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Abstract. Intermediate filament proteins form an essen-
tial part of the cytoskeleton and provide topological order
to cells and tissues. These features result from their in-
trinsic property of self-organization and their response to
extrinsic cues. Keratins represent the largest subgroup
among all intermediate filament proteins and are differ-
entially expressed as pairs of type I and type II interme-
diate filament proteins in epithelia. Their primary function
is to impart mechanical strength to cells. This function is
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illustrated by patients with keratin mutations and by gene-
deficient mice. Additional functions include their partic-
ipation in the response to stress, cell signalling and apop-
tosis, and thus the keratin cytoskeleton appears far more
dynamic than previously anticipated. This may result from
hyperphosphorylation and possibly from interaction with
associated proteins. How signalling networks affect ker-
atin organization, turnover and function and vice versa
will be a major challenge for future investigations.

Introduction

Keratins are the major structural proteins in epithelial cells
and form a cytoplasmic network of 10–12-nm-wide in-
termediate filaments (IFs). Keratins are encoded by a
large multigene family of more than 50 individual mem-
bers which are classified into two major sequence types
[1, 2]. Type I keratins include K9–K23, and the hair ker-
atins Ha1–Ha8. Type II keratins include K1–K8, and the
hair keratins, Hb1–Hb6. Pairs of type I and type II ker-
atins are expressed differentially in epithelial cells.
Since 1991, mutations in several keratin genes have been
found to cause a variety of human diseases affecting the
epidermis and other epithelial tissues [3–6]. In addition,
transgenic mice, expressing mutant keratins, carrying 
constitutive or, more recently, inducible null alleles have
been generated to serve as mouse models for keratin 
diseases, often reflecting the phenotypes observed in 
patients [6, 7].

The aim of the present review is to summarize progress in
the field of keratin research in understanding the assem-
bly, structure, function and regulation of the keratin cy-
toskeleton. We discuss the evidence for the role of keratins
in providing stability against mechanical stress, and in
providing topological order for associated proteins.

Novel keratin genes

The majority of keratins were identified by biochemical,
immunological and cDNA cloning methods. Gene map-
ping studies established that all keratins with the excep-
tion of a few polymorphic variants [8–10] are encoded by
single-copy genes [11]. The genes for human type I ker-
atin genes, except for K18 [12], are clustered on chromo-
some 17q21 and all human type II genes and the gene for
K18 are clustered on 12q13 [2].
Recently, we examined the complement of IF genes pub-
lished in the NCBI and the Celera genome databases and
revealed the presence of 208 keratin-related sequences [2].* Corresponding author.
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Of these, 49 represented single-copy genes for type I and
II keratins. The type I keratin cluster contains at least 25
functional and 2 pseudogenes spread over nearly 1 Mb of
DNA; the corresponding type II gene array harbours at
least 24 functional genes and 5 pseudogenes distributed
over 1.2–1.3 Mb. Among these are the recently described
K23 [13] and 7 newly discovered type II keratin genes [2].
Of the latter, 6 displayed homology to K6a, K6b and K5,
while 1 was most closely related to K1 [2]. One of the new
members of the K6 family had 99% protein sequence

identity to K6b; however, its genomic organization was
distinctly different since it contained a unique intron 3.
Among the newly identified genes, only K23 has been
positively identified as an active gene, at least at the tran-
scriptional level [13]. 
The gene density in the two keratin clusters is approxi-
mately 35 kb per gene and, therefore, much higher than es-
timated for the overall genome [14]. In addition to protein-
coding keratin genes, there are 111 pseudogenes. While
intron-containing pseudogenes are mostly located within

Hair type II
Hb1 12 – –
Hb2 12 – –
Hb3 12 – –
Hb4 12 – –
Hb5 12 – –
Hb6 12 – –
yhHbA 12 – –
yhHbB 12 – –
yhHbC 12 – –
yhHbD 12 – –

Type III
Vimentin 10 – 1 (6)
Desmin 2 – –
GFAP 17 – –
Peripherin 12 – –
Nestin 1 – –
Synemin 15 – –

Type IV
NF-L 8 – 2 (Y)
NF-M 8 – 1 (10)
NF-H 22 2 (20, 1) –
a-Internexin 10 – –
Syncoilin 1 – –

Type V
lamin A/C 1 – –
lamin B1 5 – –
lamin B2 19 – –

Others
Filensin 20 – –
Phakinin 3 – –

Novel type II keratins
K1b 12 – –
K5b 12 – –
K5c 12 – –
K6h 12 – –
K6i 12 – –
K6k 12 – –
K6l 12 – –

Table 1.  Classification and chromosomal localization of intermediate filament genes and pseudogenes [adapted from ref. 2].

IF gene Chromo- Number of Number of
some pseudogenes gene fragments

Type I
K9 17 – –
K10 17 – –
K10b1 17 – –
K10c1 17 – –
K10d1 17 – –
K12 17 – –
K12b1 17 – –
K13 17 – –
K14 17 1 (17) 1 (17)
K15 17 – –
K16a 17 2 (17) –
K17 17 2 (17) 2 (17)
K18 12 62 15
K19 17 3 (6, 15, 12) 1 (4) 
K20 17 – –
K23 17 – –
* 17 – 2

Hair type I
KRTHA1 17 – –
KRTHA2 17 – –
KRTHA3a 17 – –
KRTHA3b 17 – –
KRTHA4 17 – –
KRTHA5 17 – –
KRTHA6 17 – –
KRTHA7 17 – –
KRTHA8 17 – –
yKRTHaA 17 – –

Type II
K1 12 – –
K2e 12 – –
k2p 12 – –
K3 12 – –
K4 12 – –
K5 12 – –
K6a 12 – –
K6b 12 – –
K6hf 12 1 (12) –
K7 12 – –
K8 12 35 26
* 12 – 1

IF gene Chromo- Number of Number of
some pseudogenes gene fragments

Keratin genes 8 and 18 which give rise to 62 and 35 processed pseudogenes, respectively, are italicized. Potential novel keratin genes/gene
fragments in the type I and II clusters are indicated by an asterisk. Chromosomal localization of pseudogenes is indicated by numbers in
parentheses. Pseudogenes related to hair keratin genes are denoted by y. The superscript 1 indicates type I keratin genes recently identi-
fied by Bawden et al. [26]. These are most closely related to K10.



the two keratin clusters, those with features of processed
pseudogenes have invaded other chromosomes, often at
several positions. A few earlier analyses have identified
pseudogenes for K8, K14, K16, K17, K18, K19 and hair
keratins [15–23]. The pseudogenes coding for K14, K16
and K17, which arose by gene duplication, are located
outside the type I keratin cluster [18].
Unexpectedly, most of the processed pseudogenes relate
to keratin genes 8 and 18, which map side by side on chro-
mosome 12q13 within the type II gene cluster. K8 and
K18 are typical of internal epithelia and represent the ear-
liest IF expression pair in embryogenesis. There are 62
processed pseudogenes plus 15 gene fragments for the
keratin 18 gene and 35 processed pseudogenes plus 26
gene fragments for the keratin 8 gene [12, 15]. These
processed pseudogenes are dispersed over all chromo-
somes. None of these pseudogenes contained an intact
open reading frame. Other keratin genes are either single-
copy genes or are additionally accompanied by 1–4
pseudogenes. In the draft for the human genome, genes
for keratin 11 [1] which may represent a polymorphic
variant of K10 [8–10] and for K6c–f [24] were not
found. The status of the latter may have to await complete
sequencing of the human genome. 
The total number of keratin genes amounts to at least 49.
Of these, 22 are expressed in various epithelia, 15 are 
trichocyte specific and 5 represent inner root sheath 
keratins. The expression sites of the 7 novel keratins 
described by Hesse et al. [2] have yet to be determined
(table 1).
In addition to our work, Langbein et al. [25] and Bawden
et al. [26] have described the existence of 9 previously un-
known human type I keratin genes, expressed in hair, nail
and oral filiform papillae. They are organized as a cluster
along with other type I genes on chromosome 17q12–21.
Recently, Langbein and co-workers [27] provided a com-
plete expression catalogue of the type II hair keratins, de-
scribing the existence of 6 newly identified functional
type II hair keratin genes, clustered within the type II ker-
atin gene domain on chromosome 12q13.

IFs share a common structure 

Keratins have a basic molecular structure common to all
cytoplasmic IF proteins (fig. 1). All carry an a-helical
‘rod’ domain consisting of four consecutive domains of
highly conserved length: segment 1A accounting for 35,
segment 1B for 101, segment 2A for 19 and segment 2B
for 121 amino acids. The non-a-helical parts between
these segments, also called ‘linkers’ (L1, L12, L2), are
variable in length (8–22 amino acids). The a-helical seg-
ments exhibit a heptad substructure (abcdefg), where the
a and d positions are commonly occupied by apolar amino
acids [28]. These hydrophobic amino acids generate a sur-

face that is wound around the axis of a single right-handed
a-helix in a left-handed manner, ultimately leading to su-
perhelix, i.e. coiled-coil formation of two such molecules.
The phasing of the heptads is broken in the middle of seg-
ment 2B giving rise to a ‘stutter’ [29]. This break in the
continuous heptad pattern is due to a deletion of three
amino acids (or the insertion of four residues) and is
strictly conserved in all IF proteins. The stutter represents
a helical segment which is not engaged in coiled-coil for-
mation. Moreover, atomic structure analysis showed that
the end of segment 2B, representing the evolutionarily
conserved IF consensus motif (TYRKLLEGEE), is not
entirely part of the coiled-coil structure, but bends away
from the coiled-coil axis [30, 31].
The formation of heterodimers in which compatible type
I and type II polypeptide chains align in parallel and in ex-
act axial register [32] is the first step of keratin filament
assembly. Two heterodimers associate, forming tetramer
units aligned in an antiparallel manner [33]. The exact
alignment of heterodimer units remains controversial: an-
tiparallel molecules can assemble in a half-staggered
mode with their 1B segments (A11) or with their 2B seg-
ments largely overlapped (A22); alternatively, the mole-
cules may be almost completely overlapped (A12). Pairs
of unstaggered antiparallel dimers were found to be the
major tetrameric subunit in IFs; and Steinert showed that
the A12 mode was consequent upon the formation of one
of the half-staggered forms [34–37].
Molecular details of the further steps in the process of
elongation and compaction of IFs are much less well un-
derstood. At least in vitro, the next steps of assembly con-
sist of a lateral aggregation of eight tetramers into so-
called unit-length filaments (ULFs) and the longitudinal
annealing of ULFs to successively growing fibres [38].
Recently, rheological assays and digital interference con-
trast light microscopy have been applied to examine the
influence of filament-filament interaction on the micro-
mechanical properties of distinct keratin polymers in
vitro. For both the K8/K18 and the K5/K14 polymers,
which represent the keratins of simple and complex (strat-
ified) epithelia, respectively, extensive bundling can be
promoted by minor changes in the assembly conditions. In
contrast, copolymers between K8/K14 and K5/K18 have
different properties, underlining the importance of pair-
wise assembly [39]. In the case of the K5/K14 polymers,
the non-helical tail domain of K14 has been proposed to
contribute to the ability of filaments to self-organize into
bundles [40]. The extent to which this occurs in vivo and
applies to other keratins remains the subject of future ex-
periments and has to include the identification of the cor-
responding protease(s). Rheological studies were also ap-
plied by Coulombe and co-workers to determine the
impact of mutations in keratin disorders on IF assembly.
The severity of the disease is usually correlated with the
exact position of the point mutation in the affected keratin,
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with the most severe mutations residing in the highly con-
served motif at either end of the a-helical rod domain. In
several epidermolysis bullosa simplex (EBS) patients, a
highly conserved arginine (R125) in K14 has been found
to be mutated to either cysteine or histidine [41, 42]. In a
rheological assay, the ‘hotspot’ R125C mutation in K14,
which causes EBS of the Dowling-Meara type (EBS-
DM), decreased the mechanical resilience of keratin IFs,
meaning that in this assay, the bundles of the mutant
K5/K14R125C filaments were fewer and smaller than
those which arose from K5/K14 filaments [43]. In a dif-
ferent in vitro assay, Herrmann et al. [44] compared fila-
ment assembly of wild-type K14 and mutant K14R125H

with K5. Quite unexpectedly, the mutant keratin pair
formed typical IFs with normal kinetics and were longer
and more regular than the corresponding wild-type fila-
ments. Therefore, filament assembly itself is not inhibited
by the R125H mutation in K14. This was a rather unex-
pected result because earlier experiments suggested that
keratin mutations in either the helix initiation or the helix
termination motif were detrimental to filament assembly
[45]. The contrasting results obtained by the different
groups may have to do with the distinct experimental con-
ditions they used.
The pathogenic mechanisms that cause skin disorders like
EBS are still not well understood. Rather than interfering

Figure 1.  (A, B) The tripartite domain structure of all keratin proteins, with an a-helical central rod domain dominated by subsegments (1A,
1B, 2A and 2B) and separated by short linker regions (L1, L12 and L2). The stutter represents a helical segment not engaged in coiled-
coil formation. Non-helical head and tail domains at the N and C termini flank the rod domain, respectively. At the beginning and end of
the rod domain are the highly conserved helix boundary sequence motives, also known as the helix initiation peptide (HIP) in the 1A do-
main and the helix termination peptide (HTP) at the end of helix 2B. Mutations in the boundaries cause aggregation of IFs and generally
lead to more severe phenotypes than those in other regions. For example, the mutation R125H in K14, which is located in the helix initia-
tion motif, leads to epidermolysis bullosa simplex Dowling-Meara type. This arginine codon in the 1A domain is conserved in most type
I keratins and represents a mutation ‘hotspot’ in these proteins. (C) Electron microscopic image illustrating the organization of keratin fil-
aments at desmosomes. The filaments are decorated with gold particles.
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with filament assembly, some of the EBS mutations may
affect filament bundling [43] and/or inhibit interaction of
IFs with other cytoskeletal components [46, 47].

Lessons from human disorders and transgenic 
animal studies

Human disorders
The consequence of keratin mutations at least for those
expressed in stratified epithelia is well established and 
the corresponding diseases are genetically well defined
(table 2). In general, disease severity correlates with the
location and the nature of the mutation within the protein
although variations of this rule exist [48]. Mutations af-
fecting the conserved initiation and termination se-
quences of the rod alter the organization of keratin IFs
causing epidermal fragility by decreasing mechanical re-
silience.
In basal keratinocytes, where K5, K14 and K15 are co-ex-
pressed [1], keratin IFs are organized in loose filament
bundles (see fig. 2). Mutations in K5 and K14 genes cause
a number of inherited human skin disorders such as EBS
[4, 41, 49, 50]. The characteristic feature of EBS is epi-
dermal blistering resulting from cytolysis of basal ker-
atinocytes. There are three main forms of EBS of which
EBS-DM is the most severe. Blisters can be found at any
body site, often resulting from mild physical trauma. Ker-
atin filaments collapse and form electron-dense aggre-
gates within the cell cytoplasm [51]. The Koebner variant
(EBS-K) is associated with milder widespread blistering

and the Weber-Cockayne form (EBS-WC) is the mildest
manifestation, where blistering is restricted to hands and
feet. In addition to these forms of EBS which represent
dominant disorders, a few patients suffering from reces-
sive EBS have been reported [references in refs. 4, 42].
The first EBS-DM mutation was discovered in the highly
conserved helix initiation motif at the beginning of helix
1A of K14 (R125H) [41]. The affected arginine codon of
the 1A domain is conserved in most type I keratins and
represents a mutation ‘hotspot’ in these proteins. A corre-
sponding mutation in the conserved helix termination mo-
tif of K5 was reported in a large EBS-DM family [50].
Upon induction of epidermal terminal differentiation,
transcription of K5, K14 and K15 is switched off and that
of K1 and K10 is switched on [52]. K1/K10-containing
filaments are strongly bundled and are typically oriented
parallel to the surface in the flattened keratinocytes of the
upper epidermis. Upon further differentiation, ker-
atinocytes loose their organelles and differentiate into cor-
neocytes which are eventually shed from the epidermis.
Instead of having a cell membrane, corneocytes are coated
with the cornified envelope to which keratins become co-
valently cross-linked via cornified envelope proteins in-
cluding involucrin [36, 53–55, for reviews, see refs. 4,
56]. Mutations in K1 and K10 cause bullous congenital
ichthyosiform erythroderma (BCIE) [57–59]. In histo-
logical sections of affected skin, basal epidermal cells ap-
pear normal, whereas suprabasal keratinocytes show cy-
tolysis. Within suprabasal cells of BCIE patients
aggregates were observed, which labelled with K1 and
K10 antibodies [60]. Since the initial reports, several more

Table 2.  Expression patterns of keratins and keratin disorders.

Keratin Expression site Disease References

K5, K14, (K15) basal keratinocytes of epidermis and stratified epithelia epidermolysis bullosa simplex (EBS) 3, 49, 50

K1, K10 suprabasal cells of epidermis and other stratified bullous congenital ichthyosiform 60
epithelia erythroderma (BCIE)

K1 diffuse non-epidermolytic palmoplantar 61
keratoderma (DNEPPK)
ichthyosis hystrix Curth-Macklin (IHCM) 62

K2e upper interfollicular and palmoplantar epidermis ichthyosis bullosa of Siemens (IBS) 68, 69

K9 upper interfollicular and palmoplantar epidermis epidermolytic palmoplantar 71
keratoderma (EPPK)

K6a, palmoplantar, mucosa, epidermal appendages, pachyonychia congenita type 1 (PC-1) 79
wound healing

K6b epidermal appendages pachyonychia congenita type 2 (PC-2) 85, 86

K16 palmoplantar, mucosa, epidermal appendages, PC-1 and focal non-epidermolytic 88
wound healing palmoplantar keratoderma (FNEPPK)

K17 epidermal appendages steatocystoma multiplex or PC-2 89

K4, K13 mucosa, stratified non-cornified epithelia white sponge nevus (WSN) 90, 91

K3, K12 cornea Meesmann’s corneal dystrophy (MCD) 94

K8, K18 simple epithelia cryptogenic liver disease 96, 97
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mutations have been described in BCIE, clustering at the
ends of the central a-helical rod domains in a manner
analogous to EBS-DM.
A missense mutation outside the rod domain in the head
of K1 was first reported in a single family with diffuse
non-epidermolytic palmoplantar keratoderma (DNEPPK)
[61]. This mutation was not accompanied by cell lysis,
supporting the concept that the primary function of the
head domain is not to confer stability to IF but may, rather,
involve interaction with other proteins. Sprecher et al. [62]
discovered a frameshift mutation in the tail domain of K1
leading to the loss of the majority of its characteristic
glycine loops. The patients who carried the mutation suf-
fered from a severe form of BCIE known as ichthyosis
hystrix Curth-Macklin. In addition to a distinct cy-

toskeletal defect, the authors found a mislocalization of
the major cornified envelope protein loricrin which 
normally translocates to desmosomes upon terminal dif-
ferentiation. Their findings suggested an additional 
function for K1 in terminal differentiation which depends
on its glycine-rich tail region. Whether this involves direct
interaction between the K1 tail and the glycine-loop 
motif in loricrin according to the ‘velcro’ hypothesis [63]
or rather relies on an indirect mechanism is not yet clear.
A recent study by Whittock et al. [64] reported a similar
frameshift mutation in K1 which surprisingly induced a
much milder phenotype of striate palmoplantar kerato-
derma restricted to the palms and soles in the inspected
family. The authors speculated that the reason for the dif-
ference between the two patient groups may be the pres-

Figure 2.  Keratin expression in the epidermis. (A) Basal epidermal cells express K5, K14 and K15. As basal cells commit to terminal dif-
ferentiation, they switch off the expression of K5, K14 and K15 and induce the expression of K1 and K10. As epidermal cells move up
through the spinous layers, they express K2e, which can pair with K10. Some keratins are expressed in the epidermis under special cir-
cumstances: during wound healing, keratinocytes express K6, K16 and K17. K9 is unique to the suprabasal layers of the palms and soles.
(B) Cross-section of mouse paw skin stained with haematoxylin and eosin.



ence of additional predisposing factors in the severely af-
fected patients.
The epidermal keratin expression pattern described above
is modulated by additional keratins which are either con-
stitutively present or induced after tissue injury. The for-
mer group is represented by K2e and K9, apparently serv-
ing as ‘reinforcement’ keratins in the upper interfollicular
and palmoplantar epidermis [65, 66] and by K19. K19 is
restricted to a small group of keratinocytes located in the
bulge of the hair follicle [67] and in the deep ridges of the
basal cell layer of palmoplantar epidermis [67]. Mutations
in the K2e gene were detected in families with ichthyosis
bullosa of Siemens (IBS) [68, 69]. Filament aggregation
and cytolysis were seen in the upper spinous and granular
layers [70]. K9 mutations lead to epidermolytic palmo-
plantar keratoderma (EPPK), an autosomal dominant skin
disease, characterized by thickening of the epidermis of
palms and soles [71; and references in ref. 4].
The second group of keratins, induced after disturbances
in epidermal homeostasis, comprises K6 isoforms [2,
72–75], K16 and K17 [for a review, see ref. 6]. These
three keratins have been suggested to confer particular
properties to an activated keratinocyte such as those re-
quired in wound healing [76 for review; 77, 78]. K6, K16
and K17 are constitutively present in the hair follicle,
tongue and oral epithelia, nail bed and palmoplantar epi-
dermis [73–75]. Mutations in K6a and K16 have been de-
tected in pachyonychia congenita type 1 (PC-1) which is
characterized by malformations of nails, palmoplantar and
tongue epithelia [20, 79–83]. Analogous mutations in
K6b and K17 lead to PC-2 which shows similar symp-
toms but no oral lesions [80, 84–87]. In addition,
K16 mutations lead to focal non-epidermolytic palmo-
plantar keratoderma (FNEPPK) [88], whereas mutations
in K17 cause either steatocystoma multiplex or PC-2 [89].
K4 and K13 mutations cause white sponge nevus (WSN)
[90, 91], a benign disorder that affects non-cornifying
stratified squamous epithelia (McKusick, MIM 123940
and 148065, respectively). Patients show white plaques in
the oral cavity and to a lesser extent in the oesophagus and
anogenital mucosa [92].
Meesmann’s corneal dystrophy (MCD), an autosomal
dominant disorder of the corneal epithelium, is character-
ized by cytoplasmic inclusions within corneal ker-
atinocytes [93]. This disease is caused by mutations of the
corneal keratins K3 and K12 [94, 95]. All K3 and
K12 mutations reported to date lie within the helix bound-
aries. 
While the majority of keratin mutations have been de-
tected in epidermis and its appendages, only a few have so
far been identified in internal epithelia of the body. These
express the type II keratins K7 and K8 and the type I ker-
atins K18, K19, K20 and K23. Many studies on keratins
of internal epithelia have focused on the liver. The pattern
of keratin expression in hepatocytes consists of K8 and

K18, and that of the bile duct epithelium of K7, K8, K18
and K19. The first study identifying a mutation in K18 de-
scribed a patient who suffered from a cryptogenic liver
disease [96]. In a recent publication, mutations were dis-
covered in the K8 gene in 5 patients from a group of 55
patients with cryptogenic liver cirrhosis [97]. These mu-
tations were not conserved compared to those detected in
epidermal keratins and how they contributed to liver dis-
ease is not clear. Given that the reported mutations repre-
sent individual and not familial cases, establishing a geno-
type-phenotype correlation will be challenging.
Whereas mutations in epidermal keratins clearly interfere
with the mechanical function of IF, the mutations in ker-
atins of simple epithelia may, rather, modulate the re-
sponse of affected cells to external stimuli. Recent stud-
ies have provided evidence that K8 and K18 may inhibit
apoptosis by modulating the response to tumour necrosis
factor (TNF). Caulin et al. [98] demonstrated that epithe-
lial cells lacking K8 and K18 were significantly more sen-
sitive to TNF-mediated apoptosis. These findings were ac-
companied by an increase in JNK and NF-kB activation,
both being downstream targets of the TNF signalling path-
way. From the results of an in vitro protein interaction as-
say, the authors deduced a direct interaction between TNF
receptor type 2 (TNFR2) and K8 and K18. In addition, In-
ada et al. [99] demonstrated that TRADD (TNFR1-asso-
ciated death domain protein) binds to K18 and K14.
TRADD is an adaptor protein for TNFR1 and is involved
in TNFR1-mediated apoptosis. TRADD-keratin binding
compromised the interaction of TRADD with TNFR1 and
subsequent caspase-8 activation and induction of apopto-
sis. Similar findings resulted from the analysis of primary
hepatocytes derived from K8–/– mice [100]. These hepa-
tocytes were more sensitive to Fas-mediated apoptosis.
Taken together, these observations suggest that the inter-
action with receptors and the sequestration of corre-
sponding adaptor molecules may represent a mechanism
by which keratins affect cellular signalling. Hence, they
may act as mechanotransducers.

Transgenic animal studies
Genetic studies of IF have mostly been confined to human
and mouse. Mutation analysis in the former [5] has laid
the groundwork for experimental approaches in the mouse
in which, to date, approximately half of the known non-
hair keratin genes have been inactivated by gene targeting
[101; for reviews, see refs. 6, 7]. Keratin 8 was the first
keratin gene to be inactivated by gene targeting using ho-
mologous recombination [102]. A number of additional
keratin genes have been inactivated since then (table 3).
The knockout of K8 [102, 103] has provided evidence for
the importance of keratins during embryonic development
and in gut epithelia. In the C57Bl/6 strain of mice, em-
bryonic death around E12.5 was observed in 94% of all

62 J. Kirfel, T. M. Magin and J. Reichelt Keratin structure and function



CMLS, Cell. Mol. Life Sci. Vol. 60, 2003 Review Articels 63

K8-deficient embryos [102]. Originally, this was inter-
preted to result from hepatocyte fragility, as indicated by
bleeding in the fetal liver. According to recent experi-
ments, K8–/– mice most likely died from placental mal-
function. This was concluded from the embryo aggrega-
tion experiments of K8–/– cells with wild-type tetraploid
embryos, the latter forming the extraembryonic lineage
[104].
K18-deficient mice [105] were viable and fertile, had a
normal life span, and showed normal embryonic devel-
opment. The analysis of several internal epithelia showed
that K18 was replaced by K19, which demonstrates that
some keratins can be replaced by another one. An unex-
pected phenotype, however, developed in livers of adult
K18–/– mice: about 20% of their hepatocytes showed K8-
positive cytoplasmic aggregates, which were identified as
Mallory body-like structures. Mallory bodies occur in hu-
man diseases like alcoholic hepatitis, biliary cirrhosis and
benign and malignant liver tumours [106].
The inactivation of the K19 gene in mice did not produce
an obvious phenotype [107]. K19 expression overlaps
with that of K18 in many simple epithelia, where
K19 may provide a normal cytoskeleton together with K8
in the absence of K18.
The recent combined gene ablations of K8 and K19 [107]
and of K18 and K19 [108] have been useful to dissect the
role of keratins in mouse development and to eliminate a
keratin-based compensation mechanism. Embryos from
both lines of double-deficient mice died between E9.5 and
E10 but were reported to display different phenotypes. In
K18/19 double-knockout mice, no keratin IFs could form
at all as these two proteins represent the only type I ker-
atins until late midgestation in the mouse [Hesse and Ma-
gin, unpublished data]. The remaining type II proteins

were either degraded or formed aggregates [108]. In these
mice, embryonic lethality at E9.5 resulted from the
fragility of giant trophoblast cells that normally express
large quantities of keratins. Rupture of these cells induced
the formation of large haematomas and consequently dis-
turbed the nutritional function of the early yolk sac [for a
comparison, see ref. 107].
Following the discovery of point mutations in K5 or K14
which lead to EBS [for reviews, see refs. 4, 56], three
mouse models were established by gene targeting. We and
others have shown that the targeted deletion of K5 or K14
or the introduction of a K14 point mutation in mice pro-
vide good animal models for EBS [109–111]. Compari-
son of these three mouse models revealed a few notable
differences. K5–/– mice were most severely affected, as the
complete absence of a basal keratin cytoskeleton resulted
in devastating cytolysis and in the death of the K5 null
mice immediately after birth [111]. 
The reported phenotype of the K14–/– mice which exhib-
ited generalized blistering of the skin accompanied by in-
creased mortality was similar to that of severe cases of
EBS-DM; however, some mice survived the first 3 months
of life, possibly due to partial compensation of the K14
loss by endogenous K15 [109]. 
In contrast to K14–/– mice, the K5–/– mice showed a strong
induction of the wound-healing keratin K6 in the
suprabasal epidermis of cytolysed areas. In addition, K5-
and K14-deficient mice differed with respect to tongue le-
sions. Unlike K14–/– animals, which displayed basal cell
damage along the dorsal tongue [109], K5–/– animals
showed a comparable defect along the ventral tongue.
Roop and co-workers utilized the bacteriophage-derived
Cre-lox recombination system to produce a mouse model
for EBS in which the expression of the targeted gene is

Table 3.  Keratins inactivated by gene targeting.

Gene(s) Mutant phenotype Human References
pathology

K4 mild lysis in oral mucosa WSN 128
K5 extensive skin blistering, cytolysis of basal cells and death EBS 111
K6a none apparent 75, 130, 131
K6a/K6b (double) extensive blistering in oral mucosa and death PC 131
K8 phenotype is strain dependent: embryo lethal (C57Bl/6) or colorectal hyperplasia, 

colitis and liver injury (FVB) 102, 103
K10T homozygous neonates: lethal; heterozygotes show hyperkeratosis BCIE 118
K10 none obvious in non-adult mice, compensation via K14 stabilization and 

hyperproliferation 120, 134
K10 R156C (inducible) blisters in suprabasal keratinocytes after RU486 treatment BCIE 126
K12 cell fragility in cornea MCD 129
K14 skin blistering, cytolysis of basal cells EBS 109
K14 R131C (inducible) skin blistering, cytolysis of basal cells after RU486 application EBS 110
K18 giant hepatocytes, Mallory bodies in ageing mice 105
K19 none apparent 107
K18/K19 (double) embryonic lethal 101
K8/K19 embryonic lethal 107



spatially and temporally controlled [110]. To generate a
mouse model that mimics EBS-DM at the genetic level,
which could provide a good model for therapy ap-
proaches, they introduced a point mutation in codon 131
(equivalent to the ‘hotspot’ mutation of R125 in human
K14) in the mouse K14 gene. Upon treatment with the in-
ducer RU486, the mutant keratin was expressed, leading
to the formation of blisters. Histological analysis revealed
that blisters occurred within the basal layer of the epider-
mis, as expected. If treatment with RU486 was stopped,
blistered areas healed and a normal epidermis continued
to form. According to the authors, this was due to a mi-
gration of normal keratinocytes into the blister sites where
they gave rise to a new epithelium [110]. These mice fur-
ther showed that a twofold lower expression of the mutant
K14 in basal keratinocytes did not lead to a recognizable
phenotype. While this observation might be useful for
gene therapy approaches, it seems inconsistent with the
observation that as little as 2% of a mutant IF subunit is
sufficient to lead to the collapse of the cytoskeleton and
cause a disease phenotype [112]. 
How do mutations and deletions of basal keratin genes in
the mouse relate to EBS? In humans, the majority of mu-
tations act dominant negatively and lead to perinuclear
keratin aggregation and cytolysis. Additionally, a few pa-
tients with autosomal recessive EBS have been analysed.
The latter were reported to represent ‘knockouts’ of K14
[113–117] and displayed a phenotype generally less se-
vere than in patients suffering from dominant mutations.
While expression of smaller-sized keratin fragments has
not been ruled out in any of the recessive patients, all of
them clearly have some normal IF in their basal ker-
atinocytes. These seem to provide sufficient overall sta-
bility to allow regeneration of stratified epithelia. 
K1 and K10 are the major keratin genes expressed in the
differentiating layers of the epidermis, representing about
60% of its total protein [52]. Targeted expression of dom-
inant negative forms of K10 produced skin lesions re-
sembling severe forms of BCIE [118, 119]. However, the
recent generation of K10–/– mice revealed that K10 was
not essential for the stability of the epidermis in mice. In
these mice, K5/K14 IFs persisted suprabasally and were
able to form IFs and maintain epidermal stability and in-
tegrity in the absence of K10. Interestingly, in adult ani-
mals, the lack of K10 led to a novel phenotype, charac-
terized by a more than fivefold increase in basal cell
proliferation, the induction of K6 and K16 and a mild hy-
perkeratosis [120]. Most remarkably, an induction of cy-
clin D1 and of c-Myc in basal and in a restricted number
of suprabasal cells, and of the cell cycle regulator 14-3-3s
[121] in postmitotic keratinocytes was noted [120]. Sim-
ilar changes were recently described in transgenic mice
overexpressing c-Myc in their basal epidermis [122, 123].
These data point to an involvement of K10 in the regula-
tion of epidermal cell proliferation. While the molecular

mechanisms underlying the increase in basal cell prolif-
eration need to be worked out in K10–/– mice, Paramio
et al. [124] have proposed a direct role for K10. They have
reported an inhibition of keratinocyte proliferation medi-
ated by the tail domains of K10. Based on more recent ex-
periments [125], the head domain of K10 is now proposed
to sequester Akt and atypical PKCz kinases, thereby act-
ing as a negative regulator of the epidermal cell cycle. The
authors argue that interaction of K10 with either of the
two kinases inhibits their translocation to the plasma
membrane, which is a necessary step in their activation
and participation in the PI-3K pathway and results in de-
creased mitotic activity of K10-expressing cells.
Recently, an inducible model of BCIE was presented by
introducing the K10 mutation R154C (equivalent to the
‘hotspot’ mutation R156C in BCIE patients) in an in-
ducible fashion [126]. In these mice, blisters developed in
the suprabasal layers, although basal cells, including stem
cells, remained normal. Induced lesions persisted for sev-
eral months after RU486 application. Because the normal
turnover time for mouse epidermis is 8–10 days [127],
this suggested that cre-mediated deletion had occurred in
epidermal stem cells. This could be verified in the mouse
model, using laser capture microscopy of appropriate ker-
atinocytes.
K4 and K13 form the intermediate filaments in the
suprabasal cells of stratified, non-cornified epithelia like
oesophagus. Minor phenotypic changes have been re-
ported in K4 knockout mice [128]. The lack of K4 was 
accompanied by cell hyperplasia and cell degenerations 
in oesophagus and a variety of other tissues. But in 
general, the tissue architecture remained intact. Induc-
tion of K6 has been suggested to compensate for the loss
of K4.
K12 is together with K3 expressed in the epithelium of the
cornea. K12-deficient mice displayed a mild corneal phe-
notype with a thinned corneal epithelium [129]. Increased
cell fragility was described in the uppermost cell layer,
which was depleted of a keratin cytoskeleton. The mild
phenotype was explained by the presence of K5/14 IFs,
which are normally expressed in cornea [129]. 
K6 exists as multiple highly related isoforms in the mam-
malian genome, each encoded by a distinct gene. In mice,
K6 genes (K6a and K6b) are constitutively expressed in
all major epithelial appendages and are strongly induced
in wound healing [73]. Following the inactivation of K6a,
which is normally induced in basal and suprabasal cells of
stratified epithelia and in the outer root sheath of hair fol-
licles after wounding, no obvious pathological phenotype
was reported. In addition, repair of full-thickness wounds
was unaffected in these mice [130]. Inactivation of both
genes, K6a and K6b, resulted in fragility of the oral mu-
cosa in neonates that interfered with feeding and the ho-
mozygous pups died within a week after birth. Interest-
ingly, there was an apparent influence of the genetic

64 J. Kirfel, T. M. Magin and J. Reichelt Keratin structure and function



background on the K6a/K6b phenotype. Whereas death
was a fully penetrant trait in the 129SvJ-DBA2-
C57Bl/6 mixed-strain background [131], approximately
25% of the double-knockout mice exhibited a milder oral
phenotype and survived to adulthood in the 129SvJ-
C57Bl/6 strain. In the latter case, survival was explained
by compensation by K6hf, a type II keratin that is related
to K5 in sequence and to K6 isoforms in its expression
pattern [132]. 
Several important conclusions can be made from the ge-
netically engineered mice. First, keratins clearly provide a
cytoskeletal backbone not only to stratified but also to cer-
tain simple epithelia during embryonic development and
in adult life. At first glance, the lack of keratin IFs as in
K5–/– [111] and K18–/–/19–/– mice [107, 108], and the ex-
pression of mutations in K10 and K14 mice [110, 133]
lead to a similar histopathology. Nearly all these pheno-
types include fragility of specific populations of epithelial
cells. This reflects the general essential role of keratins in
maintaining the structural integrity of epithelial cells and
tissues. The mechanisms leading to cell and tissue
fragility, however, appear to differ. The comparative analy-
sis of K10 mutant [118, 126] and K10–/–mice [134]
demonstrated that the absence of the protein is without
detrimental effects whereas the presence of a mutation in
the same protein has devastating consequences. Second,
gene deletions of a type I or II keratin normally co-ex-
pressed may have a different outcome. The main differ-
ences between K5 and K14 null mice [109, 111] resides
in the severity of the blistering observed, which may
largely depend on the presence of K15 [109] or K17
[135]. The severity of the K5–/– phenotype suggests that
the loss of K5 may lead to early death in humans. Another
example is illustrated by the distinct liver phenotypes in
K8- and K18-deficient mice [103, 105]. Third, a null mu-
tation in the mouse does not necessarily reflect the phe-
notype of a disease that arises from, e.g. point mutations
in the orthologous human gene. Most disease-causing al-
terations in keratin genes consist of (missense) mutations
or small deletions that act dominantly and may represent
gain-of-function mutations. 
Finally, the generation of inducible mouse models, in
which gene targeting is spatially and temporally controlled
[110, 133], offers the possibility to test gene therapy ap-
proaches for a given disease.

Keratin modifications, keratin-associated proteins
and signalling

Phosphorylation is a dynamic process that appears to be
involved in regulating keratin solubility and filament or-
ganization and function. Zhou et al. [136] characterized
the major phosphorylation site of human K19 and its role
in keratin filament organization. The cell-cycle-dependent

phosphorylation of K18 at S33 allows binding of 14-3-3
proteins which play a role in keratin organization and sub-
cellular distribution [137]. The mutation of this phospho-
rylation site predisposes to hepatotoxic injury in trans-
genic mice [138] and leads to a mislocalization of IFs in
pancreatic acinar cells [139]. The functional significance
of the interaction between K18 and 14-3-3 has not yet
been determined. On the one hand, there is evidence for an
active role of 14-3-3 in the organization of keratin IFs as
well as a role for keratins in the sequestration of 14-3-3,
thereby modulating cell cycle progression [140]. Keratin
may function as an adapter to bring other molecules in
close proximity or it may displace other 14-3-3-binding
proteins. For the latter, there is evidence from studies on
vimentin [141]. The absence of keratin IFs in K8 and K18
knockout mice leads to a relocalization of 14-3-3z from
the cytoplasm to the nucleus. Analysis of K8 and K18
knockout mice revealed alterations in the architecture of
their liver parenchyma and the formation of giant, multi-
nucleated cells in both mice [142]. By influencing the 
activity of cdc25, a cell-cycle-regulating phosphatase, 14-
3-3z may cause a disturbance in mitosis and an S/G2
phase stop, thereby leading to the observed abnormal tis-
sue architecture.
Keratin hyperphosphorylation also occurs in response to
injury. The stress-associated kinases p38 and Jun kinase
(JNK) are important for these phosphorylation events. In
K8, amino acid S73 is a phosphorylation site for p38 ki-
nase, and its phosphorylation may play a significant role
in keratin filament reorganization [139]. He et al. [143]
demonstrated that K8 was also phosphorylated at S73 by
JNK in vitro and that JNK was associated with K8 in vivo,
correlating with the decreased ability of JNK to phos-
phorylate the endogenous c-Jun. The effect of phos-
phorylation is not understood, but possibly includes 
modulation of filament organization and distribution or
interaction with keratin-associated proteins, which may
affect disease pathogenesis.
Until recently, proteases involved in the turnover of ker-
atins were not known. Caspase-mediated keratin degra-
dation has been reported for type I keratins [144–147].
Caulin et al. [144] described for the first time the caspase
cleavage of K18 and the reorganization of IFs during
apoptosis. More recently, Ku and Omary [148] demon-
strated that all type I keratins are likely to be substrates for
caspases. Keratin hyperphosphorylation occurs upon an
apoptotic signal and provides significant protection from
caspase-mediated degradation. The authors argued that
mutations within the caspase recognition site might affect
proteolysis.
Ku and Omary [149] demonstrated that keratin ubiquiti-
nation leads to proteasome-mediated turnover of keratins,
at least in cultured cells. In addition they showed that
phosphorylation of K8 but not of K18 can protect from
ubiquitination.
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Transglutamylation occurs for example in the cornified
cell envelope and links several type II keratins (K1, K2e,
K5 and K6) e.g. to loricrin, involucrin and envoplakin to
provide a compact protective structure. Candi et al. [55]
demonstrated that a highly conserved lysine residue in the
head domain was essential for the attachment of these ker-
atin IFs to the cornified cell envelope. Interestingly, this
residue in K1 is mutated in a family with non-epider-
molytic palmo-plantar keratoderma, which suggests that
the fragility of the palms and soles of these patients may
be due to a defective cross-linking of keratin filaments to
the cornified envelope [55].
The interaction of keratins with anchoring junctions at the
cell membrane is mediated by a family of cytoskeletal-
binding proteins, named plakins [for review, see refs. 12,
150]. The three founding members of the plakin family are
desmoplakin, plectin and bullous pemphigoid antigen 1
(BPAG1); other plakins include envoplakin and periplakin
[151; reviewed in refs. 152, 153]. Periplakin polypeptides
are capable of associating with IFs in transfected cells
[154] whereas the potential involvement of envoplakin has
yet to be determined. Desmoplakin is a major structural
protein of the cytoplasmic plaque of desmosomes which
are common in epithelial tissues. Desmoplakin plays an
important role in anchoring cytoplasmic IF to the cell
membrane thereby providing a three-dimensional supra-
cellular scaffolding that provides tissues with mechanical
stability [155, 156]. The C-terminus of desmoplakin is re-
sponsible for the interaction with IFs [157]. For epidermal
type II keratins, a short subdomain of their head has been
invoked to mediate binding to desmoplakin [157–159].
This interaction may be inhibited by phosphorylation of a
serine in the C-terminus of desmoplakin which may rep-
resent a mechanism for modulation and dynamics [160].
At the hemidesmosome which mediates the adhesion of
epithelial cells to the extracellular matrix in an a6b4-inte-
grin-dependent fashion, BPAG-1 [161] and plectin [162]
appear to represent the major attachment sites for keratin
IFs [163]. In addition, plectin is found in the cytoplasm,
where it is often associated with IFs [46].
Polycystin-1 is a ubiquitously expressed multispan trans-
membrane protein which is distributed with IFs at the
desmosomal plaque. It supposedly interacts via its C-ter-
minus with K8, K18 as well as with vimentin and desmin,
at least in a yeast two-hybrid screen [164]. The localiza-
tion of polycystin-1 at desmosomes may be crucial for 
signalling, as it has been shown to bind directly to G pro-
teins [165].
As keratinocytes differentiate, they synthesize profilag-
grin, a granular layer protein, which is processed to filag-
grin and then promotes the bundling of keratin filaments
into large macrofibrils [166, 167]. Interestingly, there are
a number of disorders in human epidermis in which the
expression and processing of profilaggrin and/or function
of filaggrin appear to be abnormal, so that this system 

also appears to represent an example of an IF-associated
protein involved in disease [42]. Trichohyalin which was
discovered as a keratin-binding partner and cross-link-
ing protein in the inner root sheath of the hair follicle 
[168] has also been shown to be involved in skin dis-
orders [169].

Future perspectives 

The past decade has seen major breakthroughs in IF re-
search in unravelling the role of keratins in human disease
and understanding their structure at the atomic level.
Given the power of inducible mouse models [133], ad-
vances in green fluorescence protein technology [170] and
the breakthrough in structure determination [31], many
tools are now at hand to focus on some of the most press-
ing questions old and new. With respect to the complex
keratin expression pattern, we can now address the ques-
tion of its functional significance, by gene switching ex-
periments in mice. The recently reported interaction of
keratins – both as polymers and as soluble oligomers –
with key players of cell cycle regulation like 14-3-3, Akt
and of the apoptotic machinery has put keratins on the
map of cell signalling. Keeping in mind the rapid
changes in keratin expression seen in wound healing 
and metastasis which partially repeat developmental
processes, it is surprising how little we know about
whether members of the keratin family are instructed by
key instructive processes like wnt signalling. If one con-
siders the shape and differentiated properties of cells and
tissues as the result of a network of protein interactions, it
would not come as a surprise if keratins, equipped with
the power of self-organization and protein interaction, are
an important part of such signalling cascades. Taking this
view, the participation of keratin mutations in cryptogenic
liver disease and in other multifactorial diseases can be
analyzed in a different way. To that end, we must answer
the following questions: How are keratins assembled in
vivo? What determines their specific subcellular local-
ization? How dynamic are they in cultured cells and in
vivo? What is the significance of their association with
proteins known and yet to come?
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