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Abstract. Eukaryotic genomes contain transcriptional
regulatory elements that alter promoter activity through
long-range interactions. Many control elements show a
broad range of promoter interactions, suggesting that these
elements are capable of inappropriate transcription. The
identification of a novel class of directing regulatory ele-
ments, called insulators, has provided clues into mecha-
nisms used in eukaryotic genomes to maintain transcrip-
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tion fidelity. Insulators contribute to the organization of in-
dependent domains of gene function by restricting en-
hancer and silencer function. This review describes the
properties of insulators and related elements that have been
isolated from several eukaryotic genomes. Two classes of
models of insulator function are considered. These models
provide insights into possible mechanisms used by these
diverse elements to provide regulatory autonomy.

Eukaryotes contain thousands of genes whose unique pat-
terns of expression establish distinct cellular identities.
These processes require coordinate transcriptional regu-
lation of genes randomly distributed in the genome. In eu-
karyotes, the template for transcription is chromatin, rep-
resenting the complex of DNA, histones, and non-histone
proteins that comprise chromosomes. 
Chromatin is not uniformly organized along the length of
a chromosome. In most cells, chromosomes are organized
into two types of chromatin domains that can be cytolog-
ically distinguished [1–3]. Euchromatin encompasses
chromosomal regions that are decondensed in interphase
cells. These regions are gene rich, are associated with dis-
organized nucleosomal arrays enriched in specific histone
modifications, such as acetylation, and show increased
protein accessibility, as assayed using nucleases. In con-
trast, heterochromatin encompasses chromosomal regions
that remain condensed in non-dividing cells. These re-
gions are gene poor, are associated with regular nucleo-

somal arrays that are hypoacetylated, and show a compact
structure, observed as a decreased accessibility to nucle-
ase probes. Heterochromatin represses transcription of eu-
chromatic genes that are translocated into these domains
[4–7]. Interestingly, genes that normally reside in het-
erochromatin require this chromatin environment for ex-
pression, as translocation of heterochromatic genes into
euchromatin causes a loss in expression [8–11]. These po-
sition effects imply that appropriate patterns of gene ex-
pression require the correct establishment and mainte-
nance of independent chromatin domains.
Gene-specific transcription factors can alter chromatin
structure. These factors work through several classes of
DNA control elements. Short-range regulation of RNA
production depends upon promoter regions that contain
both core elements that bind the general transcriptional
machinery and promoter-proximal sequences that bind
general activators. In contrast, enhancers and silencers act
bi-directionally over long distances to control spatial and
temporal patterns of transcription. In many cases, long-
distance transcriptional effects depend upon recruitment* Corresponding author.
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of chromatin-modifying proteins by DNA-binding pro-
teins [12, 13]. Long-range elements, such as enhancers
and silencers, show limited promoter specificity [14, 15],
suggesting that they have the capacity to modulate tran-
scription of inappropriate genes. This possibility is un-
derscored by recent observations that chromosomes are
highly mobile in the nucleus. Such extensive motion of
chromosomes may allow illegitimate interactions between
enhancers, silencers, and promoters [16]. Mechanisms
must exist to prevent inappropriate regulatory interactions
between elements so that long-range control is main-
tained.

Insulators and related elements

Insulators represent a novel class of DNA sequences that
constrain regulatory interactions within eukaryotic
genomes. These elements restrict enhancer and silencer
function and contribute to the generation of independent

gene regulation within heterochromatic and euchromatic
domains. Insulators are operationally defined by two func-
tional properties. First, they protect gene expression from
positive and negative chromatin effects caused when
transgenes are integrated at random positions within a
genome. Second, insulators block enhancer-activated
transcription when the insulator is interposed between an
enhancer and promoter, but not when the insulator is po-
sitioned upstream of the enhancer. Disruption of en-
hancer-activated transcription does not interfere with pro-
moter function, since basal transcription of the target
promoter is not affected [17–19]. Similarly, enhancer
blocking does not result in inactivation of enhancers 
[18, 20]. These data suggest that insulators interfere with
mechanisms used in signalling between long-distance reg-
ulatory elements and promoters.
Insulators and related sequences have been identified in
several organisms (table 1). In many cases, an element has
been classified as an insulator if it possesses at least one
of the two functional properties. However, this classifica-

Table 1.  Summary of insulator and insulator-like sequences identified in many organisms.

Name Organism Size (kb) Origin Classification References

gypsy fruit fly 0.35 gypsy retrotransposon insulator 4, 17, 19, 75
scs fruit fly 0.90 87A7 locus, promoter region CG14732 insulator 55, 56
scs¢ fruit fly 0.50 87A7 locus, promoter region of aurora and CG3281 insulator 55, 56
eve promoter fruit fly 0.03 promoter of even skipped gene anti-enhancer 185
Fab-7 fruit fly 1.20 3¢ regulatory region of

Abd-B. insulator 43, 112
Fab-8 fruit fly 0.59 3¢ regulatory region of

Abd-B. insulator 116, 117, 193
Faswb fruit fly 1.3 5¢ region of Notch gene insulator 165
BE76 fruit fly 0.32 upstream of IMPdH gene at the raspberry locus anti-silencer 66
BE28 fruit fly 0.27 present at 400 chromosomal sites insulator 65, 66 
Idefix U3 fruit fly 0.47 LTR of Idefix retrotransposon anti-enhancer 189
Alu2 human 0.32 SINE element insulator 23
Apolipoprotein B human 1.8 5¢ end of apolipoprotein B gene insulator 34, 123
5¢ boundary
Apolipoprotein B human 0.79 3¢ end of apolipoprotein B gene anti-silencer 123
3¢ MAR
a1-ATR MAR human 4.1 a-1-antitrypsin-like gene anti-silencer 37
Kcnq1 ICR human 3.6 intron of Kcnq1 gene anti-enhancer 51
BEAD-1 human 2.5 between TCRa and Dad 1 genes anti-enhancer 30
HS2–6 human 2.8 between TCRa and TCRd genes anti-enhancer 124
DM1 human 0.40 at CAG repeat between DMPK and SIX5 anti-enhancer 139
H19 ICR mouse 2.0 5¢ region of H19 gene anti-enhancer 49, 50, 144
5¢ A element chicken 2.9 5¢ region of lysozyme gene anti-silencer 25, 38, 39
HS4 chicken 0.25 upstream of b globin cluster insulator 26, 33, 35
3¢ HS chicken 0.40 between b globin cluster and OR gene anti-enhancer 22
RO frog 1.3 rDNA cluster anti-enhancer 126
sns sea urchin 0.26 3¢ end of H2A gene in histone gene cluster anti-enhancer 194
Ars sea urchin 0.57 5¢ region of arylsulphatase gene insulator 29, 40, 195
HMR tRNAThr budding yeast 0.30 boundary of HMR silent mating type locus anti-silencer 153, 159
CHA1 promoter budding yeast ND gene near HML silent mating type locus anti-silencer 153
UASrpg budding yeast 0.10 control regions of TEF genes anti-silencer 158

and ribosomal protein genes
X-STAR budding yeast 0.30 subtelomeric repeat anti-silencer 161, 196
Y¢-STAR budding yeast 0.14 subtelomeric repeat anti-silencer 24, 161
IR-L and IR-R fission yeast 2.0 inverted repeat flanking silent mating type locus anti-silencer 196 
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tion strategy should be used cautiously. Recently, func-
tional dissection of two insulators demonstrated that the
enhancer-blocking and protection against position effects
are conferred by distinct sequences, uncoupling these ac-
tivities [21–23]. These data argue that not all elements
that possess one insulator property will possess both. Fur-
ther, they indicate that insulators may utilize many mech-
anisms to impart regulatory autonomy.
We propose that a new terminology be adopted to clarify
the properties of a given modulator element. We suggest
that the term insulator be reserved for sequences that both
block enhancer-activated transcription and confer posi-
tion-independent expression. We propose that sequences
only capable of blocking enhancer function be called anti-
enhancer elements. Finally, we propose that the term anti-
silencer, first introduced by Gilson and colleagues [24], be
adopted for elements that have only been demonstrated to
block the action of transcriptional repressors or are only
known to protect against position effects, as the majority
of position effects appear to be negative [see for example
refs 25, 26]. In some cases, anti-silencers have been 
called barriers, to reflect their distinction from insulators 
[27, 28]. 
Several insulators and anti-enhancer elements prevent en-
hancer function when tested in different organisms [22,
29–33]. Similarly, many insulators and anti-silencers have
the ability to block chromatin-mediated repression in dif-
ferent organisms [23, 26, 33–41]. Based on these obser-
vations, insulators and insulator-like sequences appear to
be essential components of eukaryotic genomes that are
required for establishment of appropriate levels of gene
expression.
Insulators are not permanent, impassable elements. Cer-
tain conditions have been identified where insulators may
be overcome or bypassed. Insulator effectiveness is influ-
enced by the nature of the enhancer, promoter, and ge-
nomic context [42–47]. Furthermore, insulator function
can be regulated [48–51] and can show tissue specificity
[52]. These observations imply that insulators participate
in diverse ways in the regulation of transcriptional activa-
tion and repression.

The discovery of insulators 

The Drosophila specialized chromatin structure insula-
tors, scs and scs¢, were the first identified (table 1). These
insulators are located in the 87A7 region of chromosome
3, flanking a pair of divergently transcribed heat shock
protein (hsp) 70 genes. Upon heat shock, a high level of
hsp70 transcription occurs that causes a reversible decon-
densation of the local chromatin structure, visualized as a
puff in the larval salivary gland polytene chromosomes. At
the boundaries of the puff are regions of unusual chro-
matin structure that define the scs and scs¢ insulators

[53–56]. These observations led to the proposal that in-
sulators are domain boundaries that control concerted
changes in chromatin organization, such as those associ-
ated with puffing [54–56].
The chromatin structure of the scs and scs¢ insulators is
similarly organized, including two sets of strong nuclease-
hypersensitive sites that separate a nuclease-resistant core.
However, these insulators do not share significant DNA
sequence identity [57]. The scs insulator is a modular el-
ement, with sequences from both hypersensitive regions
contributing to the enhancer-blocking function [44, 58].
Enhancer blocking by monomers of each hypersensitive
region is reduced compared to the complete scs insulator,
but is restored by multimerization. These observations
suggest that scs contains different sequences that are func-
tionally equivalent and that contribute additively to insu-
lator function [44]. The scs¢ insulator also appears to have
a modular structure. The two scs¢ Dnase-I-hypersensitive
regions share a cluster of CGATA sequences [59]. A par-
tial block of enhancer function is conferred by a subfrag-
ment of scs¢ containing one CGATA cluster, while multi-
merization of the CGATA clusters reconstitutes blocking
[59]. Taken together, these data suggest that the full-length
scs and scs¢ insulators assemble multiple protein com-
plexes on a single insulator that cooperate to confer en-
hancer blocking.
One component of the scs nucleoprotein complex is scs
binding protein, SBP, that contains eight zinc fingers and
binds a 24-bp region of scs (table 2) [58]. Multimers of an
oligonucleotide containing an SBP-binding site partially
reconstitute enhancer-blocking activity [58]. Chromatin
immunoprecipitation studies demonstrated that SBP is as-
sociated with scs in vivo [58]. SBP is encoded by the
zeste-white (zw) 5 gene whose function is essential for cell
proliferation and differentiation [60]. For this reason, test-
ing the effects of mutations in zw5 on the function of a
complete scs insulator is difficult. Instead, effects of the
reduction in zw5 activity were tested on a compromised
insulator that contained low-affinity SBP-binding sites.
Results from these studies support a role for SBP in scs
function [58].
The scs¢ insulator binds two proteins produced by alter-
native splicing, boundary-element-associated factors
(BEAF32A and BEAF32B; table 2). These proteins share
a carboxy-terminal domain that has similarities with
leucine zipper motifs that promote protein-protein inter-
actions [59, 61]. The unique amino-terminal domains of
BEAF32A and 32B mediate DNA binding with slightly
different sequence specificities [61]. BEAF binds DNA as
a trimer, with specificity for the CGATA sequence [61].
Immunolocalization studies showed that BEAF binds to
many sites throughout euchromatin, with distinct combi-
nations of BEAF isoforms at different genomic sites.
These sites include a number of puff boundaries and scs¢,
but not scs [59]. No mutations in the gene encoding BEAF
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are known, precluding analysis of the effect of the loss of
this protein on scs¢ insulator function. Recently, a third
protein, called DREF, was identified as an scs¢ binding
protein (table 2) [61]. DREF has weak affinity for the
BEAF binding sites in scs¢. The overlapping DNA-bind-
ing specificity of DREF and BEAF suggests that these
proteins may compete for DNA binding and regulation of
target gene expression [61].
The 87A7 region is transcriptionally complex. In addition
to the divergent pair of hsp70 genes, three transcription
units have been identified, including aurora that encodes
a kinase involved in cell cycle regulation, and two genes
of unknown function (CG14732, CG3281) [62–64]. The
relationship between the transcriptional regulation of the
non-hsp70 genes and insulator function is unclear. Inter-
estingly, the scs and scs¢ insulators contain the promoters
of these genes, with SBP- and BEAF-binding sites located
within 100 bp of the CG14732 and CG3281 promoters,
respectively. These data suggest that SBP and BEAF may
play a direct role in the expression of genes in the 87A7
locus.
Genomic sites of BEAF association were isolated to iden-
tify other potential insulators (table 1). Two sites, BE28
and BE76, have been characterized [65, 66]. BE28 is an
insulator, shown to protect against position effects and po-
sitionally block enhancer activated transcription [65].
BE28 represents a subfragment of a 1.2-kb moderately
repetitive sequence that contains binding sites for BEAF
and a second protein, D1 [65]. D1 is an AT hook DNA-
binding protein that binds satellite DNA [67]. BE28 ele-
ments map to pericentric regions of several Drosophila
chromosomes, indicating that BE28 may help define the
boundary between heterochromatin and euchromatin

[65]. The second BEAF-containing sequence, BE76, rep-
resents the –350 to –670 region of the inosine monophos-
phate dehydrogenase gene, and confers position-indepen-
dent expression in vivo [66]. The role that BE76 plays in
the regulation of gene expression has not been explored.

The gypsy insulator

A second well-characterized Drosophila insulator is the
gypsy insulator (table 1). This element was identified as
the region of the gypsy retrotransposon (also known as
mdg4) responsible for causing tissue-specific mutations of
several genes [68–72]. The gypsy insulator resides within
the 5¢ untranslated region of the gypsy retrotransposon
[73]. This region contains 12 copies of a degenerate se-
quence, with a core of TGCATA embedded in AT-rich se-
quences.
The gypsy insulator can affect the function of a large
number of Drosophila enhancers that are active in many
different tissues throughout Drosophila development [4,
17–20, 52, 69, 71, 74–79]. The gypsy insulator also pro-
tects against several types of repressive transcriptional ef-
fects, including silencing by Polycomb group proteins and
heterochromatin [4, 41, 80–83]. Finally, the gypsy insu-
lator protects a chromosomal DNA replication origin from
repression [84–86]. These data suggest that the gypsy in-
sulator is a very versatile modulator of regulatory inter-
actions.
The Suppressor of Hairy-wing [Su(Hw)] protein is es-
sential for gypsy insulator function (table 2). This discov-
ery followed from the observation that mutations in the
su(Hw) gene reverse the tissue-specific phenotypes of

Table 2.  Proteins implicated in the function of insulator and insulator-like sequences.

Protein Associated region Protein motifs References*

Su(Hw) gypsy 12 zinc fingers, two acidic domains, leucine zipper 90, 91, 96, 97
Mod(mdg4)67.2 gypsy BTB/POZ oligomerization domain, acidic domain 99, 100, 106, 107
SBP/Zw5 scs 8 zinc fingers, acidic domain 58
BEAF32A,
BEAF32B scs¢, BE76, BE28 BED finger DNA-binding domain, dimerization domain 59, 61
DREF scs¢, BE76, BE28 BED finger DNA-binding domain 48
GAGA eve promoter BTB/POZ, zinc finger domain 185
D1 BE28 HMG DNA-binding domain (AT hook) 65
CTCF HS4, 3¢ HS, BEAD-1, 11 zinc fingers 22, 49–51, 130, 

H19 ICR, DM1, RO, Tsix, 139, 140, 150
Kcnq1 ICR

TFIIIB HMR tRNAThr three subunits: TBP, TFC5, BRF 28
TFIIIC HMR tRNAThr Pro-rich repeats, acidic domain 28
Gcn5p HMR tRNAThr histone acetyltransferase domain, bromodomain 153
Sas2p HMR tRNAThr MYST family histone acetyltransferase, zinc finger domain 153
Scm1p/Scm3p HMR tRNAThr coiled-coil domain 153
Rap1p UASrpg BRCT domain, myb-like domain 161 
Reb1p STAR-X,Y two myb-like domains 161 

* References refer to paper(s) that describe the role of the protein in the function of the insulator or insulator-like sequence



gypsy-induced alleles [69, 87–89]. The Su(Hw) protein is
expressed throughout Drosophila development in most, if
not all, tissues [90, 91], consistent with the observation
that the gypsy insulator interferes with the function of a
variety of transcriptional modulators. Null su(Hw) alleles
are female sterile, suggesting a specific function for this
protein in oogenesis [87, 92].
The role of the Su(Hw) protein in the regulation of the
gypsy retrotransposon is unclear. This protein may be an
activator of gypsy transcription, as levels of gypsy RNA
decrease in su(Hw) mutants [93, 94]. The recent demon-
stration that the insertion of a gypsy insulator close to a
core promoter increased levels of transcription supports
this contention [95]. Alternatively, the lowered level of
gypsy RNA accumulation in su(Hw) mutants may reflect
the loss of an insulator that prevents silencers, yet to be
identified, in the body of the gypsy retrotransposon from
acting on the gypsy promoter residing in the LTR.
Several structural motifs have been identified in the
Su(Hw) protein (table 2). These include amino- and car-
boxy-terminal acidic domains, a 12-zinc-finger DNA-
binding domain, a leucine zipper region, and three addi-
tional regions that are conserved among other Drosophila
species [90, 91]. The zinc finger domain is essential for
Su(Hw) function [91, 96, 97]. In addition to its DNA-
binding function, this domain interacts with Chip, a pro-
posed facilitator protein [98]. The carboxy-terminal region
of the Su(Hw) protein, including the conserved B and C
regions and the leucine zipper, is essential for enhancer
blocking by the gypsy insulator [91, 96, 97]. Interestingly,
these motifs are dispensable for blocking repression
caused by Polycomb group proteins and centric and
telomeric heterochromatin [R. R. Roseman and P. K.
Geyer, unpublished results], suggesting that different re-
gions of the protein are required to block silencers. 
A second protein, Mod(mdg4)67.2, is required for some
functions of the gypsy insulator (table 2) [99, 100].
Mod(mdg4)67.2 is the most abundant isoform encoded by
the mod(mdg4) locus, which gives rise to an additional 20
proteins [101]. This protein complexity underscores a
wide diversity of functions associated with the mod(mdg4)
locus that includes regulation of synapse specificity [102],
apoptosis [103], position effect variegation [100, 104],
and homeotic gene expression [104, 105]. All Mod(mdg4)
isoforms share an amino-terminal 402-amino-acid domain
that includes a BTB/POZ motif that is involved in homo-
dimerization and interactions with other proteins [101].
The Mod(mdg4) BTB/POZ domain interacts with Chip,
suggesting that both of the known gypsy insulator proteins
may interfere with the function of this facilitator [106].
The carboxy-terminal domain of Mod(mdg4)67.2 con-
tains a highly acidic region that is unique among the iso-
forms [100, 101, 104]. This domain interacts with the
Su(Hw) protein, specifically linking the Mod(mdg4)67.2
isoform with gypsy insulator function [106, 107].

Mutations that affect only Mod(mdg4)67.2 have diverse
effects on gypsy insulator function. The loss of
Mod(mdg4)67.2 suppresses enhancer blocking by the
gypsy insulator at some genes, while enhancer blocking
remains intact at others [52, 77, 99, 106, 108]. Further-
more, the absence of Mod(mdg4)67.2 enhances some
gypsy-induced phenotypes as a result of promoter silenc-
ing [77, 99, 108]. Mod(mdg4)67.2 is not required for pre-
vention of position effects by the gypsy insulator or for
protection against silencing by Polycomb group proteins,
consistent with the observation that the Mod(mdg4) in-
teraction domain of the Su(Hw) protein is also not re-
quired for these processes [81; R. R. Roseman and P. K.
Geyer, unpublished observations]. These data suggest that
while Mod(mdg4)67.2 is involved in some gypsy insula-
tor functions, under certain conditions, its activity is either
not needed or can be provided by other gypsy insulator-as-
sociated proteins. Additionally, the Mod(mdg4)67.2 iso-
form may not be required for all functions of the Su(Hw)
protein, as a loss of this isoform does not cause female
sterility [99].

Insulators impart functional autonomy to complex
regulatory domains

Insulators play a critical role in defining domains of gene
function within eukaryotic genomes. This is illustrated by
the regulation of the Drosophila Abdominal B (Abd-B)
gene, one of the three genes in the bithorax complex. The
Abd-B gene has an extensive 3¢ regulatory region, which
contains at least two insulators (Fab-7 and Fab-8) and a re-
gion (Mcp) that has some insulator properties [109–117].
The Abd-B insulators are associated with the borders of
independent regulatory domains, a property that has led to
their classification as boundary elements [109, 111]. For
example, the Fab-7 insulator separates regulatory domains
that contain the infra-abdominal (iab) enhancers, iab-6
and iab-7. Deletion of Fab-7 changes Abd-B gene expres-
sion in a complex manner, reflecting both a gain and loss
of Abd-B activity in specific regions of the developing em-
bryo [109–111, 117, 118]. These effects imply that the
Fab-7 insulator maintains the autonomy of two control re-
gions, with its loss generating a new domain with a dis-
tinct function.
An apparent paradox is presented by the location of the
Fab-7 and Fab-8 insulators, as they reside between func-
tional enhancers and the Abd-B promoter [111, 119].
These observations suggest that the Abd-B locus contains
sequences that allow enhancers to overcome or bypass in-
tervening insulators. Several studies have uncovered se-
quences that may be responsible for the differential effec-
tiveness of the Abd-B insulators. For example, the Abd-B
promoter contains a large (> 7.6 kb) ‘tethering’ region that
mediates communication with iab regulatory sequences,
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even when the Abd-B promoter and the iab elements are
on separate chromosomes [120–122]. This tethering re-
gion may be optimized to capture enhancers, thereby re-
ducing the blocking ability of insulators. In addition, a
0.6-kb region, known as the promoter-targeting sequence
or PTS prevents enhancer blocking by the Fab-8 and the
gypsy insulators when tested in transgenes [116]. The PTS
has been suggested to stabilize interactions between en-
hancers and certain promoters, thereby permitting the iab
enhancers to overcome an insulator-mediated block.
Each autonomous regulatory domain within the large
Abd-B regulatory region may contain a PTS-like element
that allows enhancers to bypass an insulator, without in-
terfering with the definition of an independent regulatory
domain. Alternatively, Fab-7 and Fab-8 may be weak in-
sulators that have a limited capacity to attenuate enhancer
function, a suggestion that is supported by the transgene
assays [43, 112, 117]. This possibility is further strength-
ened by the finding that substitution of Fab-7 with strong
insulators, like gypsy and scs, caused a loss of Abd-B ac-
tivation by upstream enhancers [52]. Regardless, these
data imply that insulators are not interchangeable within
the genome. Instead, they provide specific functions for
gene regulation [52]. 

A common player in vertebrate insulators

Vertebrate genomes possess a large collection of insulator
and insulator-related sequences (table 1). As seen in
Drosophila, some of these elements reside in complex
regulatory regions and may help define independent do-
mains of gene function [30, 34, 123–125]. Others are as-
sociated with repetitive DNA sequences, including rDNA
repeats and SINES [23, 126]. Taken together, these ob-
servations imply that insulators have a broad genomic dis-
tribution in vertebrates.
One of the best-characterized vertebrate insulators is the
chicken b-globin hypersensitive site 4 (HS4). This insu-
lator was identified as a constitutive HS site that demar-
cates the 5¢ boundary of a 30-kb domain that contains four
developmentally regulated b-globin genes [33]. The HS4
insulator separates an open chromatin domain, containing
the globin genes, from an upstream 16-kb region of con-
densed chromatin [21, 22, 125, 127–129]. Based on this
location, HS4 has been suggested to protect the globin lo-
cus from silencing spreading from the repressed domain
and/or block inappropriate cross-regulation from en-
hancers associated with the folate receptor gene that re-
sides upstream of the repressed domain [125]. Tests of
these ideas await studies where the HS4 insulator has been
deleted from this region. Examination of histone modifi-
cations across the 54-kb domain that included the globin
locus and the two neighboring genes demonstrated that the
HS4 insulator represents a strong constitutive focus of 

histone hyperacetylation [21, 129]. These observations
support the view that HS4 prevents heterochromatic
spreading by recruiting histone acetylases that direct his-
tone tail modifications that terminate the propagation of
repressive chromatin [21, 129].
The HS4 insulator has a modular structure. Footprinting
studies using human erythroleukemia nuclear extracts
demonstrated that the HS4 core insulator contains several
protein-binding sites (footprints I–V) [35]. FII contains a
single binding site for the CCCTC-binding factor (CTCF)
that is necessary and sufficient for enhancer blocking
[130]. As mentioned above, CTCF sites do not protect
genes from chromosomal position effects [discussed in
refs 21, 22, 130], which depends upon other DNA se-
quences within the HS4 core insulator. These data
demonstrate that these properties of the HS4 insulator can
be uncoupled, implying that they may be conferred in
mechanistically distinct ways.
CTCF is a ubiquitously expressed, 11-zinc-finger DNA-
binding protein that is highly conserved (table 2) [131].
This protein is a versatile regulator of transcription, acting
as an activator [132, 133], a repressor [134–138], or as an
insulator protein at different target genes [50, 51, 130,
139, 140]. These diverse transcriptional effects are pro-
posed to occur because CTCF uses different zinc fingers
to bind gene-specific regulatory elements [131, 135, 141].
As the CTCF zinc finger domain appears to recruit part-
ner proteins, such as histone deacetylases, the read out of
CTCF association at a given gene may depend upon which
fingers are available for protein-protein interactions after
DNA binding [136].
The enhancer-blocking activity of CTCF can be regulated.
This was discovered in studies of the H19-Igf2 pair of im-
printed genes [50, 130]. Genomic imprinting is an epige-
netic modification that causes parent-of-origin-specific
expression of genes. H19 and Igf2 share a set of enhancers
located downstream of H19 [142–145]. Expression of
H19 and Igf2 is monoallelic, such that Igf2 is only ex-
pressed from the paternally inherited allele and H19 is ex-
pressed only from the maternally inherited allele [146,
147]. Chromosome-specific expression patterns are regu-
lated by differential DNA methylation of the imprinting
control region (ICR) that resides between Igf 2 and H19,
in a region 2–4 kb upstream of the H19 promoter [148,
149]. This ICR contains four CTCF-binding sites [49, 50,
150]. On the maternal allele, the ICR is unmethylated, al-
lowing CTCF association and the formation of an anti-en-
hancer element. As a result, the action of the downstream
enhancers is limited to H19 and no activation of Igf2 oc-
curs. In contrast, the ICR on the paternal allele is hyper-
methylated at CpG dinucleotides. When methylated, these
sequences do not bind CTCF, enhancer blocking is lost,
and activation of the Igf2 gene occurs. Further, as methy-
lation spreads from the ICR into the H19 promoter region,
a loss of H19 expression is observed [151]. These data im-
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ply that the effectiveness of anti-enhancers, and by exten-
sion, insulators may be modulated. The activity of other
insulator and insulator-like sequences is also likely to be
regulated [48, 51, 152, 153]. 
CTCF plays a major role in the enhancer-blocking activ-
ity of many vertebrate insulators and anti-enhancer ele-
ments (table 2). For example, CTCF sites are found in the
5¢ boundary of the chicken lysozyme gene [130], the
Xenopus repeat organizer [130], the myotonic dystrophy
DM1 element [139], the human T cell receptor BEAD el-
ement [130], the promoter of the anti-sense X-inactive
specific transcription gene, Tsix [140] and the Kcnq1 im-
printing control region [51]. This broad involvement of
CTCF suggests that it plays an important role in defining
autonomous expression domains in vertebrates.

Small genomes contain insulator-like sequences

In budding yeast, the genome is compact, with nearly
75% of the DNA sequences representing genes. This or-
ganization places regulatory sequences in close proximity,
suggesting that inappropriate regulatory interactions may
be possible. However, the majority of activating se-
quences, collectively referred to as upstream activating se-
quences (UASs), are distance limited, indicating that in-
sulators may not be needed to maintain activator fidelity.
In contrast, long-range silencers have been identified in
budding yeast [154–157]. Interestingly, anti-silencers
have been found that confine the spread of repression em-
anating from these silencers [24, 153, 158–161]. 
One anti-silencer, tRNAThr, was identified at the edge of
the repressed domain associated with the HMR locus. This
domain contains copies of the mating-type-specific MATa
genes that are inactive due to the action of the flanking
HMR-E and HMR-I silencers. Silencing requires recruit-
ment of a complex of Sir proteins and other factors that
propagate along nucleosomes, forming condensed chro-
matin that shares some features with metazoan hete-
rochromatin [157, 162]. HMR silencing is limited by the
tRNA gene, tRNAThr [153, 159]. This tRNA gene is required
for regulation of gene expression in the neighborhood of
the HMR locus, as deletion of the tRNAThr gene causes si-
lencing of the downstream GIT1 gene [153]. Interestingly,
the anti-silencer action of tRNAThr depends upon the in-
ternal core promoter elements for RNA polymerase III,
suggesting that mitigation of repression may require re-
cruitment of histone-modifying enzymes, such as acety-
lases. This proposal is further supported by observations
that mutations in two genes that encode histone acety-
lases, SAS2 or GCN5, reduce anti-silencer activity of the
tRNAThr, whereas direct targeting of acetylases to this re-
gion reconstitutes the HMR chromatin boundary [153].
Similarly, DNA sequences that bind activators limit the
spread of repression established by silencers at the related

HML locus. These sequences include the TEF2 and CHA1
UAS sequences [153, 158]. Mutations in the SMC1 and
SMC3 genes that encode proteins involved in chromo-
some condensation and cohesion also diminish tRNAThr

anti-silencer function, indicating that chromosome archi-
tecture plays a role in these processes [159].
The telomeres represent a second region of silent chro-
matin in budding yeast. Telomeric repression is estab-
lished by the Rap1 and Sir proteins [155]. The boundary
between active and silent telomeric chromatin is defined
by repetitive sequences within the subtelomere, called X
and Y¢, that protect reporter genes from silencer-depen-
dent repression [24, 160]. These anti-silencers are known
as STARs, for subtelomeric anti-silencing regions. STARs
are modular in nature, being composed of several DNA el-
ements, including binding sites for the Reb1 and Tbf1 pro-
teins that each reconstitute anti-silencer activity when
multiple proteins are bound [161]. Reb1p is a weak acti-
vator [163], connecting anti-silencer action with tran-
scriptional processes (table 2). Similar to findings at
HMR, targeting of transcriptional activators to an array of
reiterated binding sites positioned adjacent to the telom-
ere prevents the propagation of telomeric repression [161].
These anti-silencer effects do not depend upon the tran-
scriptional activation of a reporter gene [161], implying
that protection from silencing is due to modifications of
the local chromatin that interfere with the propagation of
repressive chromatin.

Models of insulator function:
insulators as domain boundaries

Early models of insulator action linked observations of the
physical organization of chromosomes with the functional
demonstration that insulators protect gene expression
from influences of the surrounding chromatin. Such struc-
tural models propose that insulators have a primary effect
on the organization of higher-order chromatin structures,
with secondary effects on transcription [44, 105, 164,
165]. In this context, insulators have been suggested to as-
semble specialized nucleoprotein complexes that interact
with other insulator complexes or nuclear substructures to
demarcate looped chromatin domains (fig. 1A). Indepen-
dence of gene function results from topological con-
straints imposed by the organization of higher-order chro-
matin structures within each defined domain. As such,
structural models suggest that insulators are equivalent to
elements that form domain boundaries. A related version
of this model hypothesizes that protein complexes assem-
bled on insulators direct genes to the nuclear matrix, with
the concomitant change in gene location being responsi-
ble for the imposition of regulatory isolation [166]. Struc-
tural models account for both properties of insulator 
action, as prevention of positive and negative regula-
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mosomes [165], supporting its role in establishing higher-
order chromatin structures. Second, mutations in genes
encoding proteins involved in higher-order chromatin or-
ganization affect the function of the gypsy insulator and
the tRNAThr anti-silencer [99, 105, 159]. Third, at least one
insulator, gypsy, appears to be localized within special
subregions in the nucleus. Immunolocalization of the
gypsy insulator proteins shows a punctate nuclear distrib-
ution pattern in diploid cells, indicating that gypsy insu-
lators coalesce to form structures termed insulator bodies
[97, 105]. These data led to the proposal that the gypsy in-
sulator bodies generate looped chromatin domains that
preclude interactions between regulatory elements resid-
ing in distinct domains (fig. 1) [166]. However, the for-
mation of gypsy insulator bodies may not be essential for
all insulator functions. Surprisingly, mutations in
mod(mgd4) that disrupt aggregation of gypsy insulators do
not reverse all of the enhancer-blocking or protection-
from-position effects [52, 99, 107]. Finally, support for
structural models comes from observations that the gypsy
insulator alters the nuclear positioning of the gypsy-asso-
ciated DNA sequences. The targeting of loci to the nuclear
periphery requires the Su(Hw) and Mod(mdg4) proteins
[166]. Findings that the gypsy insulator contains consen-
sus binding sites for topoisomerase II and associates with
nuclear matrices isolated from Drosophila, murine, and
human cells provides insights into mechanisms for the
repositioning of gypsy-associated sequences [167]. These
data imply that the gypsy insulator is a matrix attachment
region (MAR). However, a synthetic gypsy insulator cor-
responding to reiteration a single binding site that lacks
the MAR motifs blocks enhancer-activated transcription,
suggesting that enhancer blocking may be separable from
matrix attachment [45]. Furthermore, the nuclear position
of transgenes that contain only the gypsy insulator, not the
intact retrotransposon, did not change when the Su(Hw)
protein was lost, even though this protein provided for
protection of the usage of a replication origin housed
within the transgene [85]. These studies suggest that some
gypsy insulator effects can be conferred without changing
nuclear positioning.
Much support for structural models of insulator function
has been derived from studies of the Drosophila scs, scs¢,
gypsy, and Faswb, and the vertebrate HS4 insulators. Yet,
some experimental data obtained using these insulators do
not fit with this class of models. For example, several in-
sulators, including gypsy, scs, scs¢, and HS4, do not re-
quire chromosomal integration to block enhancer-acti-
vated transcription [23, 31, 32, 75, 79, 168, 169]. In all of
these cases, enhancer blocking was reconstituted within
small episomes. These observations suggest that higher-
order chromatin structures are not required to impart reg-
ulatory isolation. Furthermore, a single HS4 insulator pre-
sent on a linearized episome prevented enhancer-promoter
interactions, implying that the formation of a looped do-
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tory interactions is accommodated by the same mecha-
nism.
Several lines of evidence support structural models. First,
some insulators, such as scs/scs¢, Faswb, and HS4 are lo-
cated at the boundaries of distinct chromatin domains. In
at least one case, changes in chromosome morphology are
associated with insulator loss; deletion of Faswb results in
the elimination of a band in the giant larval polytene chro-

Figure 1.  Models of insulator function. (A) Structural models of in-
sulator function. Chromosomes are divided into independent func-
tional units by specialized nucleoprotein complexes called boundary
complexes (BC) that associate with the nuclear membrane (NM) or
other nuclear structures, such as the matrix. Each chromatin domain
is assembled into higher-order chromatin structures that prevent reg-
ulatory interactions between transcriptional components in different
domains. An insulator (triangle) prevents enhancer (oval) activation
of transcription by assembling a complex of proteins that resembles
domain boundary complexes. Insertion of an insulator between an
enhancer and promoter subdivides a single domain into two, result-
ing in a separation of the enhancer and promoter and a loss of 
enhancer-activated transcription. Furthermore, an insulator may
change the nuclear compartment of a gene through its interaction
with the nuclear periphery. (B) Transcriptional models of insulator
function. Enhancer-activated transcription is proposed to require se-
quences near core promoter elements, docking sites, that bind nu-
cleoprotein complexes (DC) that stabilize interactions between en-
hancer-binding proteins and the basal transcriptional machinery.
Very long range interactions may require additional, facilitator (FP),
proteins that link up with each other to decrease the apparent dis-
tance required for transmission of an enhancer signal. An insulator
may prevent enhancer-activated transcription by assembling a nu-
cleoprotein complex similar to the docking complex, decoying the
enhancer away from the basal transcriptional machinery (right in-
sulator). Alternatively, the insulator may disrupt the ability of fa-
cilitator proteins to shorten the enhancer-promoter distance (left in-
sulator).



main is not essential for the function of this insulator
[168]. Second, insulators may be more effective at pre-
venting interactions between transcriptional proteins than
proteins involved in other nuclear processes. Interactions
between the yeast FLP recombinase complexes were not
prevented by the gypsy, scs, or scs¢ insulators [31, 169],
demonstrating that insulators are not impassable blocks
for all protein interactions. Third, the effectiveness of the
gypsy insulator can be altered by topology effects imposed
by a paired, homologous chromosome [46]. If insulators
organize structural domains within chromosomes, then
the pairing of homologous chromosomes carrying struc-
turally altered alleles would not be expected to change this
domain organization. 

Models of insulator function:
insulators as transcriptional decoys

The transcriptional class of insulator models presents an
alternative view of insulator function [95, 169, 170].
These models suggest that insulators have a primary effect
on transcriptional processes, with secondary conse-
quences on chromatin organization. In this context, insu-
lators are proposed to assemble protein complexes that in-
tercept or interfere with transmission of regulatory
signals before they reach a promoter. These models cou-
ple the mechanism of insulator action to that used by en-
hancers and silencers to modulate promoter activity.
Enhancer activation of transcription has been proposed to
involve a direct interaction between enhancer-bound tran-
scription factors and the basal transcriptional machinery
produced by looping out of intervening DNA. This en-
hancer-promoter interaction may increase the recruitment
of RNA polymerase II and/or facilitate formation of pro-
ductive elongation complexes [171, 172]. The looping
model of enhancer function is supported by observations
that some enhancers show promoter specificity, suggest-
ing that enhancers identify specific proteins bound at pro-
moters for transfer of a transcriptional signal [14, 78,
173]. Furthermore, some genes contain sequences within
the promoter proximal regions, termed docking sites, that
are required for promoter responsiveness to an enhancer
[174]. These docking sites may stabilize enhancer-pro-
moter interactions, allowing promoter identification by
random collision [175]. 
One version of the transcriptional class of models suggests
that insulators evolved from promoter sequences that are
responsible for enhancer capture (fig. 1B). Separation of
such docking sequences from core promoter elements
would generate an element capable of intercepting en-
hancer signals, without the capacity for transcriptional ac-
tivation. In this model, as enhancers loop to a promoter,
insulators decoy the enhancer, as these sequences are en-
countered first. This model invokes a ‘first come, first

served’ rule for enhancer capture, as suggested by studies
at the globin locus [176, 177]. Enhancer capture by the in-
sulator results in a loss of most or all of the enhanced sig-
nal. Stronger enhancers may bypass the insulator, as the
insulator may not be able to diffuse all of the enhancer sig-
nal. Interactions between insulators and enhancers are pre-
dicted to be dynamic, as most interactions between en-
hancers and promoters are transient. 
Random looping interactions between enhancers and pro-
moter-associated transcription complexes may not provide
efficient promoter activation from long distances. The
large size of many eukaryotic control regions has been
suggested to necessitate participation of a specialized
class of proteins, called facilitator proteins, for the passage
of the enhancer signal to the promoter [170, 178]. Facili-
tator proteins are proposed to support enhancer function
by organizing chromatin between the enhancer and the
promoter into a series of intermediate loops that bring the
enhancer complex closer to the promoter (fig. 1B). To
date, two candidate facilitator proteins have been identi-
fied, Chip and Nipped B [179–181]. These proteins are
required for activation of the Drosophila cut gene by an
enhancer located 80 kb from the promoter. Chip and
Nipped B are believed to be distinct from general tran-
scription factors regulating cut expression, because muta-
tions in these genes show genetic interactions specifically
with cut alleles caused by the gypsy insulator [179–181].
However, as Chip is a LIM domain protein that appears to
interact with the LIM homeodomain transcription factor
Apterous [182, 183], Chip may participate in activation of
the cut gene by enhancing the action of general cut tran-
scription factors. Based on ideas of long-distance en-
hancer action, a second version of the transcriptional class
of insulator models was proposed that suggests that insu-
lators interfere with the function of facilitator proteins,
thereby preventing the enhancer from gaining promoter
proximity (fig. 1B) [170]. 
Several lines of evidence support transcriptional models
of insulator function. First, enhancer and promoter
strength influence insulator effectiveness. Increasing the
potency of an enhancer reduces the blocking capacity of
insulators [44, 45]. Similarly, the effectiveness of the in-
sulator can be increased by a strong promoter located up-
stream of an enhancer that is blocked by an insulator,
while the presence of a weak upstream promoter can sup-
port enhancer bypass of the insulator [42, 95]. These data
reinforce the idea that insulators and promoters compete
for the enhancer signal. Second, several insulator proteins
function as short-range transcriptional activators, includ-
ing the Su(Hw) and CTCF proteins [94, 95, 132, 133,
184]. Third, many insulators contain promoter regions, in-
cluding promoter-proximal sequences that may include
enhancer docking sites (table 1). In Drosophila, six of the
ten known insulator and insulator-like elements contain
promoter regions (table 1). In one case, the even-skipped
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gene, a GAGA-factor-binding site, located between the
TATA box and the transcription start site, prevents pro-
moter activation by certain enhancers [185]. These data
provide direct evidence that promoter-proximal sequences
can selectively block enhancer communication with core
promoter elements. GAGA interacts with chromatin re-
modelling complexes [186–188], suggesting that en-
hancer blocking may involve alterations of nucleosome
organization in such a way as to impact regulatory inter-
actions. Many Drosophila promoters may possess an in-
trinsic insulator activity, as GAGA-binding sites are lo-
cated in many promoter-proximal regions [62, 189].
Fourth, the gypsy insulator proteins, Su(Hw) and
Mod(mdg4), directly interact with the putative facilitator
protein, Chip [98, 106]. Fifth, at least one insulator, HS4,
directs a highly localized peak of histone acetylation [21],
which could both serve to capture enhancers and block the
propagation of specific chromatin structures. Finally, in
certain contexts, insulators are not transcriptionally inert.
For example, the gypsy insulator can stimulate transcrip-
tion from some promoters [94, 95]. 
Although transcriptional models of insulator function are
supported by many studies, two observations are difficult
to reconcile with this class of models. If insulators inter-
act with enhancers to capture the regulatory signal, then
arguably, insulators should affect transcription when in-
serted upstream of an enhancer. However, two aspects of
this objection need to be considered. First, if insulators act
similarly to promoter docking sites, then insulators
should not act as static sinks for enhancer interactions, as
enhancer-promoter interactions are dynamic. Second, the
position-dependent block of enhancer action reflects a
bias in the assay system. An insulator positioned upstream
of an enhancer does affect the function of the enhancer, if
the enhancer is shared by divergently transcribed promot-
ers [18, 20]. Such observations support the notion that ac-
tivation of a promoter depends on a directional signal that
is sent from an enhancer. A second observation that is hard
to fit in the context of transcriptional models is the recent
finding that enhancer-blocking activity is lost when two
gypsy insulators are placed between an enhancer and pro-
moter [42, 190]. If the insulator and promoter compete for
the enhancer signal, then increasing insulator number
should improve, not diminish enhancer blocking. These
data are claimed to support structural models that propose
that gypsy insulators organize chromatin into looped do-
mains. However, enhancer bypass of a pair of gypsy insu-
lators also challenges structural models of insulator func-
tion, because these studies demonstrate that enhancers and
promoters residing in two structurally and topologically
distinct domains can interact. The simplest view of these
data is that gypsy insulators located in close proximity
have a propensity to interact. Whether this is a require-
ment for enhancer blocking remains unclear. Of note is
that this property of the gypsy insulator does not appear to
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be shared by other insulators or anti-enhancer elements. 
In the case of scs, HS4 and the H19/Igf2 ICR, multimer-
ization of a complete insulator or specific subregions 
establishes a stronger block of enhancer-activated tran-
scription than conferred by a single element [33, 35, 
44, 144]. 
Transcriptional models of insulator function are not re-
stricted to explaining the blocking of activators. Mecha-
nisms of silencer action suggest that repressive chromatin
structures spread into affected genes [5, 26, 191, 192]. In
this context, insulators may protect against repression by
recruiting nucleoprotein complexes that block the spread
of repressive chromatin. Two mechanisms have been pro-
posed [153, 158]. First, insulator-binding proteins may
generate a region of chromatin devoid of nucleosomes,
thereby interfering with the propagation of silencing com-
plexes [158]. However, the observation that DNA-binding
proteins inert for transcriptional activation cannot prevent
silencing implies that anti-silencer effects involve more
active processes. Alternatively, insulator-binding proteins
may recruit histone-modifying proteins, such as histone
acetyltransferases, that modify histone tails in a manner
that interferes with formation of silencing complexes 
[21, 153, 158, 161]. This suggestion is consistent with the
decoy model for insulator function, as promoter docking
sites are likely to possess the capacity to recruit chro-
matin-modifying complexes as one means for enhancer
capture.

Conclusions

The organization of chromatin domains is an im-
portant facet of the regulation of gene expression. In-
sulators appear to be universal components of eukaryotic
genomes that play critical roles in defining indepen-
dent domains of gene regulation. Recent demonstrations
that insulator activity is regulated increase the repertoire
of mechanisms that may be used to modulate transcrip-
tion.
The diversity of insulator and insulator-like elements
poses a challenge in formulating models of insulator func-
tion. While two broad classes of models have been con-
sidered, several pieces of data are not easily accommo-
dated by either model. Furthermore, not all insulators are
likely to use the same mechanism of action. Studies of the
proteins bound at insulators, their interactions and prop-
erties, will advance our understanding of this interesting
class of elements.
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