constrained settings. 
The earliest time-point on-treatment for ctDNA analysis in 
our study was cycle 3 day 1 of pembrolizumab (i.e., around 
weeks 6–7 on-treatment). It aligns with recent work that 
suggests this is the optimal time point in patients treated 
with pembrolizumab in non–small cell lung cancer, where 
ctDNA using a mutation-based assay was measured every 
cycle (28). However, another study in non–small cell lung 
cancer has suggested that the optimal time point to detect 
ctDNA decrease may be later (i.e., cycle 4 in patients treated 
with a combination of immunotherapy and chemotherapy; 
ref.  29). The lack of a standardized on-treatment analysis 
time point is a challenge in the implementation of ctDNA 
in clinical practice. Moreover, an earlier time point could be 
more informative as it would precede radiologic assessments 
and could potentially be helpful in making early treatment 
decisions. The kinetics of ctDNA prior to cycle 3 and whether 
a different time point could also predict clinical outcome 
with our approach warrant further investigation.

Methylation is thought to be a stable epigenetic marker 
and differential methylation, especially CpG island hyper-
methylation, is prevalent among cancers (30). This makes 
methylation a promising candidate biomarker for develop-
ing pan-cancer signatures. Our independent signature was 
capable of segregating cancer from noncancer, was highly cor-
related with CMC, and could identify most cases of clearance. 
To maximize the potential for clinical translation of methyla-
tion biomarkers across technologies, We also used both array 
and PBL MeDIP-seq data to filter PBL-derived background, 
a crucial step because as much as 80% of cfDNA is known 
to be PBL derived (13, 16). Filtering out additional healthy 
tissue types is also an option, but CpGs become increasingly 
likely to overlap tumor-specific hypermethylation as filtering 
is extended to solid tissues.

Because of the highly novel nature of this cohort and 
approach, there does not exist true independent validation 
data. For this reason, we opted to generate an independent 
pan-cancer methylation signature from TCGA data instead 
of extracting disease-specific signatures from the cfMeDIP-
seq data, as has often been done previously (15, 16, 31). This 
allowed us to treat the study cohort as the first validation set 
for the signature, and the successful transfer of this signature 
from methylation arrays to cfMeDIP-seq supports its gener-
alizability. An obvious limitation of using methylation data 
from TCGA is the relatively lower coverage of 450K meth-
ylation arrays compared with, for example, whole-genome 
bisulfite sequencing. However, we chose to use TCGA data 

as they are generated using standardized protocols, a har-
monized analysis pipeline, and stringent quality standards 
across a large variety of histologies, and no comparable 
whole-genome methylation data set yet exists. There is a 
pressing need for high-quality, harmonized genome-wide ref-
erence methylation data in cancer and normal cells, which 
could further improve prediction by expanding beyond meth-
ylation array probe sites. This added resolution could signifi-
cantly boost sensitivity, for example, by identifying signatures 
of longer uniformly methylated regions across which a cancer 
methylation signal could be integrated (26).

This study reveals the potential of multimodal liquid biopsy 
analysis for treatment response monitoring in cancer. We 
demonstrated how a single assay could yield complementary 
methylomic and fragmentomic metrics, which may in turn be 
complementary with mutational analysis. Indeed, the separate 
mutational assay may also become unnecessary as emerging 
methods and assays are poised to enable simultaneous infer-
ence of mutations, methylation, fragmentation, and even gene 
expression from a single noninvasive assay (18, 32–34). In our 
study, ΔCSM and ΔCMC yielded different but complementary 
predictions of survival outcomes, and the poorest responding 
patients demonstrated increases in both. In 28.3% of cases, 
CSM and CMC changed in different directions, but most had 
low baseline values or minor shifts. Moreover, FLS was inde-
pendently prognostic alongside CSM. These important early 
findings may help to inform future strategies for noninvasive 
biomarker integration. The main advantage of a tumor-naïve 
assay is that it could be applicable to more patients, as WES 
of the tumor is not needed. We only performed the analysis of 
this assay in patients treated with anti–PD-1 antibody, and we 
have not yet explored whether these changes in CSM and FLS 
could also be seen with other systemic treatments (i.e., chemo-
therapy or targeted therapy). Changes in CSM and FLS may 
also be predictive of clinical outcome with other therapies, 
and further validation is warranted.

Limitations of our study include a small sample size (204 
samples from 87 patients), as not all of the plasma samples 
collected during the prospective INSPIRE study were avail-
able, especially for pre-cycle 3 samples. This may have limited 
the statistical significance of some findings, especially in 
the analysis of individual time points. However, the asso-
ciation of CSM/FLS with outcomes is consistently more 
significant with the change from baseline to cycle 3, suggest-
ing that kinetics rather than cross-sectional time points may 
be more informative. Although INSPIRE is a prospective 
clinical study, the analysis presented here was performed 
retrospectively, after the clinical trial was completed. The 
heterogeneity of tumor types is also a limitation, but also 
potentially a strength as we aimed to generate a pan-cancer 
signature. Although we showed that changes in CSM and FLS 
may predict outcomes across cancer types, these changes may 
be more informative in those tumor types where anti–PD-1 
antibody is usually more effective (i.e., melanoma or head 
and neck) compared with those cancers with less response 
to ICB (breast, ovarian, or some of the mixed tumors). We 
primarily focused on changes from baseline to cycle 3, which 
was the earliest on-treatment time point available in this 
study. However, the most optimal time point for estimat-
ing the response to ICB remains an open question. Normal 
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control cfMeDIP-seq data were chosen, which were processed 
in the same laboratory as the cancer samples, and may harbor 
some sex-bias, as 72 of the 100 normal controls were healthy 
females from a breast cancer early detection study (medRxiv: 
2023.01.30.23285027). A limitation of the cfMeDIP-seq assay 
is the inability to accurately call hypomethylation due to a 
lack of DNA pulldown, which may make it difficult to distin-
guish between tissues of origin (26). Instead, we focused on 
detecting hypermethylation, which is a distinguishing feature 
across cancers (30). Lastly, rigorous analysis of the detection 
limits, such as using a dilution series, was not within the 
scope of this study, and has been described previously (14).

In summary, this study represents the first combined use 
of tumor-naïve cell-free methylomes and fragmentomes from 
a single assay, cfMeDIP-seq, to monitor cancer burden in 
response to pembrolizumab. Although a priori prediction of 
immunotherapy response remains challenging, our results 
support the idea that an on-treatment dynamic biomarker can 
provide an accurate readout of treatment effectiveness early in 
the course of treatment with ICB. This approach could enable 
earlier response assessment, allowing for prompt redirection 
to next-line treatment options in nonresponders. It also shows 
promise for a truly minimally invasive disease monitoring 
solution in the future that does not rely on tumor tissue avail-
ability. We anticipate that these early translational results will 
help guide the design of future interventional studies leverag-
ing dynamic biomarkers for treatment adaptation.

METHODS
Study Design

The INSPIRE study (Investigator-initiated Phase II Study of Pem-
brolizumab Immunological Response Evaluation, NCT02644369) 
included a total of 106 patients with advanced solid tumors from 
March 21, 2016, to May 9, 2018. It was approved by the University 
Health Network research ethics board (REB ID: 15-9828). The pri-
mary aim of this phase II investigator-initiated study was to analyze 
potential pharmacodynamic biomarkers of response to pembroli-
zumab. This clinical trial was approved by the Research Ethics Board 
at the University Health Network and was conducted in accordance 
with the Declaration of Helsinki. Adult patients provided written 
informed consent and were accrued onto five parallel cohorts consist-
ing of HNSCC (cohort A), triple-negative breast cancer (cohort B), 
high-grade serous ovarian cancer (cohort C), malignant melanoma 
(cohort D), and mixed solid tumor (cohort E). Inclusion and exclu-
sion criteria have been summarized previously (11, 35). Treatment 
was conducted at Princess Margaret Cancer Centre with pembroli-
zumab 200 mg administered intravenously every 3 weeks. Clinical 
data as well as baseline biomarkers were recorded in every patient. 
Biomarker data for PD-L1 expression and TMB (from WES) were 
unchanged from our previous publications (9, 11). The cutoff date 
for clinical outcomes was December 6, 2021.

Blood Collection and Processing
Peripheral blood plasma was collected at baseline and at the 

beginning of every three cycles during treatment. At each collection 
time point, 30 mL of peripheral blood was collected in EDTA tubes. 
Plasma was separated from the cell pellet within 2 hours of collection 
and aliquoted for storage at −80°C. cfDNA was purified from clari-
fied plasma using the QIAamp Circulating Nucleic Acid Kit (Qiagen). 
PBL genomic DNA was extracted using the AllPrep DNA/RNA/
miRNA Universal Extraction Kit (Qiagen). cfDNA was quantified 

using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific) and 
then processed by the Translational Genomics Laboratory. Following 
previous studies utilizing these specimens, we reviewed the remain-
ing stock of cfDNA available. A subset of cfDNA samples were chosen 
for analysis, with the aim to maximize baseline and cycle 3 pairs with 
matched data from bespoke ctDNA analysis and to maintain a bal-
anced representation across the five cohorts.

Bespoke Mutational Analysis of cfDNA
CMC data were generated using the Signatera assay as previously 

described (11). The same values were used as in the present study, with-
out modification. Briefly, 16 confident cancer-specific variants were iden-
tified in tissue exome sequencing, and primers were designed for each 
(36). Multiplexed targeted PCR and amplicon deep sequencing were 
performed on an Illumina platform. For each of the 16 target mutations, 
the variant allele fraction (VAF) was determined, and absolute ctDNA 
levels (MTM per mL) in the plasma were calculated by normalizing VAF 
by the plasma volume used for each sample, yielding the CMC value.

cfMeDIP-seq Library Construction and Sequencing
cfMeDIP-seq libraries were constructed from 10 ng input cfDNA 

using a multiplexed protocol adapted from Shen and colleagues (12). 
Precapture libraries were synthesized using a modified KAPA Hyper 
Prep Kit protocol. cfDNA and Arabidopsis internal control DNA 
were end repaired, A-tailed, and adapter ligated, with the inclusion 
of a unique molecular identifier (UMI). 5-Methylcytosine antibody 
(Diagenode Mag MeDIP kit) was used to selectively enrich cfDNA by 
immunoprecipitation via a modified manufacturer’s protocol, prior 
to library amplification and sequencing. Libraries were sequenced 
on Illumina NovaSeq 6000 or NextSeq550 platforms using V1 and 
V2 chemistry and reagents, respectively, targeting a read depth of 60 
million clusters (120 million paired-end reads). Actual median read 
depth was 80.0 (range, 9.9–176.2) million clusters.

Alignment and Quality Control
Sequencing libraries were validated for quality prior to deep 

sequencing via pre-analytic sequencing on the MiSeq platform to a 
minimum read depth of 10,000 clusters, 150 bp × 8 bp × 8 bp × 150 
bp. cfMeDIP libraries are assessed for CpG relH and CpG GoGe 
enrichment, AT dropout, and methylated Arabdopsis enrichment 
relative to control library. cfMeDIP-seq output sequences were ana-
lyzed using a reproducible Snakemake (v6.13.1; ref. 37) pipeline that 
includes all steps from post-processing to calculation of methylation 
probabilities, available at https://github.com/pughlab/cfMeDIP-seq-
analysis-pipeline. First, UMIs were extracted from read sequences 
into headers using UMI-tools (v1.0.1; ref. 38). Adapter sequences were 
removed using “Trim Galore!” (v0.6.7) RRID:SCR_011847 (39). Next, 
FASTQ files were aligned to the iGenomes human reference genome 
hg38 (http://igenomes.illumina.com.s3-website-us-east-1.amazonaws.
com/Homo_sapiens/UCSC/hg38/Homo_sapiens_UCSC_hg38.tar.gz) 
using the bwa_mem aligner (v0.7.17-r1188; ref.  40). UMI-tools was 
used to remove PCR duplicates, informed by unique molecular 
identifiers (38). FastQC (v0.11.9) output was inspected pre- and 
post-alignment, and post-alignment QC was also performed using 
Qualimap (v2.2.2; ref. 41).

Normal Control cfMeDIP-seq
Two cohorts of normal control cfMeDIP-seq data totaling 100 

samples were chosen because both cohorts were sequenced in the 
same laboratory as the cancer data. The first cohort included 72 
healthy women enrolled in the Ontario Health Study (42) who 
had been screened and known to be negative for breast cancer over 
the course of numerous years. The study methodology is currently 
available in a pre-print form (medRxiv: 2023.01.30.23285027) and 
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data were kindly provided by the Awadalla lab. The second cohort 
included 8 males and 20 females who were profiled as normal con-
trols for a multicenter early detection study of hereditary cancer 
susceptibility syndromes (22).

Calculation of Methylation Probability
The genome was divided into contiguous 300 bp bins, and cover-

age was computed within each. The coverage in any given bin is the 
sum of the fractions of fragments covering that bin. For example, a 
fragment that falls entirely within a 300 bp bin counts as 1 cover-
age unit, whereas a 150 bp fragment with 50 bp overlapping a bin 
would contribute 1/3 of a coverage unit. To compute methylation 
probabilities, coverage was corrected for CpG density. In conven-
tional MeDIP-seq experiments, binding affinity is known to rise with 
increasing CpG density. We modeled the coverage as a mixture of 
two negative binomial random variables, representing the methyl-
ated and unmethylated components, respectively. The unmethylated 
component is modeled as yu  ∼  NegBinom(μ  =  αo  +  α1g, θu), where 
g ∈ [0,1] is the GC content of the bin. The parameters α0, α1, and θu 
were inferred by fitting a negative binomial generalized linear model 
to the bins with zero CpGs. The methylated component is modeled 
as ym ∼ NegBinom(μ = β0 + β1c, θm), where c ∈ Z, c ≥ 1 is the number 
of CpGs in the bin. This component was fit using an expectation 
maximization (EM) procedure. The steps of EM are as follows. (i) 

Make an initial guess for β0, β1, and θm. (ii) Calculate the methyla-

tion probability of each bin as 
L
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. (iii) Update estimates of β0, β1, and  

θm, by negative binomial regression across all bins inferred to be 
methylated, where Lm > Lu. (iv) Repeat, starting from step (ii) (calcu-
lating likelihoods), until convergence. This procedure yields a prob-
ability of methylation for every bin.

Generating an Independent Cancer Methylation Signature
We generated an independent pan-cancer signature using tis-

sue methylation array data, by extending the approach proposed 
by Burgener and colleagues (16) to a much larger set of tumor 
types. 450K methylation array IDAT files from TCGA PanCanAtlas 
were downloaded and post-processed using ChAMP (v2.21.1; ref. 43). 
Twenty-seven cancer types were included, with the criteria that each 
data set contained at least 50 independent primary tumors profiled 
by 450K methylation array. To avoid class imbalances, 50 tumors 
of each cancer type were sampled at random. DMCs were identified 
between every pair of cancer types using limma, using an adjusted 
P value threshold of <0.05. We selected DMCs hypermethylated at 
minimum 2-fold over at least two thirds of all other TCGA cohorts. 
We then filtered out any CpGs with a mean normal control meth-
ylation probability >0.01 or maximum methylation probability >0.1 
among cfMeDIP-seq data from normal controls. Next, we undertook 
filtering to remove CpGs in regions methylated in PBLs, the greatest 
normal tissue contributor of cfDNA. First, CpGs were restricted to 
those overlapping the PBL-depleted regions derived from prior PBL 
MeDIP-seq (16). To further suppress peripheral immune signal, we 
used data from tissue-specific 450K methylomes (13) downloaded 
from the Gene-Expression Omnibus (GEO, RRID:SCR_005012; 
GSE122126) and included only the 200 CpGs with the lowest mean 
beta value among blood cell types, resulting in all probes having 
mean blood cell beta value below 0.086. To check the cross-assay gen-
eralizability of this signature, we downloaded publicly available data 
from whole-genome bisulfite sequencing of esophageal squamous 

cell carcinoma and adjacent normal tissue (GSE149608; ref.  44) 
and breast cancer (GSE186747; ref. 45). We computed the signature 
within these data sets using the sum of beta values overlapping the 
signature sites, averaged within each window.

Calculation of CSM Score
The CSM score was computed as the arithmetic sum of meth-

ylation probabilities from all bins overlapping the immune-depleted 
cancer signature DMCs. Supplementary Fig.  S3 provides examples 
depicting how CSM is computed from methylation probabilities.

NMF of Fragment Lengths
NMF was used to compute signatures of cancer- and normal-

derived fragment-length frequencies. Global fragment-length pro-
files were computed using CollectInsertSizeMetrics from Picard 
(v2.27.4; RRID:SCR_006525; ref. 46). To focus on the mononucleo-
some peak, only fragments with lengths between 30 and 250 bp were 
considered. Rank 2 NMF was performed on the matrix of fragment-
length counts across patients using the NMF package in R as previ-
ously described (25).

Nucleosome Footprinting
We used a previously reported method that assesses the position 

of fragment ends relative to nucleosome occupancy sites (19, 46). 
The distance from each read start position to the nearest expected 
nucleosome center was calculated. The frequency of each distance 
was tabulated, and the 100 most variable distances were considered 
as salient features. Rank 2 NMF was performed using these features 
in the same manner as described above for fragment lengths.

Calculation of FLS
Fragments overlapping the TCGA-derived CSM signature were 

subset, and their fragment-length histograms were computed. We 
obtained previously computed frequencies of fragment lengths asso-
ciated with fragments derived from cancer and normal cells (19). 
Using these reference data, every fragment length was assigned a 
cancer-associated score equivalent to the log2 difference between the 
frequencies of cancer and normal fragments of that length. Next, the 
sequence alignment map of each cfMeDIP-seq sample was filtered to 
include only fragments overlapping the CSM signature sites. Every 
fragment was assigned its own cancer-associated score depending on 
its length, and the FLS for the sample was calculated as the mean of 
these scores.

Statistical Analysis
All measurements in plasma were blinded to the clinical outcomes 

data. The primary outcome was OS and PFS since the start of the 
clinical trial. Our main hypothesis was that the change from baseline 
to pre-cycle 3 in methylated cfDNA, ∆CSM, and/or fragment-length 
scores, ∆FLS, could predict OS and PFS. The sample size was not cal-
culated. Descriptive statistics were used to summarize patients and 
clinical characteristics. Median and range were used for continuous 
variables, whereas frequency and percentage for categorical variables. 
Correlation between CSM and CMC was calculated using Spearman 
correlation coefficients. The effect of baseline and pre-cycle 3 CSM 
on OS and PFS was analyzed using Kaplan–Meier curves comparing 
below- and above-median CSM. All survival analyses were under-
taken with a Cox proportional hazards model incorporating the 
parameter(s) of interest as well as the study cohort as a categorical 
variable. The adjusted hazards ratios after adjusting for the cohort 
are reported, as well as their 95% confidence intervals and associated 
P values. Multivariable Cox models were used to assess the impact 
of ∆CSM and ∆CMC, while adjusting for cohort, PDL-1 status, and 
TMB. Results were considered statistically significant if the P value 
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was  ≤0.05. All statistical analyses were performed using R (v4.2.1, 
https://www.r-project.org/; RRID:SCR_001905).

Data Availability
Raw cfMeDIP-seq reads from patients in the INSPIRE cohort 

are deposited at the European Genome-Phenome Archive under 
Study ID EGAS00001003280. Sequencing reads for the normal 
control data from the Ontario Health Study can be requested at  
https://www.ontariohealthstudy.ca/for-researchers/data-access-forms- 
and-templates/.

Code Availability
cfMeDIP-seq analysis is packaged for reuse as a Snakemake pipeline 

and can be found at https://github.com/pughlab/cfMeDIP-seq-analy-
sis-pipeline. Fragmentomic analysis pipelines can be found at https://
github.com/pughlab/fragmentomics. In the interest of reproducibility 
and transparency, the complete code and associated data assets used to 
generate all figures and reported numeric values for this paper can be 
found in a unified R markdown file at https://github.com/pughlab/
paper-inspire-cfmedip or in the form of a Code Ocean compute capsule, 
which can be found at https://codeocean.com/capsule/3574944/tree/v1.
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