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ABSTRACT
The main concern of this paper is providing a flexible discrete
model that captures every kind of dispersion (equi-, over- and under-
dispersion). Based on the balanced discretization method, a new
discrete version of Burr–Hatke distribution is introduced with the
partial moment-preserving property. Some statistical properties of
the new distribution are introduced, and the applicability of pro-
posed model is evaluated by considering counting series. A new
integer-valued autoregressive (INAR) process based on the mixing
Pegram and binomial thinning operators with discrete Burr–Hatke
innovations is introduced, which can model contagious data prop-
erly. The different estimation approaches of parameters of the new
process are provided and compared through the Monte Carlo simu-
lation scheme. Theperformanceof theproposedprocess is evaluated
by four data sets of the daily death counts of the COVID-19 in Austria,
Switzerland, Nigeria and Slovenia in comparisonwith some competi-
tor INAR(1) models, along with the Pearson residual analysis of the
assessing model. The goodness of fit measures affirm the adequacy
of the proposed process in modeling all COVID-19 data sets. The
fundamental prediction procedures are considered for new process
by classic, modified Sieve bootstrap and Bayesian forecasting meth-
ods for all COVID-19 data sets, which is concluded that the Bayesian
forecasting approach provides more reliable results.
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1. Introduction

Modeling the counting events has attainedmuch attention in recent years, due to the broad
applicability of these models, in various branch of sciences. The counting variables are
observed in real-life phenomena, such as the number of damaging accidents in insur-
ance, number of loss-making companies in economics, number of earthquakes in geology,
number of cancer cells in medicine, and so on. The continuous probability models cannot
provide adequate fitting for some discrete data sets. Therefore, the continuous distributions
are replaced by discrete distributions to model count data, such as binomial, Poisson, geo-
metric, and so on. Unfortunately, classic discrete distributions cannot cover all kinds of

CONTACT Einolah Deiri deiri53@gmail.com Department of Statistics, Qaemshahr Branch, Islamic Azad
University, Qaemshahr, Iran

© 2023 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2023.2194582&domain=pdf&date_stamp=2024-05-25
mailto:deiri53@gmail.com


1228 S. M. HOSEINI BALADEZAEI ET AL.

data. For instance, the binomial distribution has restricted domain, the Poisson distri-
bution cannot be applied for over- or under-dispersed data, the geometric distribution
cannot handle data sets with non-constant hazard rate function. Hence, some new discrete
distributions are provided based on the classic version of distributions through various
discretization methods.

One of the widely used procedures is the survival discretizationmethod. In thismethod,
the survival function is preserved among the continuous and discrete versions of the distri-
bution. Some of the former discrete models, based on the survival discretization method,
are discrete Normal [23], discrete Rayleigh [24], discrete Gamma [8] and discrete type-II
half-Logistic Exponential [1].

Hagmark [15] introduced the mean-preserving discretization method with any inter-
val domain, any theoretically possible mean-variance pair and different shapes that mean
function is fixed between continuous and discrete analogous. Recently, Tovissodé et al. [29]
introduced a new discretization approach based on partial moment preserving called
the balanced discretization (BD) method, with simple stochastic representation and vari-
ous types of dispersion. They introduced the balanced discrete Gamma distribution as a
sub-model.

Lately, Al-Babtain et al. [3] introduced the natural discrete Lindley distribution, which
is represented as a mixture of geometric and negative binomial distributions. Based on
three practical data sets, they showed that their distribution outperformed various tradi-
tional discrete distributions. The flexible discrete model with one parameter introduced by
Eliwa and El-Morshedy [12] has different shaped hazard rate functions (HRF), including
increasing, decreasing or unimodal-shaped.

Due to the complex nature and some unique properties of the real-life phenomena, such
as skewness, dispersion, inflation or deflation, and monotone or unimodal failure rate, the
former discrete distributions are not convenient to capture and model various aspects of
some real data. Hence, we introduce a new version of Burr–Hatke (BH) distribution under
the balanced discretization method.

The discrete version of the BH model has been recently proposed by El-Morshedy
et al. [11] to model count events exhibiting huge over-dispersion with varied skewness
features. The discrete BH distribution of El-Morshedy et al. [11] can only be used for over-
dispersed data, and the applicability of the new distribution for time series data is not
checked. El-Morshedy et al. [11] have used the survival discretization method to obtain
the discrete BH distribution, while in the present work, we use the balanced discretiza-
tion method of Tovissodé et al. [29]. The new flexible discrete version of BH distribution
handles all kinds of dispersion. We check the performance of the new distribution by con-
sidering the INAR(1) process for the count time series. The estimation, real data analysis
and forecasting of the proposed process are provided comprehensively.

Since the prevalence of the COVID-19 pandemic, there has been ongoing research from
different medical, statistics, and societal scholars to confine the count of infected, deaths,
or hospital admissions due to this virus and its variants. While the medical researchers
have been particularly focusing on the development of vaccines, the statisticians and data
scientists have been toiling hard to provide efficient analyses and forecasts of the different
mentioned variables.

Several models of the COVID-19 data are provided in recent articles. For instance,
we cite nonlinear growth models for COVID-19 in Iraq [2], Kermack–McKendrick-type
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compartmental (deterministic) epidemic of COVID-19 model in a homogeneously mixed
population [14], modeling with flexible extension log–logistic tangent distribution in
Somalia [19], autoregressive time series modeling and forecasting of cases of COVID-19
based on two-piece scale mixture normal distributions [18]. Recently, Pourreza et al. [21]
provided a family of Gamma-generated distribution with attention to Gamma–Weibull
distribution and represented the applicability of new distribution fitting COVID-19 data
set from Saarland.

In particular, since the COVID-19 variables are collected on a sequential time basis,
the research emphasis has been on exploring classical time series approaches. One of the
reputable models for the counting time series is the INARmodel that was applied in man-
ifold branches of science. The first-order integer-valued autoregressive (INAR(1)) process
is introduced based on the thinning operator, which is extended in the last years in differ-
ent aspects, for instance, some new thinning operators, the random coefficient thinning,
different marginal and innovation distributions. As the pioneer of INAR(1) models, we
cite Poisson INAR(1) model [5], geometric and negative binomial INAR(1) [6] and gen-
eralized Poisson model [7]. Some new articles of INAR(1) modeling for COVID-19 data
sets are investigated by Shamma and Mohammadpour [25], Triacca and Triacca [30] and
Chattopadhyay et al. [9].

The main purpose of this paper is devoted to introducing a new discrete distribution
with outstanding and flexible features. On the other side, we provide a pliant INAR(1)
model based on discrete BH innovations and mixing Pegram and binomial thinning oper-
ators, introduced by Khoo et al. [17]. The applicability of the proposed model is exposed
on some COVID-19 data sets. The new INAR(1) process stands out as a major competitor
to some count models as it yields far more superior fitting criteria in modeling COVID-19
data sets.

The structure of this paper is organized as follows. The basic definition and fea-
tures of the BD method and, accordingly, a new discrete model named balanced discrete
Burr–Hatke distribution are provided in Section 2. In Section 3, a new INAR(1) pro-
cess based on the mixing Pegram and binomial thinning operator is introduced with
the balanced discrete Burr–Hatke innovations, along with several statistical properties
of the proposed process. In Section 4, the parameters of the new process are estimated
by the conditional maximum likelihood, Bayesian, modified conditional least square and
Yule–Walker estimation methods. The Monte Carlo simulation comparison among dif-
ferent estimation techniques is accomplished in Section 5 to distinguish the efficient
estimationmethod. Finally in Section 6, the applicability of the proposed process is investi-
gated using fourmedical count data, which demonstrates the appropriateness of ourmodel
in comparison with some relevant INAR(1) models. Several forecasting methods con-
taining the classic, modified Sieve Bootstrap and Bayesian methods are considered for all
COVID-19 data sets, which recommended the Bayesian forecasting method to be applied
for future research.

2. The BDBH distribution description

The balanced discretization method is introduced by Tovissodé et al. [29], with special
work on balanced discrete Gamma distribution. We concentrate on the balanced discrete
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strategy and introduce a new discrete distribution based on the BH baseline distribution,
named balanced discrete BH (BDBH) model.

In the next section, we provide the basic definition of the balanced discrete method to
define a discrete version of the continuous distribution [29] which preserves the partial
moments of the base continuous model containing expectation.

2.1. The balanced discretemethod and BDBH distribution

Definition 2.1 (Balanced discretization): The random variable Z is distributed as the
balanced discrete counterpart denoted BD(β) of the continuous distribution CD(β) if it
has the following stochastic representation [29]:

Z |U = u,Y = y d= v + u,

U |Y = y ∼ Ber(r),

Y ∼ CD(β),

where Ber(.) denotes the Bernoulli distribution, v = [y] that [y] denotes the integer part
of any real y and r = y−v.

Denote the probability density function (PDF), cumulative distribution function (CDF)
of the continuous random variable Y as gY (.,β) and GY (.,β), respectively. The probability
mass function (PMF) and CDF of BD distribution are defined as follows:

fZ (z,β) = (z − 1)GY (z − 1,β) − 2z GY (z,β) + (z + 1)GY (z + 1,β), (1)

+ EY (1, z − 1 | β) − EY (1, z | β), z ∈ Z

FZ (z,β) = GY (z,β) + (z + 1)HY (z,β) − EY (1, z | β), (2)

whereHY (z,β) = GY (z + 1,β) − GY (z,β) and EY (n, z | β) stands the nth partial moment
as below

EY (n, z | β) =
∫ z+1

z
yngY (y,β) dy.

Corollary 2.2: The expectation and variance of BD distribution are represented as below
[29]

E(Z) = E(Y), Var(Z) = Var(Y) + ζ0(β),

where ζ0(β) = ∑∞
i=−∞ ζ0(i,β) with

ζ0(i,β) = (2i + 1)EY (1, i | β) − EY (2, i | β) − i(i + 1)HY (i,β).

In the following, we consider the BH distribution as the CD counterpart in the bal-
anced discrete method and introduce a new flexible discrete BH distribution. El-Morshedy
et al. [11] provided the PDF, CDF and hazard rate function (HRF) of BH distribution,



JOURNAL OF APPLIED STATISTICS 1231

respectively as

gY (y,β) = 1 + β(y + 1)
(y + 1)2

e−βy, y ≥ 0 β > 0,

GY (y,β) = 1 − e−βy

y + 1
,

HRFY (y,β) = gY (y,β)

1 − GY (y,β)
= 1

y + 1
+ β .

We provide the quantile function of the BH distribution, derived from the CDF, as below

QFY (p,β) = −1 − 1
β
W
(−β eβ

1 − p

)
, 0 < p < 1, (3)

where W(.) is the Lambert function, and it is defined to be the function satisfying
p = W(z) eW(z).

The first and second moments of BH distribution are obtained as

E(Y) = −eβEi(−β),

E(Y2) = 2
(
1
β

+ eβEi(−β)

)
,

where Ei(.) is the exponential integral function as Ei(x) = ∫ x
−∞

et

t
dt. We compute the first

partial moment of BH distribution as below

EY (1, z | β) =
∫ z+1

z
y gY (y,β) dy

=
∫ z+1

z

e−βy

y + 1
dy + β

∫ z+1

z
e−βy dy +

∫ z+1

z
e−βy

( −β

y + 1
− 1

(y + 1)2

)
dy

= eβ [Ei(−β(z + 2)) − Ei(−β(z + 1))]

+
(
1 − 1

z + 1

)
e−βz −

(
1 − 1

z + 2

)
e−β(z+1). (4)

Regarding (1) and (2) andfirst partialmoment (4), the PMFandCDFof BDBHdistribution
are represented as

fZ (z,β) = (z − 1)

(
1 − e−β(z−1)

z

)
− 2z

(
1 − e−βz

z + 1

)
+ (z + 1)

(
1 − e−β(z+1)

z + 2

)

+ eβ [2Ei(−β(z + 1)) − Ei(−βz) − Ei(−β(z + 2))] +
(
1 − 1

z

)
e−β(z−1)
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Figure 1. The PMF and HRF plots of BDBH distribution for different values of β .

+
(
1 − 1

z + 2

)
e−β(z+1) − 2

(
1 − 1

z + 1

)
e−βz

=
{

1 − eβ (Ei(−2β) − Ei(−β)) , z = 0
−eβ (Ei(−βz) − 2Ei(−β(z + 1)) + Ei(−β(z + 2))) , z = 1, 2, . . . ,

(5)

FZ (z,β) = 1 − eβ (Ei(−β(z + 2)) − Ei(−β(z + 1))) , (6)

where, since y ≥ 0, so GY (−1,β) = 0 and EY (1,−1 | β) = 0.
The PMF and HRF plots of BDBH distribution are respectively depicted in Figure 1, for

different values of β . Figure 1 shows that the PMF of BDBH is a decreasing function with
respect to Z, where the HRF is a unimodal (inverted bath-tub shaped) function.

Corollary 2.3: The expectation and variance of the BDBH distribution are represented as

μZ = E(Z) = −eβEi(−β), (7)
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Table 1. Some statistical index of the BDBH distribution for different values of the parameter β .

Measures β = 0.2 β = 0.5 β = 0.8 β = 1 β = 1.5 β = 2

Mean 1.49335 0.922911 0.691245 0.596347 0.448257 0.361329
Variance 4.94434 1.461721 0.796825 0.607188 0.386821 0.292569
FDI 3.31091 1.583817 1.152738 1.018178 0.862945 0.809704

σ 2
Z

= Var(Z) = 2
β

+ eβ Ei(−β)
(
2 − eβ Ei(−β)

)+ ζ0(β). (8)

Proof: Based on Corollary 2.2, the expectation of the BDBH distribution is obvious. The
second partial moment of BDBH is computed as

EY (2, z | β) = e−βz
(
2
β

+ z2

z + 1

)
− e−β(z+1)

(
2
β

+ (z + 1)2

z + 2

)

− 2 eβ [Ei(−β(z + 2)) − Ei(−β(z + 1))] .

Subsequently, by elementary computation, it is concluded that

ζ0(i,β) = (2i + 3) eβ [Ei(−β(i + 2)) − Ei(−β(i + 1))] − 2
β

(
e−βi − e−β(i+1)

)
.

Hence, the variance (8) is induced by substituting the second partial moments and ζ0(i,β)

in Corollary 2.2. �

The fisher dispersion index (FDI) is defined as variance to mean ratio, indicating
whether a certain distribution is suitable for under(over)-dispersed or equi-dispersed
data sets. If FDI< 1, the distribution is under-dispersed, FDI> 1 is over-dispersed and
if FDI= 1 is equi-dispersed. The mean, variance and FDImeasures are provided in Table 1
for different values of the parameter β .

It can be seen in Table 1 that by increasing the values of parameter β , themean, variance
and FDI of BDBH distribution are decreased. For β < 1, the FDI measure is greater than
1, which indicates the over-dispersion of BDBH distribution, for β > 1, the FDI measure
is less than 1, which indicates the under-dispersion of BDBH distribution and β near to
one leads to equi-dispersion distribution. Different values of FDI measure represent the
applicability of BDBH distribution for all kinds of dispersion including over-, under- and
equi-dispersions.

3. The BDBH-MINAR(1) process characterization

In this section, we introduce a new mixing INAR(1) model based on BDBH innovations.
The mixing Pegram and binomial thinning operator was considered by Khoo et al. [17].

Definition 3.1 (Binomial thinning operator): Consider a sequence of independent
Bernoulli random variables {Ti} with the parameter α, the binomial thinning operator is
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generated by counting series {Ti} as below

α ◦ X =
X∑
i=1

Ti, 0 < α < 1,

where X is a non-negative integer-valued random variable and independent of {Ti}.

Definition 3.2 (Pegram operator): The Pegram operator mixesU andV with the weights
φ and 1 − φ as

W = (φ,U) ∗ (1 − φ,V), 0 < φ < 1,

where U and V are two independent discrete random variables. The corresponding
marginal probability function of the random variableW is provided as

P(W = j) = φP(U = j) + (1 − φ)P(V = j).

Definition 3.3 (BDBH-MINAR(1) process): We introduce a new stationary mixing
INAR(1) process {Xt} by the following recursive equation:

Xt = (φ,α ◦ Xt−1 + Zt) ∗ (1 − φ,Zt), α,φ < 1, t ≥ 1, (9)

where ‘(◦, ∗)’ stands the binomial thinning and Pegram operators, {Zt} be a sequence of
BDBH random variables with the parameter β and given Xt−1, the random variables α ◦
Xt−1 and Zt are independent of each other. We shall abbreviate the mixing model name as
BDBH-MINAR(1).

The applicability of the BDBH-MINAR(1) process in modeling real phenomena can be
expressed based on the epidemic of contagious diseases such as COVID-19, as follows.
Consider the sequence Xt as the counts of infected patients during the time interval (t −
1, t], which can be inferred in two scenarios. In the first scenario, due to the pandemic,
with probability 1 − φ, every infected person is quarantined and cannot transmit the virus
among other people and new cases are only the immigrants from abroad (Zt). In the other
scenario, with probability φ, the quarantine does not hold perfectly and in addition to
immigrant patients, the indigenous patients at time t−1 denoted as Xt−1 are transmitted
the COVID-19 with probability α, causing new cases.

Proposition 3.4: The BDBH-MINAR(1) process defined (9) can also be considered as a
random coefficient model as below

Xt = αt ◦ Xt−1 + Zt , t ≥ 1,

where αt = { α w.p. φ
0 w.p. 1−φ , 0 < φ < 1.

Based on (9), the one-step transition probabilities are

Pij = P
(
Xt = j |Xt−1 = i

) = φ

i∑
k=0

(
i
k

)
αk(1 − α)i−kfZ (j − k,β) + (1 − φ)fZ (j,β).

(10)
where fZ (.,β) is defined in (5).
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Lemma 3.5: The process {Xt} is an irreducible, aperiodic and positive recurrent Markov
chain, hence {Xt} is ergodic and stationary.

Proof: The proof is routine and is omitted. �

Proposition 3.6: Suppose {Xt} is a stationary process defined by (9), then for 0 < α,φ < 1
and t ≥ 1,

(i) The conditional expectation is

E
(
Xt |Xt−k

) = (αφ)kXt−k + 1 − (αφ)k

1 − αφ
μZ . (11)

When k → ∞, implies limk→∞ E(Xt |Xt−k) = μZ

1 − αφ
, which is the unconditional

expectation of the process.
(ii) The conditional variance is

Var(Xt |Xt−1) = α2φ(1 − φ)X2
t−1 + αφ(1 − α)Xt−1 + σ 2

Z
, (12)

and

Var
(
Xt |Xt−k

) = α2kφk(1 − φk)X2
t−k + 2(αφ)kμZXt−k

(k−1∑
i=0

αi (1 − φi))

+ (αφ)k(1 − α)Xt−k

k−1∑
i=0

αi + E(Z2
t )

k−1∑
i=0

(
α2φ

)i

+ αφ(1 − α)μZ

k−1∑
i=0

(αφ)i
i∑

j=0
αj

+ μ2
Z

⎛
⎝2αφ

k−1∑
i=0

(αφ)i
i∑

j=0
αj −

(k−1∑
i=0

(αφ)i

)2⎞⎠ ,

where σ 2
Z
is the variance of Zt and was computed in Corollary 2.2,

lim
k→∞

Var
(
Xt | Xt−k

) = E(Z2
t )

1 − α2φ
+ αφ(1 − α)μZ

(1 − α2φ)(1 − αφ)

+ μ2
Z

(
2αφ(1 − αφ) + α2φ − 1

)
(1 − α2φ)(1 − αφ)2

,

which is the unconditional variance.
(iii) The autocorrelation function of the process {Xt} is represented as

ρ(k) = Corr(Xt ,Xt−k) = (αφ)k.
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Proof: (i) The conditional expectation of the process is obtained as follows:

E(Xt |Xt−1) = αφXt−1 + μZ ,

E(Xt |Xt−2) = E(E(Xt |Xt−1) |Xt−2) = (αφ)2Xt−2 + (1 + αφ)μZ .

By induction, we can conclude that

E(Xt |Xt−k) = (αφ)kXt−k + (1 − (αφ)k)μZ

1 − (αφ)
,

which is a linear function in Xt .
(ii) The second-order conditional expectation of the BDBH-MINAR(1) process is com-

puted as

E(X2
t |Xt−1) = α2φX2

t−1 + αφ(1 − α)Xt−1 + 2αφμZXt−1 + E(Z2
t ),

and

E(X2
t |Xt−2) = α4φ2X2

t−2 + α2φ2(1 − α2)Xt−2 + 2α2φ2(1 + α)μZXt−2

+ (1 + α2φ)E(Z2
t ) + αφ(1 − α)μZ + 2αφμ2

Z
,

subsequently,

E(X2
t |Xt−3) = α6φ3X2

t−3 + α3φ3(1 − α)(1 + α + α2)Xt−3

+ 2α3φ3(1 + α + α2)μZXt−3

+ (1 + α2φ + α4φ2)E(Z2
t ) + αφ(1 − α)

(
1 + αφ + α2φ

)
μZ

+ 2αφ
(
1 + αφ + α2φ

)
μ2

Z
.

By induction, we can conclude that

E(Xt |Xt−k) = α2kφkX2
t−k + 2(αφ)kμZXt−k

k−1∑
i=0

αi + (αφ)k(1 − α)Xt−k

k−1∑
i=0

αi

+ E(Z2
t )

k−1∑
i=0

(
α2φ

)i + αφ(1 − α)μZ

k−1∑
i=0

(αφ)i
i∑

j=0
αj

+ 2αφμ2
Z

k−1∑
i=0

(αφ)i
i∑

j=0
αj.

By the variance definition and some elementary calculations, the proof is completed.
(iii) The proof is routine and eliminated.

�

4. The estimation of the parameters

This section is dedicated to several estimation approaches, including the conditional max-
imum likelihood, modified conditional least square and Yule–Walker estimation methods
of the BDBH-MINAR(1) model.
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4.1. Conditional maximum likelihood estimation

The conditional maximum likelihood (CML) estimates of the parameters of the BDBH-
MINAR(1) model are obtained through log-likelihood maximization, with respect to
parameters δ = (α,φ,β). The log-likelihood function can be written as

	 (δ) = log L (X2, . . . ,Xn | δ) =
n∑

t=2
log P

(
Xt = j |Xt−1 = i

)
,

where P(Xt = j |Xt−1 = i) is the transition probability given by (10). The CML estimate
of the unknown parameters are numerically obtained by maximizing the log-likelihood
function using statistical package ‘R’. We consider the modified conditional least squares
estimates as initial values of the parameters in optimization commands.

4.2. Bayesian estimation

In the Bayesian methodology, we consider that both Xt and parameters are random. We
consider the Gamma priors for parameter α,φ and Beta prior for parameter β as below

α ∼ Gamma (a1, b1) , φ ∼ Gamma (a2, b2) , β ∼ Beta (a3, b3) .

Also assume that α,φ and β are independent and a1, a2, a3, b1, b2, b3 > 0. The posterior
distribution of the parameters (α,φ,β) can be written as

P (α,φ,β |Xt) ∝ L (Xt ,α,φ,β |X1) P (α,φ,β)

∝ L (Xt ,α,φ,β |X1) αa1−1 (1 − α)b1−1 φa2−1 (1 − φ)b2−1 βa3−1 e−b3β ,
(13)

where L(Xt ,α,φ,β |X1) is the conditional likelihood function.
Based on the adaptive rejection Metropolis sampling (ARMS) within Gibbs method-

ology, we generate samples ((α1,φ1,β1), . . . , (αm,φm,βm)) by the full conditional dis-
tribution (13), which can be performed by ‘arms(.)’ command in ‘dlm’ package in ‘R’.

Then the Bayesian estimates are obtained as α̂B = 1
n
∑m

i=1 αi, φ̂B = 1
n
∑m

i=1 φi and β̂B =
1
n
∑m

i=1 βi.

4.3. Modified conditional least square estimation

The modified conditional least squares (MCLS) estimators of the parameters δ1 = (ρ,μZ )

are obtained by minimizing the following expression:

Q(δ1) =
n∑

t=2
(Xt − E(Xt |Xt−1))

2 =
n∑

t=2

(
Xt − ρXt−1 − μZ

)2 , (14)

where we set ρ = αφ.
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The MCLS estimators are given by

ρ̂MCLS = (n − 1)
∑n

t=2 XtXt−1 −∑n
t=2 Xt

∑n
t=2 Xt−1

(n − 1)
∑n

t=2 X
2
t−1 − (∑n

t=2 Xt−1
)2 ,

μ̂Z,MCLS =
∑n

t=2 Xt − ρ̂MCLS

∑n
t=2 Xt−1

n − 1
.

The MCLS estimates of the parameter β are computed by the root of Equation (7), by
putting μ̂Z,MCLS . We apply the ‘uniroot’ command with lower and upper values equal to 0
and β + 5, respectively.

The estimation of the parameters α and φ is computed under the modified method
proposed by Karlsen and Tjøstheim [16] by minimizing the following expression:

S(α,φ) =
n∑

t=2
(Vt − Var(Xt |Xt−1))

2 , (15)

where Vt = (Xt − E(Xt |Xt−1))
2 = (Xt − ρ̂MCLSXt−1 − μ̂Z,MCLS)

2 and Var(Xt |Xt−1) is
defined in (12) with estimated values of the parameters (ρ,μZ ). The parameter φ can be
written with respect to α as φ = ρ

α
, so we have

Var(Xt |Xt−1) = ρ̂MCLS(α − ρ̂MCLS)X
2
t−1 + ρ̂MCLS(1 − α)Xt−1 + σ̂ 2

Z,MCLS
,

where σ 2
Z
is a function of β , and the corresponding estimator σ̂ 2

Z,MCLS
is obtained based on

β̂MCLS . Hence the MCLS estimation of the parameter α is achieved as below

α̂MCLS =
∑n

t=2(Vt + ρ̂2
MCLS

X2
t−1 − ρ̂MCLSXt−1 − σ̂ 2

Z,MCLS
)(X2

t−1 − Xt−1)

ρ̂MCLS

∑n
t=2(X

2
t−1 − Xt−1)2

.

Subsequently, the MCLS estimation of the parameter φ is concluded as φ̂MCLS = ρ̂MCLS

α̂MCLS

.

4.4. Yule–Walker estimation

Consider the expectation E(Xt) = μZ

1 − ρ
and autocorrelation Corr(Xt ,Xt−1) = ρ of the

process, so by using the sample mean and sample autocorrelation function, the YW
estimates of the parameters (ρ,μZ ) are obtained as

ρ̂YW =
∑n

t=2(Xt − X)(Xt−1 − X)∑n
t=1(Xt − X)2

,

μ̂Z,YW = X(1 − ρ̂YW ).

Hence, the YW estimates of the parameter β are computed based on the YW estimation of
μZ . To estimate parameters α and φ, we use the second expectation of the process as below

E(X2
t ) = αφ(1 − α)E(Xt) + 2αφ(1 − αφ)E2(Xt) + E(Z2

t )

1 − α2φ
,
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Let X2 = 1
n
∑n

t=1 X
2
t and φ = ρ

α
, then

α̂YW = X2 − ρ̂YWX − 2ρ̂YW (1 − ρ̂YW )X2 − E(Z2
t )

ρ̂YW

(
X2 − X

) , (16)

where, based on (7) and (8), we set

E(Z2
t ) = 2

β̂YW

+ eβ̂YW Ei(−β̂YW )
(
2 − eβ̂YW Ei(−β̂YW )

)
+ ζ0(β̂YW ) + μ̂2

Z,YW
.

The YW estimation of the parameter φ is obtained as φ̂YW = ρ̂YW

α̂YW

.

5. Simulation approach

In this section, the data generating process and efficiency comparison of estimations based
on the simulation scheme of the BDBH-MINAR(1) model are discussed.

5.1. Data generating process of the BDBH-MINAR(1)model

Here, we provide the algorithm of data generating process of the BDBH-MINAR(1) model
step by step:

Consider X0 = 0 and for t = 1, . . . , n,

(1) Generate a random sample from BDBH distribution with parameter β as below
(a) Generate the random sample u1 from Uniform (0, 1) distribution
(b) Based on (3), compute y = QFY(u1,β)

(c) Set v = [y]
(d) Based on values y and v, generate the random sample u from Bernoulli distribu-

tion with parameter y−v
(e) Set Zt = v + u

(2) Generate the random sample α ◦ Xt−1 from Binomial distribution with parameters
(Xt−1,α)

(3) Generate the random sample u2 from Uniform (0, 1)
(4) If u2 < φ, set Xt = α ◦ Xt−1 + Zt , otherwise set Xt = Zt .

Based on the Monte Carlo simulation, we compare the efficiency of estimates of the
BDBH-MINAR(1) model, under different sample sizes n = 100, 200, 500, 1000, over
h = 1000 iterations. Four different combinations of the parameters are considered as
(α,φ,β) = (0.3, 0.7, 0.2), (0.7, 0.3, 0.4), (0.3, 0.7, 1) and (0.7, 0.3, 2).

Based on the four combinations of the parameters, the sample mean, variance and FDI,
for n = 500 and h = 100, are represented in Table 2, where the sample mean, variance and
FDI are computed based on the mean of each measure in h = 100 iterations.
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Table 2. Sample measures of the BDBH-MINAR(1) process for different
combinations (α,φ,β).

Measures (0.3, 0.7, 0.2) (0.7, 0.3, 0.4) (0.3, 0.7, 1) (0.7, 0.3, 2)

Mean 1.47 1.19 0.64 0.33
Variance 5.64 2.36 0.67 0.29
FDI 3.83 1.98 1.04 0.87

To evaluate the performance of the estimators, we utilize the root mean squared error
(RMSE) measure. The results summarized in Table 3 represent the convergence of all esti-
mates of the parameters to their actual values. Further, by increasing the sample size, the
RMSE is gradually decreased. Among different estimation methods, the Bayes estimates
have the preference over the CML,MCLS and YW estimation, since they have small RMSE
for all parameters.

6. Real-life data application

In this section, we investigate the application of the BDBH-MINAR(1) process by using
four daily COVID-19 death counts data from Robert Koch Institute: SurvStat@RKI 2.0
(https://survstat.rki.de) site, listed as:

• The first data set represents n = 80 daily counts of COVID-19 death, reported from
Austria, from 7th June until 25th August in 2021.

• The second data set represents n = 65 daily counts of COVID-19 death, reported from
Switzerland, from 4th June until 7th August in 2021.

• The third data set represents n = 87 daily counts of COVID-19 death, reported from
Nigeria, from 27th October in 2021 until 21th January in 2022.

• The fourth data set represents n = 70 daily counts of COVID-19 death, reported from
Slovenia, from 14th June until 22th August in 2021.

The sample path, autocorrelation function (ACF) and partial autocorrelation function
(PACF) of four data series are displayed in Figure 2. The PACF plots suggest a first-order
autoregressive model for all data sets.

Some statistical properties of actual data sets are reported in Table 4. Due to the results
of Table 4, four clinical data series are empirically over-dispersed, and the stationarity of
data is justified by using the Augmented Dickey-Fuller (ADF) test. The BDBH-MINAR(1)
process covers all types of dispersion, including overdispersion, hence a convenient choice
for the COVID-19 data sets.

We compare the BDBH-MINAR(1) model to some competitive INAR(1) models such
asGINAR(1) [6], NGINAR(1) [22], NBRCINAR(1) [31], NBIINAR(1) [4], P-MPT(1) [17],
MPDINAR(1) [28] and MPTSD(1) [26]. Also, we define an INAR(1) process by con-
sidering the discrete BH distribution [11] for innovations and binomial thinning oper-
ator, called DBH-INAR(1), and compare the DBH-INAR(1) process with the proposed
BDBH-MINAR(1) model.

We reported the CML estimates, the goodness-of-fit (GOF) statistics as AIC, BIC,HQIC
and CAIC for each relevant INAR(1) model. The results of the COVID-19 data series are
represented in Tables 5–8. Regarding Tables 5–8, the values of the GOF and RMS are the
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Table 3. Simulation results of estimates of parameters of the BDBH-MINAR(1) with RMSE in brackets.

Bayes CML MCLS YW

n α̂ φ̂ β̂ α̂ φ̂ β̂ α̂ φ̂ β̂ α̂ φ̂ β̂

(α,φ,β) = (0.3, 0.7, 0.2)
100 0.29116 0.6859 0.19144 0.32667 0.64854 0.21609 0.36098 0.65146 0.23273 0.38296 0.79511 0.24481
RMSE (0.00737) (0.05818) (0.00312) (0.02334) (0.06084) (0.00613) (0.13212) (0.22249) (0.06714) (0.19541) (0.46111) (0.07249)
200 0.30025 0.68913 0.19263 0.31791 0.67864 0.20957 0.34464 0.66847 0.22056 0.36721 0.75583 0.22405
RMSE (0.00614) (0.03174) (0.00098) (0.01066) (0.04622) (0.00532) (0.11669) (0.20028) (0.05169) (0.18036) (0.44675) (0.05252)
500 0.29585 0.69327 0.19441 0.30851 0.69055 0.19741 0.33121 0.68167 0.21216 0.33651 0.74066 0.22021
RMSE (0.00429) (0.01048) (0.00076) (0.00386) (0.02581) (0.00229) (0.09729) (0.18185) (0.03283) (0.12517) (0.32927) (0.03901)
1000 0.29908 0.69653 0.19884 0.30056 0.69996 0.19822 0.309162 0.69764 0.20583 0.31187 0.718397 0.20735
RMSE (0.00156) (0.00631) (0.00052) (0.00168) (0.00743) (0.00081) (0.05892) (0.11222) (0.00815) (0.07126) (0.15086) (0.00931)

(α,φ,β) = (0.7, 0.3, 0.4)
100 0.68492 0.29002 0.38923 0.73094 0.28978 0.42089 0.66736 0.36581 0.43648 0.79651 0.24781 0.46141
RMSE (0.02619) (0.00522) (0.00493) (0.04691) (0.00831) (0.00976) (0.26843) (0.15096) (0.08705) (0.35021) (0.13567) (0.10931)
200 0.71152 0.29218 0.40849 0.71894 0.29086 0.40431 0.67219 0.33481 0.43039 0.77942 0.25937 0.44783
RMSE (0.00852) (0.00346) (0.00276) (0.02121) (0.00711) (0.00607) (0.22986) (0.12431) (0.06923) (0.30477) (0.12642) (0.08629)
500 0.69203 0.29436 0.40541 0.70584 0.29826 0.40134 0.68973 0.31055 0.42726 0.73191 0.28173 0.43324
RMSE (0.00517) (0.00151) (0.00081) (0.00773) (0.00261) (0.00142) (0.14185) (0.08794) (0.04763) (0.21661) (0.09397) (0.04903)
1000 0.69558 0.29748 0.40017 0.70013 0.29959 0.40007 0.69901 0.30634 0.39678 0.70605 0.29122 0.41004
RMSE (0.00239) (0.00067) (0.00042) (0.00338) (0.00129) (0.00061) (0.09212) (0.05113) (0.01883) (0.16761) (0.06975) (0.02026)

(α,φ,β) = (0.3, 0.7, 1)
100 0.29194 0.71471 1.03683 0.28387 0.67384 0.96874 0.34583 0.65209 0.91105 0.26181 0.64391 0.92589
RMSE (0.00952) (0.04871) (0.08493) (0.02998) (0.08856) (0.12538) (0.12887) (0.29011) (0.36081) (0.10274) (0.36871) (0.35536)
200 0.29232 0.70706 1.03183 0.28633 0.67962 0.97008 0.27363 0.66553 0.94271 0.27769 0.65936 0.92721
RMSE (0.00795) (0.03656) (0.07508) (0.02901) (0.07613) (0.09974) (0.10116) (0.26984) (0.34394) (0.09063) (0.31653) (0.32387)
500 0.29486 0.69206 0.98784 0.29241 0.69124 0.98103 0.28288 0.68924 0.96118 0.28633 0.71912 0.95642
RMSE (0.004596) (0.00811) (0.03554) (0.01045) (0.02193) (0.06709) (0.06179) (0.17272) (0.22224) (0.07025) (0.20682) (0.25086)
1000 0.29744 0.69661 0.99232 0.29837 0.69374 0.98742 0.29274 0.69008 1.01392 0.28942 0.70699 0.97827
RMSE (0.00299) (0.00535) (0.00852) (0.00773) (0.00972) (0.02573) (0.02206) (0.08855) (0.09292) (0.02148) (0.13907) (0.10232)

(α,φ,β) = (0.7, 0.3, 2)
100 0.71231 0.29206 2.03728 0.66306 0.28743 1.94202 0.6332 0.31303 1.87444 0.76741 0.27821 1.86421
RMSE (0.04445) (0.00607) (0.15738) (0.05412) (0.01334) (0.23959) (0.28759) (0.14279) (0.43284) (0.25271) (0.15035) (0.44768)
200 0.68875 0.29497 2.02951 0.67781 0.28959 1.95782 0.65152 0.31017 2.09414 0.65994 0.28304 1.88629
RMSE (0.04146) (0.00449) (0.12361) (0.05048) (0.01046) (0.21807) (0.26348) (0.13705) (0.41102) (0.24006) (0.13946) (0.43741)
500 0.69039 0.29527 1.98771 0.68503 0.29109 1.96185 0.67026 0.28593 1.92196 0.73152 0.28429 1.90765
RMSE (0.01324) (0.00084) (0.07029) (0.02001) (0.00763) (0.14995) (0.18066) (0.09832) (0.28616) (0.17594) (0.10697) (0.31922)
1000 0.69455 0.30106 1.99197 0.69196 0.29477 1.97496 0.7198 0.28843 1.95811 0.68702 0.29091 1.94292
RMSE (0.00878) (0.00062) (0.02091) (0.01443) (0.00455) (0.08907) (0.09027) (0.06054) (0.11159) (0.08686) (0.04031) (0.14425)
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Figure 2. The sample path, ACF and PACF of the COVID-19 daily deaths sets.

Table 4. Statistical measures and p-values of Augmented Dickey–Fuller test for clini-
cal data sets.

Data sets Mean Variance Autocorrelation FDI p-value of ADF

Austria 1.362 1.727 0.477 1.268 0.043
Switzerland 1.215 2.14 0.415 1.761 0.015
Nigeria 2.747 14.77 0.511 5.377 0.039
Slovenia 0.571 1.147 0.375 2.007 0.042

Table 5. The CML estimates and some GOF measures for the COVID-19 daily deaths in Austria.

Model CML AIC BIC HQIC CAIC

GINAR(1) p̂ = 0.53246, α̂ = 0.42945 246.64 251.41 248.55 248.96
DBH-INAR(1) α̂ = 0.66037, β̂ = 0.53994 255.34 260.11 257.25 255.55
NGINAR(1) p̂ = 6.44531, α̂ = 1.45502 241.37 246.14 243.28 243.69
NBRCINAR(1) n̂ = 4.25648, p̂ = 0.75411, ρ̂ = 0.48918 235.34 242.49 239.21 237.87
NBIINAR(1) n̂ = 6.5813, p̂ = 8.98974, ρ̂ = 0.48112 235.22 242.37 238.09 237.76
P-MPT(1) α̂ = 0.77688, φ̂ = 0.33379, λ̂ = 1.30933 236.65 243.8 239.52 239.19
MPDINAR(1) α̂ = 0.77003, θ̂ = 4.40936e − 06, φ̂ = 0.34108, μ̂ = 1.23296 243.01 252.53 246.83 245.82
MPTSD(1) φ̂ = 0.26994, ρ̂ = 0.73063, â = 0.27367, b̂ = 1.13981 238.35 247.88 242.17 238.89
BDBH-MINAR(1) α̂ = 0.68834, φ̂ = 0.79484, β̂ = 0.28659 232.48 239.63 235.34 232.88

smallest for the BDBH-MINAR(1) model. Therefore, we can conclude that the BDBH-
MINAR(1) model provides the best fitting among other competitive INAR(1) models.

6.1. The residual analysis of the clinical data sets

The adequacy of the BDBH-MINAR(1) process is evaluated by the residual analysis of all
COVID-19 data sets. The Pearson residuals are defined as

et = Xt − E(Xt |Xt−1)√
Var(Xt |Xt−1)

,
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Table 6. The CML estimates and some GOF measures for the COVID-19 daily deaths in Switzerland.

Model CML AIC BIC HQIC CAIC

GINAR(1) p̂ = 0.52272, α̂ = 0.33497 194.65 199.01 196.37 197.05
DBH-INAR(1) α̂ = 0.55696, β̂ = 0.55025 200.76 205.11 202.48 201.02
NGINAR(1) p̂ = 1.31654, α̂ = 0.61823 189.91 194.25 191.62 192.31
NBRCINAR(1) n̂ = 1.86419, p̂ = 0.60321, ρ̂ = 0.38624 192.35 198.88 194.93 195.02
NBIINAR(1) n̂ = 1.67351, p̂ = 2.39232, ρ̂ = 0.44401 190.57 197.09 193.14 193.24
P-MPT(1) α̂ = 0.70882, φ̂ = 0.29357, λ̂ = 1.06696 190.61 197.12 193.17 193.27
MPDINAR(1) α̂ = 0.721022, θ̂ = 0.05908, φ̂ = 0.29221, μ̂ = 1.01061 187.85 196.55 191.28 190.87
MPTSD(1) φ̂ = 0.36951, ρ̂ = 0.39702, â = 0.34453, b̂ = 1.21351 199.51 208.21 202.94 200.18
BDBH-MINAR(1) α̂ = 0.52141, φ̂ = 0.34537, β̂ = 0.27579 183.61 190.13 186.18 184.11

Table 7. The CML estimates and some GOF measures for the COVID-19 daily deaths in Nigeria.

Model CML AIC BIC HQIC CAIC

GINAR(1) p̂ = 0.73798, α̂ = 0.25715 365.04 369.97 367.02 367.33
DBH-INAR(1) α̂ = 0.57511, β̂ = 0.85056 457.64 462.57 459.62 457.83
NGINAR(1) p̂ = 2.82786, α̂ = 0.42193 358.55 363.48 360.54 360.84
NBRCINAR(1) n̂ = 0.75577, p̂ = 0.22631, ρ̂ = 0.33339 361.22 368.61 364.21 363.79
NBIINAR(1) n̂ = 0.55525 p̂ = 0.45711, ρ̂ = 0.55898 356.97 364.37 359.95 359.46
P-MPT(1) α̂ = 0.77523, φ̂ = 0.29277, λ̂ = 0.32109 494.15 501.55 497.13 496.64
MPDINAR(1) α̂ = 0.52906, θ̂ = 0.37554, φ̂ = 0.26799, μ̂ = 2.77464 373.33 383.19 377.31 376.07
MPTSD(1) φ̂ = 0.49001, ρ̂ = 0.23875, â = 0.77546, b̂ = 2.58746 388.31 398.17 392.28 388.79
BDBH-MINAR(1) α̂ = 0.78274, φ̂ = 0.64403, β̂ = 0.09167 351.77 359.16 354.74 352.13

Table 8. The CML estimates and some GOF measures for the COVID-19 daily deaths in Slovenia.

Model CML AIC BIC HQIC CAIC

GINAR(1) p̂ = 0.37212, α̂ = 0.27939 141.39 145.89 143.18 143.76
DBH-INAR(1) α̂ = 0.42501, β̂ = 0.38262 140.28 144.78 142.07 140.52
NGINAR(1) p̂ = 0.67834, α̂ = 0.65699 137.03 141.53 138.82 139.44
NBRCINAR(1) n̂ = 0.51506, p̂ = 0.47325, ρ̂ = 0.32685 138.53 145.28 141.22 141.15
NBIINAR(1) n̂ = 0.43219, p̂ = 1.31108, ρ̂ = 0.46706 137.77 144.52 140.45 140.39
P-MPT(1) α̂ = 0.75842, φ̂ = 0.35239, λ̂ = 0.49878 136.46 143.21 139.14 139.07
MPDINAR(1) α̂ = 0.765068, θ̂ = 0.10762, φ̂ = 0.28718, μ̂ = 0.477602 132.77 141.77 136.34 135.71
MPTSD(1) φ̂ = 0.58524, ρ̂ = 0.04171, â = 0.51171, b̂ = 0.95009 141.58 150.57 145.15 142.19
BDBH-MINAR(1) α̂ = 0.72094, φ̂ = 0.28677, β̂ = 0.50124 128.74 135.49 131.42 129.21

where E(Xt |Xt−1) and Var(Xt |Xt−1) are defined in (11) and (12), respectively, and
parameters are substituted by their estimated counterparts in BDBH-MINAR(1) model.
Figure 3 depicts the sample ACF of the Pearson residuals of four data series. Based on
Figure 3, the residuals are non-correlated, and the findings are confirmed by p-values
(0.242, 0.667, 0.831, 0.214) of the Ljung–Box test. The cumulative periodogram plots in
Figure 4 indicate the randomly distributed residuals and do not represent any specified
trend.

Figure 5 shows the result of the parametric resampling method. We generate 5000 data
sets of length n = (80, 65, 87, 70) using the fitted BDBH-MINAR(1) model (with CML
estimates of the parameters of each data set). Based on these bootstrap data sets, 5000 auto-
correlation functions and for each fixed lag, 100(0.975)% and 100(0.025)%quantiles of the
ACF are obtained as the bounds of an acceptance region. These bounds are shown as ‘+’
symbols in the figure with the sample ACF presented by ‘•’. Based on Figure 5, all the sam-
ple autocorrelations appointed between the acceptable bounds and adequacy of the model
are concluded.
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Figure 3. The Pearson residuals ACF for the COVID-19 daily deaths sets.

We evaluate the adequacy of fit and relative performance of the BDBH-MINAR(1)
process within the competing models by scoring rules. The quality of probabilistic pre-
dictions is assessed by the scoring rules in decision analysis which allocate the numerical
score based on the predictive distribution and the observed data. We consider the log-
arithmic, quadratic and spherical scores defined as logs(P, xt) = − log P(xt), qs(P, xt) =
−2P(xt)+ ‖ P ‖2 and sphs(P, xt) = − P(xt)

‖ P ‖2 , respectively, where P(xt) is the PMF of

the predictive distribution at the observed count and ‖ P ‖2= ∑∞
i=0 P(i)2. For more

information, see Czado et al. [10].
Table 9 shows mean scores for competing models for the COVID-19 data series. The

score diagnostic tools prefer the BDBH-MINAR(1) process among all of the competitive
INAR models.

6.2. Forecastingmethods

In this section, we provide the forecasting of considered data sets under the classical,
modified Sieve bootstrap and Bayesian approaches to verify the appropriateness and
predictability of the BDBH-MINAR(1) model.

The k-step ahead classical predictor of the BDBH-MINAR(1) model is represented as

X̂t+k = E
(
Xt+k |Xt

) = (αφ)kXt + 1 − (αφ)k

1 − αφ
E(Zt+k),

where unknown parameters α,φ and E(Zt+k) are substituted by the respective CML
estimates.



JOURNAL OF APPLIED STATISTICS 1245

Figure 4. The Pearson residuals cumulative periodogram of for the COVID-19 daily deaths sets.

6.2.1. Modified Sieve bootstrap forecasting approach
The count time series has integer nature and the classical forecasts are not compatible with
the nature of count data. Themodified Sieve bootstrapmethod keeps the count data’s inte-
ger character. Hence, we modified the bootstrap approach proposed by Pascual et al. [20]
to apply in BDBH-MINAR(1) model as the following steps.

(1) The parameters (α,φ) are estimated based on the Yule–Walker (YW) estimation
approach, due to its non-parametric structure.

(2) Compute residuals Ẑt = Xt − α̂φ̂Xt−1, for t = 2, . . . , n.
(3) The empirical distribution of the modified residuals Z̃t are provided as F̂

Z̃t
(z) =

1
n
∑n

i=1 I(Z̃t < z), where I(.) is the indicator function, Z̃t = [Ẑt], and [.] shows the
nearest integer value.

(4) The bootstrap series Xb
t is represented as

Xb
t =

(
φ̂, α̂ ◦ Xb

t−1 + Zb
t

)
∗
(
1 − φ̂,Zb

t

)
, b = 1, . . . ,B,
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Figure 5. The bootstrap ACF and acceptance regions.

Table 9. Mean scores of COVID-19 data series.

Austria Switzerland Nigeria Slovenia

Model logs qs sphs logs qs sphs logs qs sphs logs qs sphs

GINAR(1) 1.49 −0.23 −0.55 1.42 −0.13 −0.5 2.18 −0.16 −0.42 0.92 0.71 −0.39
DBH−INAR(1) 1.73 −0.37 −1.24 1.63 −0.36 −0.23 3.05 −0.19 −0.22 1.16 −0.56 −0.81
NGINAR(1) 1.47 0.15 −0.84 1.39 1.29 −0.32 2.17 0.71 −0.25 0.89 0.67 −0.24
NBRCINAR(1) 1.41 −0.56 −2.14 1.38 −0.59 −0.41 2.05 −0.44 −0.52 0.95 −1.19 −1.04
NBIINAR(1) 1.59 −0.31 −0.68 1.37 −0.38 −0.78 2.01 −0.22 −0.46 0.89 −0.55 −0.73
P−MPT(1) 1.44 −0.28 −0.53 2.51 0.04 −0.18 2.43 −0.11 −0.41 0.95 −0.53 −0.72
MPDINAR(1) 1.49 −0.27 −0.52 2.14 −0.04 −0.27 2.12 −0.19 −0.43 0.92 −0.51 −0.73
MPTSD(1) 1.41 −0.29 −0.53 1.82 −0.14 −0.38 2.18 −0.21 −0.44 0.88 −0.55 −0.74
BDBH−MINAR(1) 1.33 −0.64 −2.99 0.85 −1.71 −0.67 2.02 −0.58 −0.61 0.76 −1.52 −1.65

where B is the bootstrap sample size as B = 500, and Zb
t is generated from the

empirical distribution in step 3, for t = 1, 2, . . . , n. The random samples Zb
t from the

empirical distribution are derived by the ‘remp(.)’ command in package ‘EnvStats’ of
‘R’ software.

(5) The YW estimation of the parameters (α̂YW , φ̂YW ) is obtained by inserting the sample
mean, variance, and solving the following equations:
⎧⎪⎪⎨
⎪⎪⎩
E (Xt) = E (Zt)

1 − αφ

Var(Xt) = E(Z2
t )

1 − α2φ
+ αφ(1 − α)E(Zt)

(1 − α2φ)(1 − αφ)
+ E2(Zt)

(
2αφ(1 − αφ) + α2φ − 1

)
(1 − α2φ)(1 − αφ)2

.

(6) The parameters (α,φ) are estimated based on the sample means α̂b = 1
B
∑B

i=1 α̂i,YW

and φ̂b = 1
B
∑B

i=1 φ̂i,YW .
(7) The future bootstrap observations are given by the following recursion:
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X̂b
t+1 = It

(
α̂b ◦ Xb

t + Zb
t+1

)
+ (1 − It)Zb

t+1,

where It = { 1 w.p. φ̂b

0 w.p. 1−φ̂b , and Z
b
t+1 is generated from the empirical distribution in step 4.

6.2.2. Bayesian forecasting approach
The Bayesian predictive function of Xt+h given Xt is given by

f
(
xt+h | xt

) ∝
∫

α

∫
φ

∫
β

f
(
xt+h | xt ,α,φ,β

)
P (α,φ,β | xt) dβ dφ dα.

The h-step conditional PMF, f (xt+h | xt ,α,φ,β) must be computed for the Bayesian pre-
dict. Since a closed-formexpression for the h-step conditional PMF is only available for h =
1, we apply the simulation scheme given in Gorgi [13] to approximate f (xt+h | xt ,α,φ,β).
Also, the algorithm given in Shirozhan andMohammadpour [27] is used to estimate Xt+h,
after some adaptation as the following steps.

(1) Compute the initial estimate of δ = (α,φ,β) by the sampleX1, . . . ,Xt and set theCML
estimates as the initial values of δ.

(2) The sample (δ1, . . . , δm) is generated by the adaptive rejection Metropolis sampling
(ARMS) within Gibbs methodology, which can be performed by ‘arms(.)’ command
in ‘dlm’ package in ‘R’ software by the full conditional distribution (13).

(3) For i = 1, . . . ,m , j = 1, . . . ,B and simulate

X(i,j)
t+h = Ii,t

(
αi ◦ X(i,j−1)

t+h−1 + Z(i,j)
t+h

)
+ (

1 − Ii,t
)
Z(i,j)
t+h,

where m = 100, B = 500, αi ◦ X(i,j−1)
t+h−1 is generated from a binomial distribution

with parameters (αi,X
(i,j−1)
t+h−1) and Z(i,j)

t+h is generated from BDBH distribution with
parameter βi and Ii,t = { 1 w.p. φi

0 w.p. 1−φi
.

(4) Compute an approximation of f (Xt+h |Xt ,αi,φi,βi) as f̂ (Xt+h |Xt = x,αi,φi,βi) =
nhx
B , where n

h
x denotes the number of draws X(i,j)

t+h, j = 1, . . . ,B, equal to x.
(5) For each i (i = 1, . . . ,m) sample Xt+h,i from f̂ (Xt+h |Xt ,αi,φi,βi), using the inverse

transform method adapted to integer variables, that is,
(a) sample u from uniform (0, 1),
(b) calculate the least integer valued v :

∑v
j=0 f̂ (Xt+h = j |Xt ,αi,φi,βi) ≥ u,

(c) consider Xt+h,i = v.

Note that steps 3 and 4 have been applied for the approximation of f (xt+h | xt ,α,φ,β),
where the other steps are used to estimate Xt+h from f (xt+h | xt).

Based on sampling Xt+h,1, . . . ,Xt+h,m, the -step ahead predictor of Xt+h can be calcu-
lated from the sample mean X̂t+h = 1

m
∑m

i=1 Xt+h,i.



1248 S. M. HOSEINI BALADEZAEI ET AL.

Table 10. The one-step ahead predictions of COVID-19 data series.

Austria Switzerland

Actual data Bayesian Bootstrap Classical Actual data Bayesian Bootstrap Classical

2 2.101 4 2.345 3 2.282 1 2.442
0 1.282 1 1.251 1 1.797 2 1.665
0 2.051 0 1.251 0 1.727 0 1.276
0 1.949 3 1.251 0 1.021 3 1.276
0 2.131 2 1.251 1 1.929 3 1.665
2 2.202 2 2.345 1 1.121 2 1.665
1 1.131 1 1.798 1 1.787 0 1.665
2 2.062 2 2.345 0 1.001 2 1.276
2 2.282 0 2.345 0 2.181 0 1.276
3 2.515 2 2.893 0 1.838 2 1.276
SMAPE 0.861 0.902 0.924 1.072 1.127 1.221

Table 11. The one-step ahead predictions of COVID-19 data series.

Nigeria Slovenia

Actual data Bayesian Bootstrap Classical Actual data Bayesian Bootstrap Classical

1 1.373 2 2.588 0 0.591 1 0.921
6 4.818 4 5.109 0 0.484 1 0.921
0 1.161 0 2.084 0 1.313 0 0.921
0 2.575 6 2.084 0 1.303 2 0.921
3 2.767 2 3.596 0 1.151 3 0.921
8 6.818 5 6.117 0 1.272 1 0.921
7 5.474 5 5.613 2 1.898 0 1.335
6 5.878 3 5.109 4 4.121 1 1.748
1 2.828 2 2.588 0 0.434 2 0.921
6 4.949 1 5.109 0 1.404 2 0.921
SMAPE 0.618 0.701 0.692 1.608 1.709 1.718

6.3. Point prediction results

In Table 11, the classic, modified Sieve bootstrap and Bayesian forecasts of 10 last values of
the COVID-19 data series are reported, for which we know the observed values. The sym-
metric mean absolute percent error (SMAPE) factors are provided to compare the forecast
systems. The less SMAPE value leads to a better forecasting scheme. Based on Table 11,
the SMAPE values of the Bayesian forecasting are smaller than two others, whereas the
modified Sieve bootstrap predictors are integers compatible with the nature of actual data.

Conclusions

We introduce a new balanced discrete Burr–Hatke distribution which can be considered
for data sets with all kinds of dispersion. The applicability of the new discrete distribution is
evaluated inmodeling counting time series.We introduce a flexiblemixing INAR(1)model
based on the Pegram and binomial thinning operators with BDBH innovations. The pro-
posed mixing INAR(1) model is appropriate in modeling any type of dispersions of data
sets. Based on the Monte Carlo simulation scheme, the efficiency of the Bayesian estima-
tors is confirmed in comparison to the CML, MCLS and YW estimators. Compared with
other relevant INAR(1) models, our model has the privilege to provide the best modeling
of COVID-19 data sets. Based on four daily counts of the COVID-19 death, the residual
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analysis of mixing INAR(1) process is provided to affirm the adequacy of fitness. Several
forecasting approaches are considered for COVID-19 data sets, and outperforming the
Bayesian forecasting method is demonstrated over classic and modified sieve Bootstrap
methods.
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