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Abstract

The development of therapeutic approaches for the induction of robust, long-lasting and antigen-
specific immune tolerance remains an important unmet clinical need for the management

of autoimmunity, allergy, organ transplantation and gene therapy. Recent breakthroughs in

our understanding of immune tolerance mechanisms have opened new research avenues and
therapeutic opportunities in this area. Here, we review mechanisms of immune tolerance and novel
methods for its therapeutic induction.

Introduction

Immune system activation is vital to the control of pathogens and cancer, but regulatory
mechanisms are needed to prevent immunopathology resulting from excessive immune
activity. Perturbations of this balance result in infections, cancer, inflammatory diseases

or allergy. Indeed, autoimmune diseases affect as much as 5-10% of the population and

are on the risel. Similarly, inefficacious immune modulation results in graft rejection and
graft-versus-host disease (GVHD) in 20-70% of transplant recipients, and pre-existing
immunity to viral vectors limits gene therapy efficacy. The development of antigen-specific
immunotherapies is an important unmet clinical need.

Key advances have been made in our understanding of immune tolerance and its regulation.
Indeed, new technologies for antigen discovery, drug delivery and cell targeting have opened
new avenues for the development of therapies for the induction of antigen-specific tolerance.
Here we review mechanisms of immune tolerance and discuss strategies for its therapeutic
modulation.

Mechanisms of immune tolerance

Immune tolerance is an active state of unresponsiveness towards a specific antigen, which
involves both innate and adaptive immune cells. The breakdown of self-tolerance can result
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in the development of autoimmune disorders, whereas dysregulated immune responses to
foreign antigens may lead to hypersensitivity and allergic disease. Thus it is important to
define the multiple mechanisms involved in its establishment and maintenance.

Central tolerance

Central tolerance is established during T and B cell development in the thymus and bone
marrow, respectively. Bone marrow-derived CD34* T cell progenitors home to the thymus,
where they acquire T cell receptor (TCR) expression. Random V(D)J rearrangements
generate a diverse TCR repertoire that is reactive against a wide array of antigens. T

cells harbouring TCRs that do not recognize MHC-presented self-peptides die by neglect,
whereas those with low affinity for peptide-MHC complexes differentiate into CD4* or
CD8" single-positive T cells. The randomness of V(D)J rearrangements inevitably generates
some TCR clones with high affinity for self-antigen—-MHC complexes. High-affinity TCR
clones are controlled by various mechanisms of central tolerance including clonal deletion
and receptor editing. Some self-reactive T cells escape deletion and leave the thymus but
show functional impairment and/or expression of molecules associated with tolerance?,
whereas others develop into self-reactive thymus-differentiated regulatory T cells (tTeg
cells), which migrate to peripheral lymphoid and nonlymphoid tissues.

Self-antigen—MHC complexes are expressed by thymic antigen-presenting cells (APCs)
including specialized medullary thymic epithelial cells (nTECs), dendritic cells (DCs) and
B cells. The transcriptional factor autoimmune regulator (AIRE) promotes the expression
of peripheral tissue antigens by mTECs?; mutations in AIRE are linked to autoimmune
pathology. However not all tissue-specific antigens expressed by mTECs are controlled by
AIRE. Indeed recent studies identified mTECs that express transcription factors such as
FEZF2 (ref. 5) or that co-opt lineage-defining transcription factors from peripheral cell
types, termed mimetic cells®. These AIRE*, FEZF2* and mimetic mTECs collaborate with
thymic B cells and DCs to promote central tolerance through clonal T cell deletion and
Treg cell induction. This process is further aided by the transfer of tissue-specific antigens
from mTECs to DCs through a process termed cooperative antigen transfer’. Of note, it
was recently reported that intestinal DCs travel to the thymus to present microbiota-derived
antigens, highlighting the contribution of peripheral DCs to central tolerance®.

In the bone marrow, developing B cells acquire the expression of a B cell antigen

receptor (BCR) that randomly rearranges its V, D and J gene regions to generate a diverse
BCR repertoire. Up to 75% of early immature B cells are self-reactive®, but a third of

them undergo immunoglobulin gene rearrangements that reduce autoantigen reactivity0.
Additional self-reactive B cells are removed by clonal deletionll. However central tolerance
does not eliminate all self-reactive clones, for example those reactive to developmentally
restricted or inducible antigens that are not expressed by the thymus or the bone marrow.
Thus, self-reactive lymphocytes escape central tolerance and are actively controlled by
peripheral tolerance mechanisms.
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Peripheral tolerance

About 25-40% of self-reactive T cells!2 and approximately 40% of autoreactive B cells®
escape central tolerance. Thus peripheral tolerance mechanisms, including anergy, deletion
and suppression by Tyeq cells, are crucial for the prevention of autoimmune diseases or
hypersensitivity to antigens first encountered outside the thymus or bone marrow, including
food allergens or antigens displayed during infection or pregnancy.

Three signals are required for T cell activation. Signal 1 involves the interaction of the TCR
with peptide-MHC molecules. Signal 2 involves the binding of co-stimulatory receptors to
their ligands on APCs, most commonly CD28 on T cells and CD80 or CD86 on APCs, but
also other co-stimulatory molecules, including inducible T cell co-stimulator (ICOS) and
CDA40 (ref. 13). Signal 3 involves the activation of cytokine receptors. The activation of
TCR signalling (signal 1) in the absence of co-stimulation (signal 2), or strong pre-exposure
to cytokines (signal 3) before signals 1 and 2, induces T cell anergy, a state in which

the T cell is functionally inactivated, incapable of proliferating or producing IL-2 (ref.

14). T cell anergy can also be induced by repeated antigen stimulation!®, exposure to
anti-inflammatory cytokines such as IL-10 (ref. 16), or signalling via co-inhibitory receptors
such as programmed cell death 1 (PD1) and cytotoxic T lymphocyte associated protein 4
(CTLA4)Y. Similarly, B cells require BCR engagement concomitant with Toll-like receptor
(TLR) signalling or interactions with T helper cells to be fully activated. High avidity

BCR interactions with antigens in the absence of TLRs or T helper cell co-stimulation
induce clonal deletion or anergy, inhibiting B cell proliferation and differentiation into
antibody-secreting cells and overall shortening B cell lifespan?®.

Long-term T cell anergy is associated with epigenetic modifications that render cells more
sensitive to inhibitory signalsl®, while altering gene and surface marker expression and
inducing functional changes similar to those observed in exhausted T cells induced during
chronic infection or cancer®. However T and B cell anergy is a dynamic process, and the
removal of antigen exposure can restore T or B cell functionality!>20, Furthermore, a subset
of naturally occurring anergic T cells expressing CD73 and FR4, capable of differentiating
into functional FOXP3* T cells and FOXP3~IL-10" type 1 regulatory T (TR1) cells, has
been described?1:22, although it is not clear whether this process involves specific APC types
or anatomical niches.

The peripheral deletion of T and B cells through apoptosis also controls self-reactive cells.
Intrinsic T cell apoptosis largely depends on the pro-apoptotic protein BIM, upregulated
during T cell deletion, which inhibits the anti-apoptotic proteins BCL-2 and BCL-x|,
activating pro-apoptotic BAX and BAK to permeabilize the mitochondrial membrane23.24,
Extrinsic T cell apoptosis involves FAS25 or tumour necrosis factor (TNF) receptor26
signalling, which ultimately triggers caspase activation to induce apoptosis. Signalling
through these death receptors limits self-reactive pathogenic T cell and B cell responses.
For example, central nervous system (CNS)-resident astrocytes expressing the TNF receptor
ligand TRAIL induce T cell apoptosis and limit autoimmune neuroinflammation?’. Other
forms of peripheral immune cell death (necroptosis, ferroptosis and pyroptosis) also
contribute to peripheral immune tolerance?8-30.
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The mechanisms determining whether self-reactive T or B cells undergo anergy versus cell
death following TCR or BCR activation without co-stimulation are still not fully understood.
Antigen levels have been postulated to control cell fate, with higher levels triggering anergy
and lower levels triggering cell death3L. In addition, checkpoint molecule signalling (for
example, through PD1, TIGIT, TIM3, LAG3 and VISTA) can induce T cell death or
dysfunction32-34,

Finally Tyeq cells play central roles in peripheral tolerance. Major Teq cell subtypes include
FOXP3™ cells and 1L-10-producing FOXP3~ Tr1 cells, but additional subsets have been
linked to immune tolerance, including CD8" Tyeq cells®, regulatory y6 T cells®6 and
regulatory invariant natural killer T cells (INKT cells)3’.

FOXP3* Tyeq cells differentiate in the thymus (FOXP3* tT g cells) in response to self-
antigen expression38 and then migrate to peripheral lymphoid and nonlymphoid tissues
to limit pathogenic autoreactivity and promote tissue repair3®. Some FOXP3* Treg cells
differentiate from naive CD4" T cells in the periphery (FOXP3* pT¢q cells), enforcing
tolerance to antigens not expressed in the thymus, including food antigens, allergens,
microbial antigens or pregnancy-linked fetal antigens?C. In addition, tissue-resident Treg
cells in the skin?1, muscle®?, visceral adipose tissue*344 and mucosal tissues, such

as intestine?>46 and lungs3?, display specialized phenotypes and functions, as recently
reviewed47:48,

Tgr1 cells are IL-10*FOXP3~CD4* T cells that were initially described following chronic
stimulation in the presence of IL-10 (ref. 49). IL-27 was later found to be a stronger Tr1

cell differentiation inducer®®, with IFNa.>1, hyaluronic acid®2, ICOSL®3, CD2 (ref. 54) and
CD55 (ref. 55) expression on APCs also displaying important roles (see Box 1). FOXP3*
PTreg and TR1 cell differentiation and function are modulated by host and microbial
metabolites, such as aryl hydrocarbon receptor (AHR) agonists®6. Tg1 cells produce IL-10
and transforming growth factor-p (TGFp), as well as perforin and granzyme B, which can
kill APCs®7:58, Tr1 cells also express the inhibitory molecules CTLA4 and PD1, enabling
contact-dependent T cell suppression, and CD39 (ref. 59), which degrades pro-inflammatory
extracellular ATP while promoting the production of anti-inflammatory adenosine.

Multiple cell types participate in central and peripheral immune tolerance. DCs play a
central role because they process and present antigen, while providing cytokines and
stimulatory or inhibitory molecules to modulate T cell differentiation or trigger anergy or
deletion. Thus, DCs are frequently targeted for the therapeutic induction of antigen-specific
immune tolerance.

DCs as the central mediators of immune tolerance

DC subsets and their functions

DCs display phenotypic and functional heterogeneity8%-61, DCs are classified into
plasmacytoid DCs (pDCs), classical (or conventional) type 1 DCs (cDC1s) and type 2

DCs (cDC2s). In addition, monocyte-derived DCs (moDCs), sometimes called TipDCs
(TNF-producing and iNOS-producing DCs), adopt a DC-like phenotype under inflammatory
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conditions®2, although recent works call into question their ability to migrate to lymph
nodes and prime CD4* and CD8* T cells53. A DC3 subtype displaying cDC2 and moDC
features was also identified in humans®4. Additional heterogeneity within DC subsets has
been described. For example, cDC2s are classified into cDC2As and cDC2Bs controlled by
the transcription factors T-bet and RORyt, respectively5®. In addition CD103 and CD11b
distinguish functional cDC subsets in mucosal tissues®6.

pDCs are primarily located in the blood and lymphoid tissues but migrate to nonlymphoid
tissues during inflammation®’. When activated, mainly via TLR7 or TLR9 signalling, pDCs
produce large amounts of type I interferons, including IFNa and IFNB®8. Under homeostatic
conditions, pDCs are poor activators of naive CD4* and CD8" T cells. However, a
subpopulation of pDCs stimulates CD4* T helper 1 (T1) cells during infection®. pDCs
also promote tolerance and Tyeq cell induction via the expression of ICOSL?, TGFB'! and
inhibitory indoleamine 2,3-dioxygenase (IDO)2. Indeed recent findings suggest that pDC
deficits contribute to GVHD following organ transplantation’ and that pDCs contribute to
oral tolerance induction’®.

cDCs are present in both lymphoid and nonlymphoid tissues at the steady state. cDC1 and
cDC2 distribution varies in different tissues, and although both subsets migrate between
tissues and lymph nodes, cDC2s appear to have a higher migratory potential and are
enriched at mucosal-associated sites such as the lungs and intestine’®. Of note, at the steady
state cDC1s, cDC2s and pDCs are detected in the CNS choroid plexus and meninges,

but they are virtually undetectable in the brain parenchyma and perivascular space’5:77.
Indeed, cDCl1s are the primary subtype present in the choroid plexus, whereas cDC2s

are most abundant in the leptomeninges and dura mater’®.77. Under inflammation cDCls,
cDC2s, moDCs and pDCs infiltrate the brain parenchyma and present CNS-specific antigens
to T cells’8-78. Although both cDC1s and cDC2s can present antigen to either CD4* or
CD8* T cells, cDC1s are better at antigen cross-presentation’ and type 111 interferon
production8?. Within the cDC2 subset, cDC2As appear to be less pro-inflammatory than
cDC2Bs, expressing higher levels of amphiregulin and matrix metalloproteinase 9, whereas
cDC2Bs produce higher levels of TNF and IL-6 (ref. 65). Of note, cDC2s in the intestine
have been shown to promote T helper 17 (T17) cell differentiation81:82, However, both
cDC1s and cDC2s are reported to promote the differentiation of FOXP3* Treg cells and
IL-10* TRr1 cells83:84,

DC phenotype

Activation and maturation states dictate the effects of DCs on the immune response.
Before their activation via pattern recognition receptors (PRRs), DCs reside at mucosal
sites, lymphoid and peripheral tissues or in the blood in an immature state. Activation

by pathogen-associated molecular patterns (PAMPSs) and damage-associated molecular
patterns (DAMPS) upregulates DC expression of MHC class I and 11, co-stimulatory and
adhesion molecules such as CC-chemokine receptor 7 (CCR7). These mature DCs migrate
to lymphoid tissues to promote effector T cell differentiation. Immature DCs, conversely,
exhibit low expression of MHC class I, MHC class Il and co-stimulatory molecules

and are capable of inducing T cell anergy, Tyeq cell differentiation and effector T cell
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deletion®. It was originally postulated that tolerogenic DCs were essentially immature
DCs, but this paradigm was challenged early on88. It has since been proposed that specific
stimuli can induce a tolerogenic DC phenotype8’ and that tolerogenic DCs undergo some
level of maturation and/or activation®. Indeed, specific transcriptional programmes in
DCs drive immunogenic versus tolerogenic states8”:89, For example, B-catenin signalling®
or phagocytosis of apoptotic material®! under steady-state conditions activate tolerogenic
programmes in DCs, which migrate to lymph nodes to present self-antigens and maintain
peripheral tolerance. Moreover, a tolerogenic DC phenotype can also be induced in
semimature and mature DCs%2, For example, an 1L-10" DC-10 subtype was identified

in human peripheral blood and the spleen, displaying cDC and moDC surface markers

but capable of inducing CD4* T cell hyporesponsiveness and Tr1 cell expansion® (see
Box 1); DC-10s can be induced in vitro by monocyte differentiation in the presence

of IL-10. In addition, intestinal CD103* DCs contribute to tolerance to dietary antigens
and the induction of oral tolerance®*95. Regardless of their origin and maturation state,
DCs contribute to immune regulation via multiple mechanisms, including co-stimulatory
molecule downregulation (CD80, CD86 and CD40), inhibitory molecule expression (PD-L1,
ICOSL and BTLA), suppression of pro-inflammatory cytokine production (IL-6, IL-12,
IL-23 and TNF) and production of anti-inflammatory cytokines (IL-10, TGFp and 1L-27)
and metabolites (IDO, retinoic acid and lactate) (Box 1 and Fig. 1).

Numerous stimuli induce a tolerogenic DC phenotype. For example, I1L-10 reduces

DC expression of MHC and co-stimulatory molecules, decreases pro-inflammatory
cytokine production and promotes T cell anergy and T cell expansion®:97. These anti-
inflammatory effects of IL-10 on DCs are AHR dependent®, recapitulating previous reports
of the tolerogenic effects of AHR signalling in DCs%9-105, Additional cytokines such as
TGFL96, 1L-27 (ref. 107) and 1L-37 (ref. 108) also promote an anti-inflammatory DC
phenotype. Similarly the exposure of monocytes or bone marrow cells to low concentrations
of granulocyte-monocyte colony-stimulating factor (GM-CSF) induces the differentiation of
DCs with a tolerogenic phenotype, whereas exposure to higher GM-CSF doses induces a
pro-inflammatory DC phenotypel09110, Moreover, commensal bacteria signalling through
certain PRRs such as TLR2 (ref. 111) promotes tolerogenic DC induction. Indeed, some
microbial metabolites induce tolerogenic DCs, for example via AHR activation99:100,
Indeed, AHR agonists inhibit nuclear factor-xB (NF-xB) activation in DCs and drive

the expression of IL-10 and IDO, while reducing the expression of MHC molecules,
co-stimulatory molecules and pro-inflammatory cytokines such as IL-6 and IL-12. These
changes in DCs result in increased FOXP3* and IL-10" Teq cells and the suppression of
Thl, TH17 and CD8* effector T cells101-104,

Additional inducers of a tolerogenic DC phenotype include vitamin A, which is metabolized
into retinoic acid, a booster of FOXP3™ Tq cell induction112 and vitamin D3 that increases
IL-10 production while decreasing 1L-12 and co-stimulatory molecule expression113.114,
Moreover, lactate, produced by microbiota, activated DCs or other immune cells, regulates
DC function via a hypoxia inducible factor 1a (HIF1a)-driven increase in the expression of
NADH dehydrogenase NDUFAA4L2 that ultimately limits effector T cell activation!15,
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Finally the uptake of apoptotic cells induces a tolerogenic DC phenotype via mechanisms
involving AHR activation!18, prostaglandin E, production!!7 and signalling via scavenger
receptors such as MARCO18, Indeed, both cDCs and pDCs express IL-10, reduce co-
stimulatory molecule expression and promote Tieq cell expansion following apoptotic cell
uptake®L.

These and other pathways linked to the tolerogenic DC phenotype offer opportunities for the
development of therapeutic immunomodulatory strategies, as discussed below.

Antigen-specific therapeutic strategies to induce immune tolerance

Current therapies for autoimmune diseases, transplant rejection and other pathologies driven
by dysregulated immune responses are mostly based on untargeted immunosuppression

and consequently are linked to significant side effects. Thus novel approaches to induce
antigen-specific immune tolerance are needed, targeting improperly activated T cells but
not interfering with protective immunity to pathogens and cancer. Consequently, numerous
technologies have been developed to induce antigen-specific tolerance (Fig. 2 and Table

1). In the next section, we discuss strategies for the induction of antigen-specific immune
tolerance in autoimmunity, organ transplantation and gene therapy (Fig. 3).

Cell-based tolerogenic therapies

The identification of stimuli inducing a tolerogenic phenotype in DCs guided cellular
therapeutic approaches, commonly based on DCs generated ex vivo from peripheral blood-
derived monocytes and loaded with disease-relevant antigens. However, there is not yet

a standardized method to generate tolerogenic DCs ex vivo, and multiple protocols and
tolerogenic molecules have been explored. For example, moDCs differentiated in vitro in
the presence of low GM-CSF concentrations, termed autologous tolerogenic DCs (ATDCs),
display an immature phenotype with a low expression of MHC class 11, CD80, CD86 and
CD40 and high 1L-10 and lactate production!1®. ATDCs were well tolerated in a phase I/11A
clinical trial to prevent graft rejection following kidney transplantation, and additional trials
are needed to evaluate their clinical efficacy20121, Similarly, 1L-10-induced DC-10s loaded
with disease-specific antigens induce antigen-specific immune tolerancel?2; their clinical
efficacy remains to be evaluated.

Vitamin D3 also induces a tolerogenic DC phenotype ex vivol13:114 Autologous vitamin
D3-treated tolerogenic DCs loaded with disease-specific antigens have been tested in phase
I clinical trials, including studies focused on type 1 diabetes (T1D)123.124 and multiple
sclerosis (MS)125 (Table 2). Moreover, moDCs differentiated in the presence of vitamin D3
and IL-10 were shown to be tolerogenic and induce IL-10-producing T cells in a nonhuman
primate alloimmune reactivity model126. Similarly, moDCs treated with dexamethasone
display a tolerogenic phenotype characterized by high IL-10 and TGFp secretion and

low pro-inflammatory cytokine production127:128, Dexamethasone-induced tolerogenic DCs
loaded with disease-specific peptides were well tolerated in phase I clinical trials in RA, MS
and neuromyelitis optical29130, Moreover, tolerogenic DCs induced with dexamethasone
and vitamin A were tested in a phase | trial in Crohn’s diseasel31.
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Alternatively, lymphocytes and red blood cells coupled with antigens ex vivo have been used
to induce antigen-specific tolerancel32:133, This approach is thought to induce tolerance

as a result of the apoptosis of the antigen-coupled cells and their subsequent uptake

by APCs, which acquire a tolerogenic phenotype following apoptotic cell uptakel34. For
example, in a study by Watkins et al. antigen-conjugated erythrocytes were taken up by
BATF3* cDCl1s, inducing antigen-specific T cell dysfunction via PD1, CTLA4, LAG3 and
TOX expression3®, Building on these findings, Raposo et al. developed a microfluidic
loading technique to produce antigen-loaded erythrocytes, which reduce effector T cell
trafficking into target organs36, In addition, antigen-loaded erythrocytes induced bystander
tolerancel38, inhibiting effector T cell responses against the antigen loaded in erythrocytes
and also other antigens expressed in the same tissue. Bystander tolerance induction is critical
to the success of antigen-specific immunotherapies because multiple antigens, many of them
unknown, are targeted in most autoimmune disorders and different antigens may be targeted
in different patients.

Because of their ability to traffic to inflamed tissues, suppress pathogenic T cells and
promote tissue repair3®, multiple tolerance-inducing approaches rely on FOXP3* Treg

cells or Tr1 cells. Indeed, more than 25 clinical trials have tested Tyeq cell-based

therapies in T1D, systemic lupus erythematosus, Crohn’s disease, organ transplantation
and GVHD120.137-140 (Taple 2). These therapies usually involve autologous polyclonal Teg
cells isolated from peripheral blood and expanded ex vivo in the presence of IL-2 (ref.
141). Tyeg cell therapies are well tolerated and Tyeq cells are stable in vivo. Indeed, in

one clinical trial, 25% of ex vivo-expanded autologous polyclonal Tyeq cells could still be
detected 1 year after transfer into patients, pointing to a surprisingly long half-life for these
cells141, However, although several studies provide early indications of clinical efficacy

of Treg cell therapies in phase I and I/11 trials, larger clinical trials are still needed140,
Moreover, concerns regarding nonspecific immunosuppression led to the development of
antigen-specific Tyeq cell therapies.

A further development of Teq cell-based approaches has been the engineering of

Treg cells with chimeric antigen receptors (CARs). CAR T cells were reported to
ameliorate GVHD42 and other immune-mediated disorders'43, and myelin oligodendrocyte
glycoprotein (MOG)-targeting CAR Tieq cells homed to the CNS in a mouse model of
MS144, Treg cells engineered to target pro-inflammatory molecules such as TNF recently
showed promising results in a mouse model of GVHD and may be useful when the
pathology-driving antigens are not well known or where many antigens are targeted4°.
Similarly, CAR T cells targeting B cells suppress antibody responses in a mouse model of
haemophilia A146, pointing to the versatility of engineered T cell therapies. Importantly,
CAR Tpeg cells have been shown to remain tolerogenic in highly pro-inflammatory
environments, alleviating concerns about their potential conversion into pathogenic effector
T cells}#”. CAR Ti¢g cells were also shown to induce bystander tolerancel4’.

The widespread use of cell-based strategies to induce antigen-specific tolerance faces
important challenges, particularly related to their patient-specific production in a clinical
setup. Strategies based on gene-edited stem cells may overcome some of these challenges
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by enabling the production of off-the-shelf universal cell lines for tolerance induction in
multiple individuals.

Synthetic particle-based delivery systems

An exciting approach for antigen-specific immunomodulation is the use of nanoparticles.
Nanoparticles offer an attractive platform for antigen-specific tolerance induction as they
do not rely on patient-derived cells, are made with safe biodegradable materials and can be
produced at large scale with little batch-to-batch variation. In addition, nanoparticles can
be targeted to specific cells of interest and deliver multiple cargos, while improving small-
molecule and antigen solubility and bioavailability. Numerous types of nanoparticles have
been used for immunomodulation, including metallic, polymeric, lipid-based and peptide—
polymer particles, each with its own advantages and limitations (Fig. 2).

Metallic nanoparticles, including gold, silver and iron oxide particles, have been used for
simultaneous diagnostic and therapeutic purposes, for example as contrast-enhancing agents
and for the delivery of surface-conjugated cargol8. Interestingly, iron oxide nanoparticles
conjugated to MHC class I1-bound peptides induce Tr1 cells, which in turn induce
regulatory B cells and limit inflammation in numerous preclinical mouse models4®. In

this case, TR1 cell induction depends on the high density of MHC molecules in the
nanoparticles, which induces TCR microclusters devoid of co-stimulatory molecules on
antigen-specific CD4* T cells149.150_ |n addition, regulatory B and T cells in the liver
induce immunosuppressive neutrophils, limiting liver autoimmunity and fibrosis'®1, Metallic
nanoparticles can be modified to improve their performance, but the resulting particles

may be unstable. Indeed, surface conjugation can make metallic nanoparticles prone to
aggregation during production, limiting the type of loadable cargo and interfering with
scale-up efforts1®2, In addition, metal particles are not easily biodegradable and their
accumulation in tissues may trigger adverse effects.

Conversely, polymeric particles made from carbohydrate acids, such as poly(lactic acid)
(PLA) and poly(lactic-co-glycolic acid) (PLGA) nanoparticles, are easily modifiable,
relatively simple to manufacture and quickly degraded, although some by-products

induce adverse effects153. Polymeric particles delivering disease-specific antigens showed
therapeutic effects in preclinical autoimmune disease models of MS, rheumatoid arthritis
(RA) and T1D mediated by the induction of CTLA4*PD1™" Ty cells, the reduction of
effector T cells and decreased expression of IL-12, microRNA-155 and vascular endothelial
growth factor>4-158 Moreover, phase | and phase Ila clinical trials in coeliac disease
showed that PLGA particles encapsulating a gliadin antigen were well tolerated and reduced
gliadin-specific IFN+y production and effector memory T cells'%. However, additional

trials are needed to fully evaluate their therapeutic effects. Of note, PLGA particles have
shown context-specific anti-inflammatory and pro-inflammatory effects independent of their
cargo. Indeed, one of the primary degradation products of PLA and PLGA particles is L-
lactate, which inhibits DC maturation and pro-inflammatory responses via HIF1a activation
and NF-xB inhibition115160_ Conversely, PLGA particles can activate the NBD, LRR

and pyrin domain-containing protein 3 (NLRP3) inflammasome in DCs6 and polarize
macrophages towards a pro-inflammatory phenotypel®2, PLGA particles are also reported
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to induce effector CD8* T cell activation and IFN+y productionl®3 and also act as T2 cell
adjuvants164,

Lipid-based nanoparticles are widely used in cosmetics®®, as well as US Food and

Drug Administration (FDA)-approved cancer treatments'66 and mRNA coronavirus
vaccines!67:168 Depending on the production method and formulation physicochemical
properties, lipid nanoparticles can be classified into various categories, including liposomes,
lipid nanoparticles and cubosomes. Owing to the amphipathic nature of fatty acids,

lipid nanoparticles can carry hydrophobic molecules intercalated in the membrane and
hydrophilic substances in an aqueous core or conjugated to the surface. Furthermore, lipids
can be engineered to be easily degraded6%. Moreover, the incorporation of lipids such

as dioleoylphosphatidylethanolamine or cholesterol can modulate the fusogenic properties
of nanoliposomes to improve endosomal drug releasel’0. Indeed, intracellular cholesterol
accumulation can induce DC tolerance via liver X receptor activation1’2. Lipid nanoparticles
have been successfully used to deliver autoantigens, with therapeutic effects in numerous
preclinical models of T1D, MS, RA and myasthenia gravis linked to the induction of
tolerogenic DCs, Tyeq cell expansion and suppression of pathogenic effector T cells!72-175,
Moreover, in a phase Ib clinical trial in patients with RA, liposomes co-encapsulating

a collagen peptide and an NF-xB inhibitor were well tolerated, inducing an increase in
circulating collagen-specific PD1* T cells and a decrease in disease activityl76.

Protein-based nanoparticles offer a biodegradable, nontoxic and stable delivery platform but
are rarely used for antigen-specific tolerance induction because of their highly immunogenic
nature associated with their structural similarities to virus particles’’.

The physicochemical characteristics of nanoparticles, including size, charge, structure,
hydrophobicity and rigidity influence their immunomodulatory effects and can be modified
to alter nanoparticle circulation, cell targeting and uptake, and immunomodulatory function
to maximize therapeutic activityl53.178.179_|n general, nanoparticle surface charge is an
important determinant of cellular uptake and immunomodulation. Nanoparticles with a
negative surface charge have been proposed to mimic tolerogenic apoptotic cells18%.181 and
be preferentially taken up by phagocytic cells via scavenger receptors such as MARCO in
macrophages82, Conversely, positively charged nanoparticles are thought to interact directly
with negatively charged cell membranes and thus be taken up more rapidly by a wider
variety of cell types'83, although this property is also linked to an increased potential to
disrupt lipid bilayers and cause cytotoxicityl84, Positively charged nanoparticles can also
promote inflammation via CD80 and CD86 upregulation and the production of reactive
oxygen species85186 However, widespread consensus about the effects of particle charge
on uptake, toxicity and inflammation is still lacking.

Particle size also influences particle biodistribution, targeting, uptake and toxicity. In
general, particles of <200 nm are taken up by DCs and >500 nm by macrophages187-188,
Indeed, it was suggested that the size of antigens can dictate immune responses, promoting
TH1, TH2 or Treg cell induction89, Moreover, particle size and rigidity affect the immune
response, skewing DCs and macrophages towards pro-inflammatory or anti-inflammatory
phenotypes!90.191 polyethylene glycol is commonly used as a shielding agent to reduce
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interactions with serum proteins, decrease uptake by the reticuloendothelial system and
increase circulation time and bioavailability. The attachment of polyethylene glycol chains
to a protein may also be critical for subcutaneous uptake, reducing complement activation
and granulocyte recruitment92, Finally, it is important to consider that manufacturing
processes used in basic research often differ from those used in FDA-approved therapies.
Consequently, charge, size and other features may be altered during nanoparticle production
scale up for clinical testing, affecting immunomodulatory activity.

Targeting of specific cell types

Most untargeted nanoparticles are taken up by DCs and macrophages via scavenger
receptors and complement factor binding. This passive targeting of DCs generally results

in the presentation of nanoparticle-delivered antigens on MHC class Il molecules93, CD4*
T cell recognition of MHC class Il-presented antigens in the absence of co-stimulatory
molecules induces clonal T cell deletion and inhibition via PD-L1 and induction of FOXP3*
and IL-10* Tygq cellst82.194

Nanoparticles can also be targeted to specific cell types using antibodies or other molecules
reactive with specific cell populations (Table 1). For example, mannosylated antigens
target the mannose receptor in DCs, inducing IL-10 production and antigen-specific
tolerancel95.196 Mannosylated liposomes encapsulating myelin peptide antigens reduced
pro-inflammatory cytokines in blood in a phase | clinical trial in patients with MS!97, but
their therapeutic value is still unknown.

An alternative approach is to target nanoparticles based on the antigen specificity of
immune receptors in the cells they aim to modulate. For example, metallic nanoparticles
displaying peptides loaded in recombinant MHC class | molecules in the absence of
signals 2 and 3 induce antigen-specific CD8* effector T cell anergy and a memory-like
regulatory phenotype, which inhibits DCs via IFNvy, IDO and perforin198. Thus, targeting
nanoparticles to specific immune cells, defined by their surface molecule expression or
antigenic reactivity, is an attractive approach for targeted immunotherapy. However, the
incorporation of additional components to the therapeutic nanoparticles (for example,
surface antibodies) may interfere with their manufacturing.

Introducing immunosuppressive agents into nanoparticles

A major risk of immunomodulation is the potential exacerbation of pathogenic immune
responses. Indeed, adverse effects ranging from local reactions to anaphylactic shock and
lethality have been documented while testing immunomodulatory approaches®®; clinical
trials have been interrupted because of the induction of hypersensitivity reactions2°

and autoimmune disease relapses2%1. These adverse reactions suggest that safe antigen-
specific immunomodulation requires the activation of tolerogenic pathways. This concept
is exemplified by a recent report on the evaluation of antigen—MHC class 11 complexes,
which triggered inflammation in one-third of treated mice; this pro-inflammatory effect
was abrogated by attaching dexamethasone to the antigen—MHC class 1l complex at doses
200-fold lower than those used in dexamethasone-alone treatment schemes93, Interestingly,
self-antigen administration using nanoparticles and nanoliposomes does not seem to trigger
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or boost pro-inflammatory responsest02-104 202 gy ggesting that intrinsic properties make
some platforms safer for clinical use. However, therapeutic tolerance induction in the clinic
will probably require the activation of anti-inflammatory pathways to improve both safety
and efficacy.

One of the first attempts to combine autoantigens and immunomodulatory drugs used
liposomes to co-deliver an antigen and an NF-xB inhibitor, ameliorating experimental
arthritis in a FOXP3* Tyeq cell-dependent manner2%3. Similarly, based on the role of

AHR in the suppression of NF-xB signalling and the control of adaptive and innate
immunity2%4, nanoparticles engineered to co-deliver the AHR agonist 2-(1H-indole-3’-
carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) with disease-relevant antigens
re-established antigen-specific tolerance in preclinical models of MS and T1D102-104,
Other immunomodulatory agents co-encapsulated with antigens include I1L-10 (ref. 205),
vitamin D3 (ref. 206) and the mTOR inhibitor rapamycin292:207-209 \ith encouraging
results in experimental autoimmune encephalomyelitis, allergy and the suppression of
antidrug antibodies. Indeed, the co-administration of a disease-relevant antigen with multiple
immunomodulators (vitamin D3, GM-CSF or TGF) in T1D, RA and MS models showed
significant therapeutic effects linked to the induction of IL-10 and PD1, as well as of
regulatory T and B cells?10-212,

Human autoimmune diseases usually target multiple autoantigens, which may differ
between patients and disease stages, posing a significant challenge to immunomodulatory
interventions targeting one or a few antigens or epitopes. However, approaches based on the
co-delivery of self-antigens and immunomodulatory agents are reported to induce bystander
suppression. Nanoparticle-based co-delivery of antigen and ITE induced bystander tolerance
via the induction of FOXP3* and IL-10" Treg cells that migrate to the site of inflammation,
also suppressing pathology driven by local innate immune responses!®4. Similarly, lipid-
coated calcium phosphate nanoparticles loaded with citrullinated autoantigen and rapamycin
induced bystander tolerance in an RA model?13, and liposomal co-delivery of vitamin D3
and autoantigen induced bystander tolerance in a T1D model?14. Collectively, these findings
suggest that the co-administration of immunomodulatory molecules with self-antigens is
needed not only to boost the therapeutic activity of antigen-specific tolerogenic approaches
but also to prevent the unwanted exacerbation of autoimmune pathology particularly
associated with some therapeutic modalities.

Nucleic acid-based and viral particle-based approaches to antigen-specific
immunotherapy

Nucleic acid-based approaches, including those based on DNA and mRNA, are attractive
methods for antigen-specific immunomodulation. These methods offer several advantages
over peptide-based or protein-based approaches including the ease of manufacturing and
cargo alteration (both antigen and immunomodulator) and the fact that the encoded antigens
can be posttranslationally modified in the host and have relatively low production costs21°.

Viral particles provide an effective platform for antigen delivery216. Viral particles are used
as gene therapy vectors and have been used to deliver autoantigen to the liver?l? and
thymus218, inducing antigen-specific Treg cell expansion, effector T cell suppression and
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bystander tolerance epitopes?19. In response to safety concerns, plant virus particles have
also been tested in preclinical models of T1D and RAZ20, However, risks linked to viral
gene therapy, pre-existing antibodies against adeno-associated viruses and the induction of
antivector antibodies by repeated treatment limit the utility of virus-based approaches for
antigen-specific immunomodulation.

Nucleic acid vaccines circumvent some of the risks linked to viral-based approaches. In
pioneering work, Waisman et al. used a plasmid encoding the TCR from a pathogenic

T cell clone, depleting TCR-specific pathogenic CD4* T cells and ameliorating disease

in a mouse model of MS221, Similar encouraging results were obtained with vaccines
encoding other antigens in preclinical models of systemic lupus erythematosus, T1D and
RAZ222-225 Following these initial findings, DNA vaccines encoding disease-associated
antigens were tested in MS and T1D clinical trials?26-228, An important feature of the DNA
vectors used for tolerance induction was the removal of TLR9-activating CpG motifs in

the plasmid to minimize the activation of innate immunity. Despite showing reductions in
disease-associated biomarkers and evidence of some bystander tolerance, these trials did not
meet clinical end points. Thus, although DNA vaccines represent a promising approach and
additional clinical trials are ongoing (Table 2), further developments may be needed for the
success of this approach, including the co-administration of plasmids encoding tolerogenic
immunomodulators?2?, 1t is also possible that the intrinsic immunostimulatory properties

of plasmid DNA in combination with the limited control over its half-life, biodistribution
and uptake impose unsurmountable challenges for the clinical use of antigen-encoding DNA
vaccines for immunomodulation.

MRNA is less stable than DNA, requiring appropriate delivery platforms and modifications
to prevent the activation of innate immunity23°. Nanoliposomes provide a unique platform
for controlled mRNA delivery. In addition, unlike peptide-based vaccines, nanoliposome
MRNA vaccines do not need to be extensively optimized to accommodate each nucleic acid—
encoded antigen. Moreover, mRNA is quickly degraded in vivo, diminishing concerns about
long-term detrimental effects and tumorigenesis previously linked to some DNA-based
approaches. Furthermore, mMRNA vaccines offer a safer alternative for the treatment of
patients who are immunosuppressed than attenuated viral or bacterial vaccines23L,

MRNA is a potent pro-inflammatory adjuvant because of its ability to activate innate
immunity via TLR3, TLR7 and other immune receptors involved in sensing viral
infection232, Consequently, vaccination with mRNA-encoded epitopes induces potent
antigen-specific CD4* and CD8* effector T cells233. mRNA vaccines have been developed
to induce protective immunity against pathogens such as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)167.168 Similar exciting results have been described in the
context of cancer immunotherapy?34,235,

Eukaryotic RNA is heavily edited, facilitating the discrimination between self and microbial
mRNAs. Thus, RNA modification has been actively pursued to minimize the activation of
innate immunity and develop tolerogenic vaccines236. For example, nanoliposome-delivered
MRNA vaccines using pseudo-UTP and encoding the myelin autoantigen MOG suppressed
disease development in MS models, inducing bystander tolerance against additional myelin
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antigens237. Mechanistically, these therapeutic effects were linked to the PD1- and CTLA4-
dependent induction of antigen-specific Tyeq cells?37. Of note, mRNA has also been used

to transfect T cells with autoantigen-specific CARs, with promising effects in suppressing
pathogenic CD4* and CD8™ effector T cells in the non-obese-diabetes mouse model238.239,
Together, these findings suggest that vaccines containing mRNA-encoded antigens may
provide efficacious platforms for the treatment of inflammatory disorders.

Conclusions, challenges and outlook

The induction of antigen-specific immune tolerance is considered the “holy grail” of disease
management for autoimmunity and organ transplantation. Decades of research have resulted
in numerous promising advances. Yet despite the encouraging preclinical results, no truly
antigen-specific immunotherapies are currently approved for the treatment of autoimmune
diseases or organ transplantation, and few approaches have been tested beyond phase I or Il
clinical trials.

One important challenge is our limited understanding of the breadth of immune

targets recognized in autoimmune diseases. Indeed, antigen targets may vary from a

single autoantigen in Graves disease249 to multiple antigens in RA and systemic lupus
erythematosus241. Epitope spreading remains a significant challenge, suggesting that
successful antigen-specific immunotherapy must either halt epitope spreading, incorporate a
method for the repeated unbiased evaluation of the specificity of the autoimmune response
and/or induce bystander tolerance. In addition, it should be kept in mind that most studies
of the therapeutic induction of antigen-specific tolerance assume that the modulation of

T cell-mediated autoimmunity results in a concomitant decrease in pathogenic B cell
responses. However, it is not clear whether the magnitude, breadth and kinetics of this
indirect B cell modulation are enough to result in significant clinical improvement of B
cell-driven pathology. Moreover, patient-to-patient variability, stage-specific autoimmune
responses and HLA allelic diversity further complicate the design of antigen-specific
therapies. Still, significant advances have been made in immune repertoire analysis,
including the development of antigen microarrays241:242, high-throughput BCR and TCR
sequencing243244 multiplexed monitoring with barcoded tetramers24® and bioinformatic
approaches for epitope prediction?46, These methods may enable not only the identification
of candidate antigens for the induction of antigen-specific tolerance but also the monitoring
of response to therapy, providing personalized approaches like those being developed for
cancer immunotherapy?234.

An additional challenge is that often immunotherapeutic interventions for autoimmune
diseases are initiated after years of subclinical and clinical disease, resulting in the
accumulation of tissue damage, immunological memory and the triggering of local
mechanisms of inflammation and disease pathology. Thus, although developments in this
area have been made for some diseases, such as T1D247, the identification of effective
biomarkers for patient identification and stratification remains an important need for the
development of antigen-specific immunotherapy. Indeed, these limitations highlight the
challenges of translating exciting findings in preclinical models into efficacious therapies
for human diseases. In this context, the selection of autoimmune diseases in which to
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test antigen-specific immunomodulatory approaches remains critical. Coeliac disease, for
example, offers unique opportunities for clinical trial design, as patients on a gluten-free diet
may receive experimental antigen-specific immunotherapies before dietary challenge.

Finally, how can we identify target signalling pathways to increase the therapeutic activity
of immunomodulatory approaches while preventing adverse events? Novel platforms may
guide the identification of candidate signalling pathways for the therapeutic induction of
tolerance, including the use of new methods to study cell—cell interactions involved in the
regulation of inflammation248-250. CRISPR-based platforms to study immune regulation
in vivo25! and the use of experimental systems such as zebrafish in combination with
artificial intelligence?>2, These approaches have already identified novel immunoregulatory
mechanisms with therapeutic potential. In addition, recently identified populations of
tolerogenic APCs may offer additional targets for immune tolerance induction253-255,
Provided these important challenges are addressed, recent advances in methods for

the induction of antigen-specific immune tolerance, combined with novel methods

for the identification of target antigens and regulatory pathways, will probably guide

the development of platforms for personalized antigen-specific immunomodulation in
autoimmune diseases, allergy, transplantation and gene therapy.
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Box 1

Tolerogenic dendritic cells and the induction of peripheral regulatory T
cells

Tolerogenic dendritic cells (DCs) expand the peripheral regulatory T cell (Tyeg cell)
compartment through multiple mechanisms. Inhibitory molecules on tolerogenic DCs
such as programmed cell death ligand 1 (PD-L1) and PD-L2 engage programmed cell
death 1 (PD1) on T cells, boosting the differentiation of FOXP3™ Ty¢q cells through

the downregulation of phosphorylated AKT, mTOR, S6 and ERK2 and simultaneous
upregulation of the phosphatase PTEN274. Additionally, DC expression of inducible T
cell co-stimulatory ligand (ICOSL) activates its receptor ICOS on T cells, also promoting
the development of FOXP3™ Tyeq cells and type 1 regulatory T cells (Tr1 cells), although
ICOS signalling is also critical for the polarization of T helper 1 and T helper 2 effector
cells®370, Finally, binding of the surface receptor B and T lymphocyte attenuator (BTLA)
expressed on DCs to herpesvirus entry mediatory (HVEM) on CD4* T cells is reported to
upregulate CD5 and induce FOXP3 expression272:276,

Several secreted factors released by DCs promote Teq cell differentiation. Transforming
growth factor-B (TGF) induces FOXP3* T4 cell differentiation but promotes T helper
17 cell development in the presence of IL-6 or IL-21 (ref. 277). In the presence of TGFp,
IL-10 promotes FOXP3 and cytotoxic T lymphocyte associated protein 4 (CTLA4)
expression?’8, |L-10 was also described to induce Tg1 cell differentiation®6.97, 1L-27

is a strong inducer of Tg1 cell differentiation through the induction of MAF, aryl
hydrocarbon receptor (AHR) and IL-21 (refs. 59,279,280) and has been shown to control
specific transcriptional programmes in FOXP3™ Tgg cells?81, Moreover, 1L-27 signalling
in DCs and T cells induces the expression of CD39, which degrades extracellular ATP,
limiting its pro-inflammatory effects'97. Besides cytokines, metabolites produced by DCs
such as kynurenine, retinoic acid and lactate have important roles in modulating T cell
responses. For example, indoleamine 2,3-dioxygenase limits T cell responses via the
production of anti-inflammatory tryptophan metabolites such as kynurenine, many of
which activate AHR to promote FOXP3™ Tyq cell and TR1 cell differentiation®®. Retinoic
acid promotes the development of FOXP3* T4 cells and Tr1 cells, enhancing the effects
of TGFp and IL-10 (ref. 112). Finally, lactate produced by DCs can suppress effector T
cell differentiation1®,

Nat Rev Immunol. Author manuscript; available in PMC 2024 June 03.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Kenison et al.

Page 30

IL10, IL-27, IL-35,

PAMPS | IL-37, TGFB, TLR2,
DAMPs Pr y ) lerog: TLR4, vitamin A,
\ vitamin D3, lactate
AHR ligands
IL-6, IL12, ' y
1L-23, IL1B, ' IL-10, IL-27, y
TNF, type | Dendritic cell IDO, TGFB,
interferons 2t retinoic acid
y . ° . Q\ \ \: /2 o ® .
/ L\ |
‘& /r \\\ | %/ \ ;, / - Ce“
coso/ | cpso 110,
cozsé-(-% CD86 | CD86 )-QCTLM H 0ILG35
! TGF|
Effector CD4O CD40L ' MHC ’_‘E TCR B
Tecel 4
TCR ﬂg MHC | PD-LI/ ) Ll ~
3 PD-L2 \ /
/ \ a Naive d i % Naive Effector
/) am
Teell / L/} : Death Tcell Teell
signalling l

\_ I a

Cytotoxic
Teell

\J\'

Cytotoxic
Teell Apoptotic
effector T cell

Fig. 11. Mechanisms and featuresin pro-inflammatory dendritic cells compared with tolerogenic
dendritic cdlls.

Pro-inflammatory dendritic cells (DCs) can be induced via activation by pathogen-
associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPS)
and upregulate the expression of surface molecules including MHC molecules, CD80 and
CD86. These surface molecules, in addition to secreted pro-inflammatory cytokines, such as
IL-1B, IL-6, IL-12, IL-23, tumour necrosis factor (TNF) and type | interferons, induce the
differentiation of cytotoxic and effector T cells from naive T cells. Conversely, tolerogenic
DCs can be induced via several mechanisms, including exposure to cytokines such as

IL-10, IL-27, I1L-35, IL-37 or transforming growth factor-B (TGFB); signalling via Toll-like
receptor 2 (TLR2), TLR4 or aryl hydrocarbon receptor (AHR); or exposure to molecules
such as vitamin D3, vitamin A or lactate. Tolerogenic DCs express lower levels of MHC
molecules, CD80 and CD86 and secrete anti-inflammatory cytokines and molecules such

as IL-10, TGFB, 1L-27, indoleamine 2,3-dioxygenase (IDO) and retinoic acid. Tolerogenic
DC interactions with T cells induce the differentiation and expansion of anti-inflammatory
regulatory T cells (Treg cells) from naive T cells and the apoptosis of cytotoxic T cells
through death receptor signalling interactions, such as between programmed cell death 1
(PD1) and PD1 ligand 1 (PD-L1) or PD-L2. CTLAA4, cytotoxic T lymphocyte associated
protein 4; TCR, T cell receptor.
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Fig. 21. Approaches for theinduction of antigen-specificimmune tolerance.
Cell-based approaches include the ex vivo induction of tolerogenic dendritic cells (DCs),

apoptotic cells or regulatory T cells engineered to express chimeric antigen receptors
(CAR Tgq cells), all of which can be designed to deliver antigen with or without an
immunomodulatory signal. Viral particle approaches include the delivery of DNA-encoded
or RNA-encoded antigen via adenoviruses, lentiviruses or plant viruses. Synthetic particles,
including metallic, polymeric, lipid-based (including liposomes or lipid nanoparticles),
peptide—polymer, dendrimer or polyelectrolyte particles, can be designed to co-deliver
antigens, antibodies and immunomodulators, in various combinations. Alternatively,
antigens can be delivered via toxin-bound MHC molecules to induce the death of
antigen-specific cells, and albumin, antibodies or nanoemulsions can deliver antigens and
immunomodulators to induce antigen-specific immune tolerance. FASL, FAS ligand; PEG,

polyethylene glycol.
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Fig. 31. Mechanismsfor the induction of antigen-specificimmunetolerance.
Tolerogenic antigen-specific antigen-presenting cells (APCs) can be induced in vivo through

the delivery of synthetic particles, viral particles or cell-based approaches, or induced in
vitro and engineered to express disease-specific antigens and an immunomodulatory signal.
Tolerogenic APCs are characterized by reduced expression of pro-inflammatory markers
including CD80, CD86 and CD40 and an increased expression or production of tolerogenic
molecules such as I1L-10, FAS ligand (FASL), programmed cell death ligand 1 (PD-L1)

and prostaglandin E, (PGEZ2). Tolerogenic APCs can in turn induce naive CD4* T cells to
differentiate into regulatory T (Tyeg) cells or can induce effector T cell anergy and ablation.
Similarly, the induction of regulatory B (Byeg) cells via synthetic particle administration or
Treg cells via in vivo delivery of particles or in vitro engineering of chimeric antigen receptor
(CAR) Treg cells results in the reduction of effector T cells by the induction of anergy or cell
death. PEG, polyethylene glycol.
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